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Abstract–In the past decade, quasi-Monte Carlo
(QMC) method has become an important numerical
tool in computational finance. This is driven, in part,
by the sophistication of the models and, in part, by
the complexity of the derivative securities. In this pa-
per, we consider an enhanced QMC method recently
proposed by Imai and Tan (2009). This method is
known as the generalized linear transformation (GLT)
and it increases the efficiency of QMC via dimen-
sion reduction. GLT can be used to simulate gen-
eral stochastic processes and hence has a much wider
range of applications. By assuming that the dynam-
ics of the underlying asset price follows an exponen-
tial Meixner Lévy process and by resorting to some
exotic options including average options and lookback
options, we demonstrate the effectiveness and robust-
ness of GLT and it substantially outperforms the stan-
dard applications of QMC and Monte Carlo methods.
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derivative securities, dimension reduction

1 Introduction

The Monte Carlo (MC) method is a powerful and flexi-
ble tool for providing numerical solutions to a large class
of complex problems. In particular, since its introduc-
tion to computational finance by Boyle [4] in 1977, MC
method has been gaining popularity and is becoming an
indispensable tool in a variety of settings in computa-
tional finance. There are a few reasons for its usefulness
in computational finance. Some of these reasons include
the following:

1. In modern financial economics, security prices are
modeled as stochastic processes to reflect future un-
certainty. The current price of a security can be rep-
resented as the expected value of the future payouts
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on the security. This follows from the assumption of
no-arbitrage (see (2) in Section 2).

2. Increased complexity of the derivative securities

3. Increased sophistication on modeling the dynamics
of the underlying stochastic processes.

4. Early finance applications of MC are mainly con-
cerned with calculations related to the pricing of
complex financial instruments and the computation
of related hedging parameters. More recently, MC
methods are used extensively in risk management
(such as calculation of credit risk and market risk
and value at risk computations), solvency analysis,
and etc.

It follows from Point 1 that MC method lends itself nat-
urally to this application since it involves estimating an
expectation. A simple MC procedure for estimating the
prices of derivative securities involves the following steps:
First simulate the stochastic process that drives the un-
derlying asset. Second, corresponding to the simulated
asset path, record the discounted payoff. Third, repeat
the simulation procedure independently N times to gen-
erate N independent estimates of the discounted payoffs.
The crude MC estimate of the derivative security price
is then given by the sample average of these discounted
payoffs. The strong law of large number guarantees that
the sample average converges to the true value as the
sample size N tends to infinity. In addition, the central
limit theorem assures us that it converges at a rate of
O(N−1/2), which is independent of dimension.

The complicated and exotic features of the derivative se-
curities (Point 2) imply that only in rare cases where
their prices can be expressed analytically, even under the
simplest Black-Scholes [3] type framework. Examples of
such exotic derivative securities include path-dependent
options such as Asian option, lookback option, barrier
option, and etc. There are other derivative securities
which not only depend on a single asset but also on
several underlying assets (such as basket option). For
these exotic derivative securities, their prices can be for-
mulated as multi-dimensional integrals. In many cases,
the number of dimensions can be very large; for example,
under mortgage-backed securities the number of dimen-
sions can be as high as 360. Because of the inherence

IAENG International Journal of Applied Mathematics, 39:4, IJAM_39_4_10
______________________________________________________________________________________

(Advance online publication: 12 November 2009)



high-dimensional applications, other competitive numer-
ical methods including the numerical solutions to partial
difference equation, binomial lattice method and quadra-
ture methods become computationally infeasible due to
the curse of dimensionality. Consequently, MC becomes
the only viable numerical tool.

Point 3 provides further impetus on the usefulness of
MC methods. The Black-Scholes model is often criticized
for assuming that the log-returns of the underlying asset
price is normally distributed. Numerous empirical stud-
ies have provided ample of evidences that the dynamics of
the underlying asset typically exhibits skewness and kur-
tosis. Motivated by the empirical evidences, a number
of more elaborate models including GARCH models (e.g.
see [9]) and models with stochastic volatility (e.g. see [14])
has been proposed. More recently, the Lévy process as
an alternate process for modeling the dynamic of the log-
returns of the underlying and in derivative pricing has
been gaining popularity (e.g. see [30] and [19]). These
models, although they are better at capturing many of
the stylized features of the assets, tend to be more so-
phisticated and more complicated. This implies that the
chance of obtaining tractable pricing formulas are even
more slim compared to the Black-Scholes case. Conse-
quently this again advocates the use of MC method.

The key advantages of MC method lie on its flexibility
and that its convergence rate is independent of dimen-
sion. This is particularly important since many finance
applications typically have dimension of several hundreds.
Despite its widespread use, MC is often criticized for
its slow rate of convergence, particularly for large scale
problems. Different methods for enhancing the underly-
ing MC method have been proposed. These techniques
are known as variance reduction techniques. In the past
decade or so, the so-called quasi-Monte Carlo (QMC)
method has been proposed as an alternate competitive
numerical tool to the field of computational finance. This
method relies on the specially constructed sequence which
has the property that it is more evenly dispersed through-
out the unit cube and is known as the (randomized) low
discrepancy sequence. The monograph by [23] provides
an excellent discussion of these sequences. Early appli-
cations of low discrepancy sequences to finance problems
are advocated in [6], [18], [24] and [25]. See also the com-
prehensive and excellent survey paper of [5].

The surge of interest in QMC stems from its promised
rate of convergence of O(N−1 logdN), in dimension d.
This rate is asymptotically more efficient than the cor-
responding MC rate of O(N−1/2). However, the fac-
tor logdN cannot be ignored for practical sample size
N and moderate dimension d. Hence the superior con-
vergence rate of QMC needs not be attained in practical
applications due to its explicit dependent on dimension.
Many numerical studies seem to suggest that the success
of QMC is intricately related to the notion of effective

dimension. These studies show that when QMC is com-
bined with dimension reduction techniques, the greater
efficiency of QMC can be expected. Methods that en-
hance QMC by exploiting this feature include the Brown-
ian bridge construction ([22] and [7]), the principal com-
ponent construction [1], and the linear transformation
(LT) method [15]. More recently, Imai and Tan (see [16]
and [17]) consider an extension of the LT method known
as the generalized linear transformation (GLT) method.
The generalization is motivated by the recent interest in
adapting QMC to other more exotic models, notably the
Lévy models (see [12], [26], [2], [20]). The original LT
method has the limitation that it only provides an ef-
ficient algorithm for simulating derivative prices when
the underlying follows a Gaussian process. By induc-
ing additional transformations, the GLT proposed in [16]
and [17] provides a power alternate way of simulating ar-
bitrary stochastic processes. Consequently, GLT has a
much wider range of applications. When combined with
QMC, its effectiveness on simulating Lévy processes is
illuminated in the numerical examples conducted in [16]
and [17]. The objective of this paper is to provide addi-
tional insights on the effectiveness of GLT. We consider
more extensive test cases including plain-vanilla options
and other exotic options such as average options and look-
back options. The dimension associated with these appli-
cations ranging from 4 to 250. The robustness of the GLT
is also addressed. Our numerical examples assume that
the dynamics of the asset prices follows the exponential
Meixner process.

The rest of the paper is organized as follows. Section 2
provides an overview of a special family of Lévy process
known as the Meixner process. Section 3 describes the
dimension reduction GLT method. Extensive test results
on the relative effectiveness of GLT are presented in Sec-
tion 4. Section 5 concludes the paper.

2 The Meixner Process

In this section, we provide a brief overview of the Meixner
process as well as its relation to modeling risky assets and
derivative pricing. Detailed description of the Meixner
process can be found in [11] and [29] where we have
largely drawn the material from.

The density of the Meixner distribution, denoted by
Meixner(a, b, d,m), is given by fMeixner (x; a, b, d,m) =¡
2 cos

¡
b
2

¢¢2d
2aπΓ (2d)

exp

µ
b (x−m)

a

¶ ¯̄̄̄
Γ

µ
d+

i (x−m)
a

¶¯̄̄̄2
,

where a > 0,−π < b < π, d > 0, m ∈ <, and Γ(·) is the
Euler gamma function. Several important characteristics
associated with this distribution are:

1. Moments of all order of this distribution exist. In
particular, its mean, variance, and kurtosis are given
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by m + ad tan(b/2), a2d
2 cos−2(b/2), and 3 + [3 −

2 cos2(b/2)]/d, respectively. Clearly, the kurtosis of
the Meixner distribution is always larger than the
corresponding kurtosis from the normal distribution.

2. The characteristic function of the Meixner(a, b, d,m)
distribution, denoted by φ(u), has the form

φ(u) =

Ã
cos(b/2)

cosh au−ib
2

!2d
exp(imu).

It is easy to see that the Meixner(a, b, d,m) is in-
finitely divisible.

3. The Meixner(a, b, d,m) distribution has semi-heavy
tails. This means that the tails of the density func-
tion behave as:

fMeixner (x; a, b, d,m) ∼½
C−|x|ρ− exp(−σ−|x|) as x→ −∞
C+|x|ρ+ exp(−σ+|x|) as x→ +∞,

where

ρ− = ρ+ = 2d− 1, σ− = π − b
a

, and σ+ =
π + b

a
.

The infinite divisibility property of the Meixner(a, b, d,m)
distribution implies that we can associate with it a Lévy
process which we denote as the Meixner process. More
formally, a Meixner process {Xt, t ≥ 0} is a stochastic
process which starts at zero, i.e. X0 = 0, has indepen-
dent and stationary increments, and where the distribu-
tion of Xt is given by the Meixner(a, b, dt,mt) distribu-
tion. Unlike the general Lévy process, the Meixner pro-
cess {Xt, t ≥ 0} has no Brownian part and a pure jump
part governed by the Lévy measure

v(dx) = d
exp(bx/a)

x sinh(πx/a)
dx.

Recall that in the celebrated Black-Scholes model, the
price process of the underlying is given by the geometric
Brownian motion:

St = S0 exp

µµ
μ− σ2

2

¶
+ σBt

¶
,

where St is the price of the asset at time t, μ and σ
are the mean and volatility of the underlying asset, and
{Bt, t ≥ 0} is the standard Brownian motion; i.e. Bt
is normally distributed with mean 0 and variance t. As
pointed out in the introduction that there is ample of em-
pirical evidence criticizing the deficiency of the normality
assumption of the log-returns. A natural remedy is to re-
place the Brownian motion in the Black-Scholes model
by a more sophisticated Lévy process. For example, [11]

and [29] propose the following dynamics of the asset price
based on the Meixner process:

St = S0 exp(Xt) (1)

where Xt ∼ Meixner(a, b, d,m). [29] successfully fits the
above model to the daily log-returns of the Nikkei-225
Index.

Let h((St1 , . . . , Std) denote the payoff at maturity T = td
of a European-style derivative security. Then the funda-
mental theorem of asset pricing asserts that its time-0
no-arbitrage price is given by (see [8])

EQ[e
−rTh(St1 , . . . , Std)], (2)

where r is the risk-free rate of return and the expectation
is taken with respect to an equivalent martingale measure
Q. Assuming more complex dynamics of the asset prices
induces market incompleteness. This implies there ex-
ists multiple equivalent martingale measures which lead
to nonuniqueness of the no-arbitrage price of the deriva-
tive. In our simulation studies, we identify the martingale
measure via the Esscher transform proposed in [10]. Us-
ing this method, the equivalent martingale measure Q
follows a Meixner(a, aθ + b, d,m) distribution where θ is
given by

θ = −1
a

Ã
b+ 2arctan

Ã
− cos(a2 ) + e(m−r)/(2d)

sin(a/2)

!!
.

Additional details on option pricing with respect to this
model can be found in [11].

3 Generalized Linear Transformation
(GLT) Method

Some researches (see for example [1], [7], [16] and [17],
[22]) have suggested that the success of QMC depends
critically on the underlying effective dimension, as op-
posed to the nominal dimension, of the problem of in-
terest. Using “analysis of variance” (ANOVA) decom-
position of a function, [7] defines two notions of effec-
tive dimension of an integrand as follows: Consider an
integrand with d nominal dimensions (i.e. depends on
d variables). The effective dimension of f , in the su-
perposition sense, is the smallest integer dS such thatP

|u|≤dS σ
2(fu) ≥ pσ2(f), where fu is a function depends

on the components in the set u, σ2(·) denotes the vari-
ance of the given function, and p is an arbitrary confi-
dence level such as 99%. The effective dimension of f , in
the truncation sense, is the smallest integer dT such thatP

u∈{1,2, ...,dT } σ
2(fu) ≥ pσ2(f). Essentially, the trunca-

tion dimension indicates the number of important vari-
ables which predominantly captures the given function f .
The superposition dimension, on the other hand, mea-
sures to what extent the low-order ANOVA terms domi-
nate the function.
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In addition to introducing the concept of effective dimen-
sion, [7] argues that the efficiency of QMC is intricately
tied to the effective dimension. One of the potential ex-
planations for the success of QMC on problems of low
effective dimension can be attributed to the well-known
phenomenon that the uniformity of some low discrepancy
sequences deteriorates with dimensions. QMC can be ex-
pected to be more effective when the greater uniformity
portion of the low discrepancy sequences is applied to
the dominant dimensions of the function. This is exactly
the strategy recommended by [7] for enhancing QMC, as
can be seen from the following excerpt (page 45) of that
article:

• First analyze the problem, mathematically or numer-
ically, to determine the most important input dimen-
sions.

• Where possible, reformulate the problem to concen-
trate the variation in fewer dimensions.

• When a small number of dominant dimensions can
be identified or induced, apply quasi-random or ran-
domized quasi-random sequences to those dimen-
sions.

Methods such as the linear transformation (LT, [15]) and
the generalized linear transformation (GLT, [16] and [?])
increase the efficiency of QMC by adopting these strate-
gies. There are other methods, including the Brownian
bridge construction ([22]) and the principal component
construction ([1]), which also enhance QMC via dimen-
sion reduction. In the remaining of the section, we focus
on the LT method, in particular the GLT method. The
latter method will form the basis of our numerical studies
in the next section.

Suppose we are interested in solving

E[g(Z)], (3)

where g(Z) is a function which depends on d-dimensional
standardized normal random vector Z. The above ex-
pectation is of particular interest to us as many of the
problems associated with derivative pricing can be for-
mulated as (3). In these cases, the expectation is taken
with respect to an equivalent martingale measure and
g(Z) corresponds to the discounted payoff of the deriva-
tive security (see (2)). We are further assuming that a
simple analytical expression for (3) does not exist and
hence we need to resort to numerical methods such as
MC or QMC due to the high dimension d.

Before describing LT and GLT methods, let us first recall
how QMC is used to estimate (3). The standard QMC
estimator of (3) is given by

1

N

NX
i=1

g(εi), (4)

where the normal vector εi ≡ (εi1, εi2, . . . , εid} is gener-
ated via inverse transforms from a d-dimensional (ran-
domized) low discrepancy sequence. More precisely, we
have εij = Φ−1(xij) where xij denotes the i-th point
and j-th dimension of a (randomized) low discrepancy
sequence and Φ(·) is the normal cumulative density func-
tion. To contrast with the MC method, the normal vec-
tors {εi, i = 1, . . . , N} would have been generated inde-
pendently and randomly from a pseudo-random sequence.

Instead of using (4) to estimate (3), [15] proposes the
following QMC-based estimator:

1

N

NX
i=1

g(Aεi), (5)

where A is an orthogonal matrix satisfying A0A = I and
I is the identity matrix. They denote this method as
LT, the linear transformation method. They also recom-
mend the following algorithm for determining the optimal
columns of A iteratively; i.e. A∗·k, for k = 1, . . . ,N :

max
A ·k∈<d

Ã
∂g(Aε)

∂εk

¯̄̄̄
"="̂ k

!2

subject to kA·kk = 1 and
hA∗·j ,A·ki = 0, j = 1, . . . , k − 1.

(6)

In the above algorithm, A·k denotes the k-th column of
A, ha, bi denotes the inner product between vectors a
and b, and ε̂k = (v1, . . . , vk−1, 0 . . . , 0)> denotes the d-
dimensional vector with arbitrary chosen random vari-
ables v1, . . . , vk−1.

We now summarize some properties pertaining to the
method of LT:

• Since A is an orthogonal matrix, this implies that
E[g(Z)] = E[g(AZ)] and hence (5) is a consistent
estimator of (3). Furthermore, under the special case
A = I, the LT estimator (5) reduces to the standard
QMC estimator (4).

• Algorithm (6) aims at reducing the dimension reduc-
tion of a given function of interest and is motivated
by its intricate connection to variance decomposi-
tion. By maximizing the variance contribution of
each column of A iteratively, this ensures that the
dominant effect of the function is concentrated on
the earlier dimensions. This in turn has the impact
of dimension reduction.

• We emphasize that algorithm (6) is carried out it-
eratively for k = 1, 2, . . . , d. This implies that in
the k-th iteration, A∗·j , j = 1, . . . , k − 1 are already
optimally determined in the earlier iteration steps.
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• Methods such as the Brownian bridge construction
[22] and the principal component construction [1] re-
duce the effective dimension by only focusing on the
discrete Brownian paths. LT, on the other hand, re-
duces the effective dimension by directly exploiting
the given function.

• A carefully chosen A enhances QMC. The numerical
examples in [15], [28] and [27] even suggest that the
LT-based QMC, with A obtained from (6), can be
more effective than the Brownian bridge construc-
tion and the principal component construction.

While LT enjoys many of the above advantages, one se-
vere limitation is that it is restricted to a class of func-
tion which depends on a vector of normal random vari-
ables. This implies that the LT cannot be used directly to
other non-Gaussian process including Lévy process. It is
therefore of significant interest to providing an effective
QMC-based algorithm for the more general problem of
estimating E[g(X)], where X = (X1, . . . , Xd)

> is a vec-
tor of d iid random variables with arbitrary probability
density function (pdf) f(x) and cumulative distribution
function (cdf) F (x). Motivated by this, [16] proposes an
extension of LT which is based on the following series of
transformations. First note that

E [g (X)] =

Z
Ω

g (x) f (x1) · · · f (xd) dx1 · · · dxd ,

where Ω is the domain of X. By substituting yi =
F (xi) , i = 1, . . . , d, the above integration reduces to an
integration problem over [0, 1]d:

E [g (X)] =

Z
[0,1]d

g
¡
F−1 (y1) , . . . , F−1 (yd)

¢
dy1 · · · dyd .

Now consider the transformation Z = Φ−1 (Y ). Then
E [g (X)] can be expressed as follows:R · · · R∞−∞ g ¡F−1 (Φ (z1)) , . . . , F−1 (Φ (zd))¢×

φ (z1) · · ·φ (zd) dz1 · · · dzd
= E

£
g
¡
F−1 (Φ (Z1)) , . . . , F−1 (Φ (Zd))

¢¤
, (7)

where φ is the pdf of the standard normal, and Z =
(Z1, . . . , Zd)

>
is a vector of independent standard normal

random variable. The significance of (7) is that after some
trivial transformations, the expectation is now taken with
respect to the normal distribution. This implies that an-
other consistent estimator of E[g(X)] can be obtained via
E
£
g
¡
F−1 (Φ (A1·Z)) , . . . , F−1 (Φ (Ad·Z))

¢¤
, for any or-

thogonal matrixA whereAj· corresponds to the j-th row
of A. They refer this approach as the generalized LT
method or GLT. Figure 1 describes the implementation
of GLT.

We now make the following remarks with regards to the
GLT-based QMC:

Initialization step: Initialize the orthogonal matrix A.

For i = 1, 2, . . . ,N
step 1: Draw (x1, . . . , xd) ∈ [0, 1)d from a

d-dimensional low discrepancy sequence.
step 2: Generate ε = (ε1, . . . , εd)

>,
where ²j = Φ

−1(xj), j = 1, . . . , d
step 3: Set yj = Φ(Aj·ε), j = 1, . . . , d
step 4: Set gi = g(F

−1(y1), . . . , F−1(yd)).

GLT estimate of E[g(X)] =
1

N

NX
i=1

gi.

Figure 1: GLT Algorithm for Estimating E[g(X)]

Remark 1. The GLT-based QMC assumes that F is in-
vertible. For applications where F is a complicated func-
tion and cannot be inverted analytically, one can still
apply GLT by resorting to some high precision numeri-
cal inversion techniques for inverting F . For example, we
have employed the numerical inversion method of [13] in
our numerical illustrations in Section 4.

Remark 2. Both LT and GLT require pre-computation
of the orthogonal matrix A. Initializing all columns of A
can be quite time consuming, particularly for large di-
mensional application. One way of reducing the compu-
tational burden is to exploit the iterative design of the op-
timization problem. Instead of optimizing all d columns
of A, one can use a sub-optimal A by only optimizing
its first d columns with the remaining columns randomly
assigned (but subject to the orthogonality conditions).
When d∗ ¿ d, this translates into a significant reduction
in the pre-computation effort. The numerical examples
to be presented later indicate that GLT is so effective at
dimension reduction that the loss of efficiency induced by
the sub-optimal A is negligible and more than compen-
sated by the saving in computational burden.

Remark 3. When X is a vector of d iid normal vari-
ates, then the proposed GLT reduces to the original LT
method. If we further assume that the orthogonal matrix
A is the identity matrix, then we recover the standard
application of QMC.

4 Numerical Illustrations

In this section, we provide additional numerical evidences
on the effectiveness of GLT relative to standard MC and
standard QMC. The first half of Subsection 4.1 describes
the setup of the numerical experiments. The second
half of the subsection presents some numerical results
on the relative efficiencies of various simulation methods.
Subsection 4.2 addresses the robustness of GLT. Subsec-
tion 4.3 examines the effectiveness of GLT on dimension
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reduction.

4.1 The effectiveness of dimension reduction
on numerical accuracy

In this subsection, we provide numerical evidences on the
relative efficiency of MC, QMC, and the dimension re-
duction GLT method. We are primarily concerned with
the performance of these methods on non-Gaussian ap-
plications. Hence, we assume that the dynamic of the
log-returns of the underlying asset follows the Meixner
process as described in Section 2. We use the follow-
ing set of parameter values: a = 0.02982825, b =
0.12716244, d = 0.57295483, m = −0.00112426. for sim-
ulating the Meixner process in our simulation studies.
These values are obtained by fitting Meixner process to
the daily log-returns of the Nikkei-225 Index for the pe-
riod January 1,1997 to December 31, 1999. More details
can be found in [29].

In terms of our test cases, we resort to the following rep-
resentative European-style options:

• Plain-vanilla European call options with payoff at
maturity T = td given by

h(St1 , . . . , Std) = (Std −K)+ (8)

where (x)+ = max(x, 0), K is a pre-specified strike
price of the option, St is the price of the underlying
asset at time t, ti, i = 1, . . . , d denotes the discretized
set of time points for which the prices are simulated
and td = T .

• European average call options with payoff at matu-
rity T given by

h(St1 , . . . , Std) =

Ã
dX
i=1

wiSti −K
!+

, (9)

where wi denotes the weight assigned to asset price
at time ti. In our test cases, we consider three spec-
ifications of wi; namely

— Equally weighted average case with wi =
1
d .

This special case is commonly known as the
Asian option.

— Decreasing weighted average case with wi =
c(d− i+ 1)2 where c is a normalizing constant
such that

Pd
i=1 wi = 1.

— Increasing weighted average case with wi = ci
2.

Note that the average option is an example of a path-
dependent option as its payoff depends explicitly on the
past asset prices, in addition to the asset price at matu-
rity.

In our option specifications, we set the initial asset price
S0 = 100, strike price K = 100, interest rate r = 4%,
maturity T = 1 year. Furthermore, the asset prices are
sampled at quarterly, monthly, weekly and daily time in-
tervals so that d = 4, 12, 50, and 250, respectively.1 Note
that d corresponds to the nominal dimension of the op-
tion since each trajectory of the asset price requires d
variables. This provides us a convenient way of assessing
the effect of nominal dimension on various simulation ap-
proaches by simply increasing the frequency of the mon-
itoring time points.

For each option contract, we estimate its price using three
simulation techniques: the standard MC, the standard
QMC, and the GLT. Recall that the method of GLT re-
quires pre-computation of the optimal orthogonal matrix
A, which in turn depends on the target function g(X).
In our option examples, the target function g corresponds
to the option payoff so that for the plain-vanilla option,
we use the function

gT (X1, . . . , Xd) = Std = S0e
P d

i=1Xi , (10)

while for the average options, we have

gA(X1, . . . , Xd) =
dX
i=1

wiSti = S0

dX
i=1

wie
P i

j=1Xj . (11)

Here Xj , j = 1, . . . , d are independent variates from the
Meixner distribution. Optimal orthogonal matrix A cor-
responding to each of the above functions is first deter-
mined using the algorithm described in Section 3. The
resulting optimal A is then used to simulate trajectories
of the underlying process for estimating option values.
We denote the application of QMC-based GLT method
that is optimal for gT and gA as, respectively, GLT-gT
and GLT-gA. Note that gT represents the terminal asset
price at time T , while gA captures the average price of
the underlying asset over d monitoring time points. We
emphasize that the optimality of GLT-gA depends on the
prescribed weights {wj , j = 1, . . . , d}.
As formally established in [15], LT is most effective when
the function of interest is linear. Regardless of the nom-
inal dimension, in this case the function becomes one-
dimension after the application of LT. This property is ex-
ploited in our search of optimal orthogonal matrix A for
GLT-gT . Because log gT is also linear in Xj , j = 1, . . . , d,
this implies a plausible optimal orthogonal matrix A can
be obtained by only optimizing its first column. On the
other hand, we optimize no more than ten columns of
A for GLT-gA, regardless of the nominal dimensions of
the problems. The use of sub-optimal orthogonal matrix
is driven, in part, by the saving in computational time
(see Remark 2 of the last section) and, in part, by the
remarkable dimension reduction with the GLT (see Sub-
section 4.3).

1Assume a year has 50 trading weeks or 250 trading days.
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For standard MC, we use the 64-bit Mersenne Twister
pseudo-random generator (see [21]). For the methods in-
volving QMC, we use the same set of randomized Sobol’
low discrepancy sequence. To simulate the trajectories
of the asset prices, we need a fast and efficient Meixner
variate generator. Here we use the numerical inversion
method of [13] for inverting both MC and QMC points.
In addition to producing results that are based on strictly
random sequences and strictly (randomized) low discrep-
ancy sequences, we also generate results using hybrid se-
quences. The hybrid sequence is a sequence that is a con-
catenation of a (randomized) low discrepancy sequence
and a random sequence. More precisely, suppose we are
interested in a d-dimensional sequence for large d. We
can avoid using such a high-dimensional (randomized)
low discrepancy sequence by using, say, k-dimensional
(randomized) low discrepancy sequence where k ¿ d.
The remaining d − k dimensions are then padded with
random sequences to produce the required d-dimensional
sequence. We refer the concatenation approach of gen-
erating high-dimensional sequences as padding and we
use the notation P-k to emphasize that it is a hybrid se-
quence whereby the first k dimensions are (randomized)
low discrepancy sequences. In addition to providing an
easy way of avoiding high-dimensional (randomized) low
discrepancy sequence, the hybrid sequence can also be
useful when the underlying problem of interest has low
effective dimension.

The simulated option results based on MC and stan-
dard application of QMC are summarized in Table 1 for
d = 4, 12, 50, and 250. The reported values are based on
30 independent batches, with each batch consists of 4096
trajectories. The MC estimates, with the standard errors
in parentheses, are reported in second column of the ta-
ble. To gauge the efficiency relative to MC, we tabulate
the efficiency ratio which is the ratio of the standard error
of the MC estimate to the standard error of the QMC.
Hence a ratio greater than 1 indicates an efficiency gain
relative to MC. Columns 3 to 6, with labels P-1, P-2, P-
5, and P-10, respectively, give the corresponding results
from the hybrid sequences. The last column, labeled as
P-d, is the result from using d-dimensional randomized
Sobol’ and hence strictly is QMC. We also control our
experiments by ensuring that the same set of sequences,
whenever possible, are used consistently. For example,
the hybrid sequence from P-1 corresponds to the same
set of random sequence used in MC except by replacing
the first dimension with the randomized Sobol’ sequence.
Hence any difference in the results is attributed to the
enhanced uniformity of the randomized Sobol’ sequence.

The simulated results in Table 1 indicate that there is
an advantage of using standard QMC relative to stan-
dard MC. Its competitive advantage, however, dimin-
ishes quickly with dimensions. Consider, for instance,
the Asian option example. The standard QMC attains

Table 1: Efficiency of standard applications of QMC (us-
ing padded and randomized Sobol’ sequences) relative to
MC. Second column gives the MC estimate (with its stan-
dard error in parentheses) of the respective derivative se-
curity. Last five columns display the efficiency ratios of
QMC (using padded and randomized Sobol’ sequences)
relative to MC.

d MC P-1 P-2 P-5 P-10 P-d
Plain-vanilla call options
4 11.918(0.060) 1.5 1.6 - - 20.2
12 11.898(0.048) 1.0 1.0 1.0 1.8 6.4
50 11.975(0.051) 1.1 1.1 1.1 1.3 2.4
250 12.027(0.050) 1.0 1.0 1.0 1.0 1.6
Asian call options
4 7.985(0.045) 1.9 3.2 - - 35.9
12 7.112(0.030) 1.2 1.2 1.6 7.7 10.5
50 6.802(0.031) 1.1 1.1 1.3 1.5 4.1
250 6.743(0.025) 1.0 1.0 1.0 1.0 2.1
Average call options (decreasing weights)

4 6.287(0.037) 2.9 8.2 - - 87.1
12 4.900(0.022) 1.4 1.7 4.6 18.0 16.2
50 4.369(0.019) 1.3 1.3 1.4 2.1 6.4
250 4.228(0.016) 1.0 1.1 1.0 1.1 2.4
Average call options (increasing weights)

4 10.100(0.053) 1.6 2.1 - - 23.9
12 9.633(0.041) 1.1 1.1 1.2 4.3 7.4
50 9.501(0.043) 1.1 1.1 1.2 1.3 2.7
250 9.505(0.035) 1.0 1.0 1.0 1.0 1.7

Table 2: Efficiency of GLT (using padded and ran-
domized Sobol’ sequences) relative to MC. Second col-
umn gives the MC estimate (with its standard error in
parentheses) of the respective derivative security. Last
five columns display the efficiency ratios of GLT (us-
ing padded and randomized Sobol’ sequences) relative to
MC.

d MC P-1 P-2 P-5 P-10 P-d
Plain-vanilla call options
4 11.918(0.060) 64.8 95.9 - - 87.1
12 11.898(0.048) 40.4 53.7 46.7 42.1 67.4
50 11.975(0.051) 24.1 24.6 21.0 26.5 51.5
250 12.027(0.050) 4.6 6.6 7.0 5.6 17.2
Asian call options (equally weighted)

4 7.985(0.045) 12.4 65.7 - - 117.3
12 7.112(0.030) 21.7 28.8 67.9 46.9 66.7
50 6.802(0.031) 22.9 20.6 22.3 24.7 25.4
250 6.743(0.025) 6.0 4.8 4.3 6.2 5.2
Average call options (decreasing weights)

4 6.287(0.037) 9.8 107.6 - - 136.1
12 4.900(0.022) 19.5 28.8 82.7 70.0 77.5
50 4.369(0.019) 24.4 20.6 24.5 22.2 42.9
250 4.228(0.016) 6.5 6.8 6.9 5.8 7.3
Average call options (increasing weights)

4 10.100(0.053) 15.5 31.9 - - 104.2
12 9.633(0.041) 30.5 24.9 63.0 46.1 51.2
50 9.501(0.043) 20.1 18.8 20.9 22.6 24.0
250 9.505(0.035) 5.6 5.4 7.6 4.9 6.9
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an impressive improvement of almost 36 times relative to
MC for d = 4. As we increase the dimension from 4 to
250, the underlying QMC loses its attractiveness and is
only marginally better than the corresponding MC (with
2.1 efficiency ratio). The effect of using the padded hy-
brid sequence seems negligible.

Table 2 is similar to Table 1 except that the trajectories
of asset prices are simulated using GLT. More precisely,
GLT-gT is used to simulate the plain-vanilla options while
GLT-gA is used to simulate the average options. The
simulated results clearly highlight the effectiveness of the
GLT dimension reduction method. Using the same Asian
option example, the efficiency gain from GLT is slightly
more than 117 times in the quarterly sampling case. As
we increase the dimension by increasing the sampling fre-
quency, the GLT method also shows sign of deterioration
as in the standard QMC. The GLT method, however,
still able to maintain an improvement of 5.2 times in the
high-dimensional example of d = 250.

The effectiveness of dimension reduction is further illu-
minated by comparing MC to P-1. Recall that the only
difference between the sequences used in these two meth-
ods lie on the first dimension. The first dimension of
MC is generated from the usual random sequence while
the first dimension of P-1 is from the randomized Sobol’
sequence. By simply changing the technique from MC
to GLT and by using a more uniformly distributed se-
quence in the first dimension, we observe a significant
improvement in P-1 relative to MC. We can further iso-
late the difference induced by the sequences by comparing
the results from hybrid sequences in Table 1 to the corre-
sponding results in Table 2. Any difference between these
results is therefore solely attributed to the difference on
how the trajectories of the asset price are generated. The
much higher efficiency ratios of Table 2 again support the
outstanding performance of GLT.

4.2 The robustness of GLT

An optimal use of GLT entails us to exploit explicitly
the given function of interest by optimally determining
its orthogonal matrix A. This feature can also be per-
ceived as a drawback of GLT in that it becomes problem
dependent. For example, the orthogonal matrix derived
from GLT-gT that is optimal for simulating the plain-
vanilla option may not be optimal for simulating other
options. A logical question to ask is that to what ex-
tent is the loss of precision, if any, induced by the sub-
optimal application of GLT. We attempt to address this
issue by conducting the following numerical experiments.
The method associated with GLT-gT is not only used to
estimate the plain-vanilla options, it is also used to simu-
late the three variants of average options described in the
last subsection. These results are then compared to the
optimal GLT that is based on GLT-gA to assess the im-
pact of sub-optimal applications. Similarly, GLT-gA that

is optimal for simulating Asian options is in turn used to
simulate the plain-vanilla options. The simulated results
are depicted in Table 3. Some remarks with respect to
these results are:

• In most cases, there is incentive of using GLT op-
timally. For instance, the efficiency gains for the
plain-vanilla option is higher with GLT-gT while for
the Asian option, GLT-gA is more effective than the
corresponding GLT-gT . An exception is the average
option with increasing weights. For this particular
type of option, GLT-gT turns out to be more effec-
tive, albeit marginally, than the GLT-gA.

• Sub-optimal application of GLT can be less efficient
than QMC. This is not surprising since QMC is a
special case of GLT with the orthogonal matrix coin-
cides with the identity matrix. In other words, other
sub-optimal choice ofA needs not always outperform
the corresponding GLT with identity matrix. This is
demonstrated in the average options with decreasing
weights. Intuitively, this anomaly seems reasonable
since GLT-gT is putting all the emphasize on the
asset price at maturity. Yet this is the least impor-
tance due to the geometrically decreasing weights.
It is reassuring to note that if GLT were used opti-
mally, a much higher precision, relative to both MC
and QMC, can be recovered.

• Both GLT-gT and GLT-gA are also used to simulate
another option contract known as the floating strike
lookback call option. Its payoff at maturity T is
given by

(Std − Smin)+, (12)

where Smin is the lowest asset price observed over
d monitoring time points t1, . . . , td, i.e., Smin =
min{S(t1), . . . , S(td)}. Even though GLT-gT and
GLT-gA are not optimal to simulate the lookback
options, both methods substantially outperform MC
and QMC.

• Although the relative efficiency of GLT depends on
its optimal application, it appears that it is reason-
ably robust to rely on GLT-gA for other kinds of
path-dependent options.

4.3 The efficiency in terms of dimension re-
duction

Recall that truncation dimension of a function is one of
the measures of effective dimension. It constructively
identifies the subset of the dimensions that predomi-
nantly explains the function. To elaborate, let us con-
sider a function which depends on 100 variables. Nomi-
nally, this function is said to have 100 dimensions. Sup-
pose further that at 99% confidence level (i.e., setting
p = 0.99 in the definition of truncation dimension), the
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Table 3: Simulated prices of various European derivative
securities based on MC, QMC, GLT-gT and GLT-gA. Ef-
ficiency ratios of QMC, GLT-gT and GLT-gA, relative to
MC, are reported in parentheses.

d MC QMC GLT-gT GLT-gA
Plain-vanilla call options
4 11.918(0.060) 11.947(20.2) 11.952(87.1) 11.951(85.8)
12 11.898(0.048) 11.967(6.4) 11.952(67.4) 11.950(33.7)
50 11.975(0.051) 11.917(2.4) 11.954(51.5) 11.951(12.6)
250 12.027(0.050) 11.961(1.6) 11.949(17.2) 11.956(6.0)
Asian call options
4 7.985(0.045) 8.016(35.9) 8.015(59.6) 8.015(117.3)
12 7.112(0.030) 7.136(10.5) 7.132(23.7) 7.133(66.7)
50 6.802(0.031) 6.787(4.1) 6.795(10.1) 6.796(25.4)
250 6.743(0.025) 6.737(2.1) 6.713(5.1) 6.710(5.2)
Average call options (decreasing weights)

4 6.287(0.037) 6.307(87.1) 6.305(31.0) 6.306(136.1)
12 4.900(0.022) 4.908(16.2) 4.910(13.0) 4.909(77.5)
50 4.369(0.019) 4.363(6.4) 4.360(3.8) 4.365(42.9)
250 4.228(0.016) 4.239(2.4) 4.225(2.1) 4.225(7.3)
Average call options (increasing weights)

4 10.100(0.053) 10.133(23.9) 10.136(120.8) 10.135(104.2)
12 9.633(0.041) 9.681(7.4) 9.672(51.4) 9.672(51.2)
50 9.501(0.043) 9.472(2.7) 9.493(24.5) 9.492(24.0)
250 9.505(0.035) 9.480(1.7) 9.446(10.1) 9.442(6.9)
lookback options
4 15.286(0.058) 15.303(36.0) 15.307(61.8) 15.306(59.4)
12 17.169(0.052) 17.216(8.5) 17.205(16.4) 17.200(20.9)
50 18.715(0.047) 18.660(2.4) 18.686(8.3) 18.697(10.1)
250 19.608(0.049) 19.516(1.7) 19.507(5.3) 19.519(6.1)

truncation dimension of the function is found to be 3.
This suggests that even though we begin with a function
that is high-dimension, the first three dimensions capture
at least 99% of the total variation (as measured by the
variance). Hence effectively the function is said to have
low dimension.

In our numerical analysis, we use the cumulative explana-
tory ratio (CER) to gauge the effectiveness of dimension
reduction. Formally, CER is defined as

CER (k) =

P
u∈{1,2,...,k}σ

2 (fu)

σ2 (f)
. (13)

This ratio gives the proportion of the variance captured
by the first k dimensions relative to the total variance.
Consequently, CER(k) is between 0 and 1 and that
CER(dT ) ≥ p for truncation dimension dT at confidence
level p.

Table 4 produces {CER(k); k = 1, . . . , 5} for the option
examples considered previously. The ratios are estimated
numerically (based on MC with 100,000 sample size) us-
ing the procedure described in [31]. In addition to re-
porting CER of the standard QMC application, we also
tabulate CER based on GLT-gT and GLT-gA. We now
make the following observations based upon the reported
CER:

• The effectiveness of GLT at dimension reduction, rel-
ative to standard QMC, is exemplified by the results
depicted in Table 4. Let us consider, for example,
the plain-vanilla option with d = 250. Using GLT-
gT , the first dimension impressively captures at least
97% of the total variance, in sharp contrast to the
standard QMC which, even if we were to include
the first five dimensions, it only manages to capture
about 1% of the total variance. Similarly for the
Asian option with d = 250, the first dimension of
GLT-gA accounts for at least 97% of the total vari-
ance while the first dimension of the standard QMC
explains less than 1%.

• For the plain-vanilla options, the reported CERs
based on GLT-gT are consistently higher than the
corresponding values from GLT-gA. On the other
hand, the CERs of the three types of average options
are consistently higher for GLT-gA, relative to GLT-
gT . This is to be expected since by design, GLT-gT
is optimal for the plain vanilla options while GLT-gA
is optimal for the average options.

• It is instructive to note the role of weights of the aver-
age options on GLT-gT . In terms of CER, GLT-gT is
most effective for the average options with increasing
weights while the least effective for the corresponding
options with decreasing weights. This is again quite
intuitive since GLT-gT is optimally designed for sim-
ulating terminal asset prices. The payoff of the aver-
age option depends on the monitoring asset prices at
time ti, i = 1, . . . , d. However, due to the distribu-
tion of the weights, the terminal asset price becomes
the most dominant for the increasing weighted aver-
age option and the least for the decreasing weighted
average option. Consequently, GLT-gT is best suited
for the average option with increasing weights and
the least with decreasing weights. This in part ex-
plains why GLT-gT is less efficient than the corre-
sponding QMC for the Asian option with decreasing
weights (see Table 3).

• For the lookback options, the CERs of GLT are cal-
culated by assuming the terminal asset price gT and
the equally weighted price path gA. Therefore, both
implementations of GLT are not optimal for simu-
lating lookback options. Nevertheless, the CERs of
both GLT-gT and GLT-gA are much larger than the
standard QMC. Interestingly, GLT-gT yields a much
higher CER than the corresponding method based
on gA.

• There is a slight discrepancy in the reported CER
in the sense in some cases CER(k) decreases with
increasing k. This anomaly is induced by the MC
error in estimating CER.
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Table 4: A comparison of CER (up to five dimensions)
for standard QMC, GLT-gT and GLT-gA.

Dimension u 1 2 3 4 5
d = 4

Plain- standard 19.3 42.5 69.4 100.0 -
vanilla GLT-gT 100.0 100.0 100.0 100.0 -
option GLT-gA 85.0 94.0 98.8 100.0 -
Asian standard 44.2 78.0 95.3 100.0 -
option GLT-gT 80.2 91.9 98.2 100.0 -

GLT-gA 99.1 99.9 100.0 100.0 -
Decreasing standard 73.7 96.8 99.9 100.0 -
weighted GLT-gT 49.2 65.8 86.5 100.0 -
ave. option GLT-gA 98.4 100.0 100.0 100.0 -
Increasing standard 27.0 59.1 87.0 100.0 -
weighted GLT-gT 94.4 99.4 100.0 100.0 -
ave. option GLT-gA 99.4 99.8 99.9 100.0 -
Lookback standard 11.1 31.8 61.7 100.0 -
option GLT-gT 93.0 96.3 98.7 100.0 -

GLT-gA 71.4 91.1 97.6 100.0 -
d = 12

Plain- standard 5.5 12.2 19.0 26.3 33.5
vanilla GLT-gT 100.0 100.0 100.0 100.0 100.0
option GLT-gA 72.8 86.0 91.7 94.3 95.2
Asian standard 16.4 32.8 47.4 60.4 71.4
option GLT-gT 73.7 79.8 84.4 89.4 98.5

GLT-gA 99.7 99.8 99.9 100.0 100.0
Decreasing standard 35.3 61.8 78.7 89.2 95.1
weighted GLT-gT 40.6 45.5 50.1 57.4 63.8
ave. option GLT-gA 99.7 99.9 100.0 100.0 100.0
Increasing standard 8.8 19.1 29.6 40.7 51.7
weighted GLT-gT 88.4 93.6 96.5 98.5 99.3
ave. option GLT-gA 99.8 99.9 99.9 99.9 100.0
Lookback standard 1.4 5.0 9.4 15.3 21.8
option GLT-gT 91.4 93.1 94.2 95.1 96.2

GLT-gA 55.6 79.7 87.0 91.2 92.7
d = 50

Plain- standard 1.2 3.0 5.1 6.5 7.6
vanilla GLT-gT 99.9 99.7 99.8 99.7 99.9
option GLT-gA 69.9 82.6 87.9 90.7 90.5
Asian standard 3.9 8.1 12.3 16.8 21.1
option GLT-gT 71.8 72.3 74.0 75.9 99.8

GLT-gA 99.8 99.7 99.8 99.8 99.8
Decreasing standard 9.6 18.4 27.3 36.0 43.7
weighted GLT-gT 39.0 38.7 39.5 41.2 42.1
ave. option GLT-gA 99.7 99.7 99.8 99.8 99.8
Increasing standard 2.1 4.4 7.0 9.5 12.0
weighted GLT-gT 85.6 86.8 88.6 90.2 91.7
ave. option GLT-gA 99.7 99.7 99.8 99.8 99.9
Lookback standard 0.0 0.8 2.2 2.3 2.4
option GLT-gT 91.1 91.1 91.7 92.0 92.8

GLT-gA 51.5 74.6 81.7 86.2 86.0
d = 250

Plain- standard 0.2 0.4 0.5 0.7 1.1
vanilla GLT-gT 97.8 97.9 97.9 97.7 97.8
option GLT-gA 67.1 80.4 85.1 86.4 88.6
Asian standard 0.9 1.4 2.5 3.0 3.4
option GLT-gT 68.7 69.6 70.1 70.1 70.7

GLT-gA 97.5 97.5 97.7 97.9 97.9
Decreasing standard 2.1 3.5 6.1 7.7 9.0
weighted GLT-gT 36.9 37.4 37.6 37.2 38.0
ave. option GLT-gA 97.7 97.4 97.7 97.8 97.8
Increasing standard 0.5 0.6 1.2 1.4 1.7
weighted GLT-gT 82.4 83.1 83.8 83.6 84.4
ave. option GLT-gA 97.8 97.5 97.6 97.7 97.6
Lookback standard 0.0 0.0 0.0 0.0 0.0
option GLT-gT 89.3 89.3 89.8 89.3 89.3

GLT-gA 48.7 72.6 81.2 81.2 84.5

5 Conclusion

In this paper, a comprehensive numerical experiment is
conducted to validate the GLT dimension reduction re-
duction technique recently proposed in [16] and [17]. We
assumed that the dynamics of the asset prices was gov-
erned by the Meixner Lévy process. We used a number of
representative exotic options as our test cases. Further-
more, we evaluated the effectiveness of GLT using criteria
such as the efficiency ratios, robustness and CER. These
studies demonstrated the competitive advantage of the
GLT relative to the the standard MC and QMC. Testing
GLT on the hybrid sequences further illuminated the ef-
fectiveness GLT on dimension reduction. In conclusion,
GLT offers a powerful and yet general approach of sim-
ulating a wide range of stochastic processes. It will be
of interest to compare the relative efficiency of GLT to
other dimension reduction techniques. We leave this for
future research.
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[13] W. Hörmann and J. Leydold. Random variate gen-
eration by numerical inversion when only the den-
sity is known, 2008. Department of Statistics and
Mathematics Wirtschaftsuniversität Wien, Research
Technical Report 78.

[14] J. Hull and A. White. The pricing of options on as-
sets with stochastic volatilities. Journal of Finance,
41:281—300, 1987.

[15] J. Imai and K.S. Tan. A general dimension reduction
technique for derivative pricing. Journal of Compu-
tational Finance, 10(2):129—155, 2006.

[16] J. Imai and K.S. Tan. An accelerating quasi-Monte
Carlo method for option pricing under the gener-
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