
 
 

 

  
Abstract—We propose a simple approach for forecasting 

univariate time series. The proposed algorithm is an ensemble 
learning technique that combines the advice from several 
Generalized Regression Neural Networks. We compare our 
algorithm with the most used algorithms on real and synthetic 
datasets. The proposed algorithm appears as more powerful 
than existing ones. 

 
Index Terms— Time series forecasting, Box-Jenkins 

methodology, Multilayer Perceptrons, Generalized Regression 
Neural Networks.  

 
I. INTRODUCTION 

A univariate time series is a sequence of observations of 
the same random variable at different times, normally at 
uniform intervals. The goal of univariate time series data 
mining is to predict future values of a given variable by 
looking at its behaviour in the past.  Share prices, profits, 
imports, exports, interest rates, popularity ratings of 
politicians, amount of pollutants in the environment and 
number of SARS cases over time are some of examples of 
time series. Lagged variables, autocorrelation and 
nonstationarity are the major characteristics that distinguish 
time series data from spatial data. The difficulties posed by 
these special features make forecasting time series 
notoriously difficult. 

In time series forecasting, the magnitude of the forecasting 
error increases over time, since the uncertainty increases with 
the horizon of the forecast. When forecasting time series, 
interval estimates are more informative than simple point 
estimates. Without a doubt, the ARIMA (Autoregressive 
Integrated Moving Average) modelling methodology 
(popularized by Box and Jenkins (1976)) and the GRACH 
(Generalized Autoregressive Conditional 
Heteroskedasticity) modelling methodology (proposed by 
Bollerslev (1986)) are the most popular methodologies for 
forecasting time series and future volatility, respectively [1, 
2]. Neural Networks (NNs) are now the biggest challengers 
to conventional time series forecasting methods [3-20]. A 
variety of NNs are available. However, multilayer 
perceptrons (MLP) with backproapagation learning are the 
most employed NNs in time series studies.  

We present a novel approach, using a Generalized 
Regression Neural Networks (GRNN) ensemble to the 
forecasting of time series and future volatility. The remainder 
of this paper is organized as follows: the new algorithm is 
described in section 2 (with an overview of GRNN in section 
2.1 and details of the proposed algorithm in section 2.2), 
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research methodology in section 3, results and discussions in 
section 4, followed by summary and conclusions in section 5. 

 
II. DEVELOPING A NEW ALGORITHM 

We present an improved algorithm, based on GRNN, for 
the time series forecasting. GRNN is a neural network 
proposed by Donald F. Specht in 1991 [3]. This algorithm 
has a number of advantages over competing algorithms. 
GRNN is non-parametric. It makes no assumptions 
concerning the form of the underlying distributions. A major 
problem with the ARIMA and GARCH methodology and the 
MLP algorithm is that they are global approximators, 
assuming that one relationship fits for all locations in an area. 
Unlike these algorithms, the GRNN is a local approximator. 
In these algorithms local models are turned into 
heterogeneous forecasting models adequate to local 
approximation. GRNN is simpler than other existing 
algorithms. It has only one parameter (smoothing factorσ , 
where 0 < σ ≤1) that needs to be specified, but our research 
suggests that the performance is not very sensitive to the 
parameterσ . However, we face a dilemma when applying 
the GRNN to the time series forecasting task. If we provide 
only the most recent past value, the GRNN generates the 
smallest forecasting error but does not accurately forecast the 
correct direction of change. On the other hand, if we provide 
multiple past observations, the GRNN can forecast the 
direction of change correctly, but the forecasting error 
appears to proportionally increase with an increasing number 
of input values. In order to overcome this problem, we 
propose a derivative of the GRNN, which we call GRNN 
ensemble. Using the MLP, the ARIMA & the GARCH 
methodologies, trial-and-error methods are applied in order 
to secure the best fitting model. The advantage of the 
proposed algorithm is that it is very simple to implement, 
neither the trial-and-error process nor prior knowledge about 
the parameters is required. 

A. Generalized Regression Neural Networks 
In GRNN (Specht, 1991) each observation in the training 

set forms its own cluster [3]. When a new input pattern x  is 
presented to the GRNN for the prediction of the output value, 
each training pattern yi assigns a membership value hi  to x  
based on the Euclidean distance d = d x,yi( ) as in equation 
1.  
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Where σ = smoothing function parameter (we specify a 
default value:σ = 0.5). 
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Finally, GRNN calculates the output value z of the 
pattern x as in equation (2). 

z =
hi ×  output of yi( )

i
∑

hi
i

∑
(2)  

If the output variable is binary, then GRNN calculates the 
probability of event of interest. If the output variable is 
continuous, then it estimates the value of the variable.   

 
B. Proposed Algorithm 

We propose a novel GRNN-based ensemble algorithm for 
time series forecasting. Two GRNN ensembles, A and B, are 
built. A GRNN ensemble is a collection of GRNNs that work 
together. To make a forecast, every member of the ensemble 
forecasts the output value. The overall output of the ensemble 
is the weighted average of the outputs produced by the 
member GRNNs. The GRNN ensemble A forecasts the 
expected future value, and the GRNN ensemble B forecasts 
the expected future volatility of the time series.  The trained 
GRNN ensemble A and the trained GRNN ensemble B are 
used to make successive one step ahead forecasts. This is 
done by rolling the sample forward one time step, using the 
forecast as an input, and making another one-step-ahead 
forecast and so on. 

Pseudo code of the proposed algorithm 
// Construct the GRNN ensemble A for forecasting 

conditional mean 
� Stationarize the series: Transform a non-stationary time 

series into a stationary one by using a logarithmic or 
square root transformation and differencing.  

� Normalize the values of stationary time series in the range 
of 0 to 1. 

� Selection of input variables: Measure the periods of 
waveforms (that represents the time lags between two 
succeeding peaks or troughs) found in the whole 
observation period. Calculate the weighted average 
( NA ) of all of the periods, where recent waveform 
period carry more weight than those in the past. Select 
the AN most recent past values for the current value of 
the series. 

� Create the GRNN ensemble A with AN  separate 
GRNNs. Each GRNN is connected with a single input 
node. The input variable of each network is different.  

� Train each member GRNN on the past values of the 
stationary time series data. 

� Estimate weights of each member GRNN: Present 
training patterns to each GRNN separately for 
forecasting purposes and calculate weights for each 
GRNN:  

  

W j
A = 1−

Zi −
�
Z ij( )

Zmi=1

N

∑

N
,    j ∈ 1,",TA  m ≤ N  (3). 

where, A
jW = weight of the j-th member GRNN of the 

ensemble A, Zi =Actual output of the i-th pattern, 

  
�
Z ij =output of the i-th pattern predicted by the j-th member 

GRNN, Zm = maximum actual output in the training set, and 
N = number of observations. 
� Final output of the GRNN-ensemble A: The final output 

AY of GRNN ensemble A is the weighted average of the 
outputs of all its member GRNNs. 

� Back-transform the forecasted conditional means into the 
original domain. 

 
// Construct the GRNN ensemble B for forecasting 

conditional variance  
� Create the training dataset for the ensemble B: Present 
training patterns to the GRNN ensemble A for prediction 
purposes and find the residual series ta by subtracting the 

predicted value ?Z t from the actual value Zt : 

( )4ˆ
ttt ZZa −= .  

Normalize the squared residuals to lie from 0 to 1. 
� Identify predictors for the ensemble B: Count the 
number of waves in the squared residual series and their 
associated periods. Calculate the weighted average of periods 
( NB ). Select the NB  most recent past squared residuals for 
the ensemble B. 
� Construct the GRNN ensemble B with BN separate 
GRNNs. Each GRNN consists of a single input node. The 
input of each member GRNN is a different lagged squared 
residual. 
� Estimate weight of each GRNN: Present training 
patterns of the square residual series to each GRNN of the 
ensemble B for forecasting purposes and estimate weights for 
each member GRNN as in equation (5):  
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where W j
B = weight of the member GRNN of the ensemble 

B, ia = actual square residual, jia� = square residual 

predicted by the j-th GRNN of the ensemble B, ma = 
maximum actual residual in the training set, and k = number 
of data points.  

The final output (predicted square residual) of the 
ensemble B is the weighted average of predictions of the 
member GRNNs. 

 
� Calculate conditional variance at time lag t (where t=1, 

2, 3….): 
Conditional variance at time lag t
=  predicted squared residual ×  time lag t 6( )

 

� Compute 95% confidence intervals (CI) associated with 
the conditional mean (predicted by GRNN Ensemble A) as in 
equation (7), assuming that the time series variable has a 
normal distribution: 

( ) ( )7 variancelconditiona1.96 mean  lconditiona 

 tlagat   valueexpected  with theassociated CI 95%

±=
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III. RESEARCH METHODOLOGY 
An observed time series can be decomposed into four 

components: (i) Mean value of the data: We arbitrarily 
choose the mean value, (ii) Long term trend: We used linear, 
exponential, logarithmic, or polynomial functions to estimate 
the trend at time point t, (iii) Cyclical change 
(Seasonality/Periodicity): We estimate the periodicity ts at 
time lag t using a sinusoidal model, and (iv) Noise. The 
principle of generating synthetic time series datasets is to first 
estimate the values of these four components using 
mathematical models and then combine the values of 
components into one based on the additive, multiplicative, or 
additive-multiplicative decomposition model. Figures 1-2 
show samples of synthetic data. 

 

 
 

IV. RESULTS AND DISCUSSIONS 
We compare our proposed algorithm (GRNN-Ensemble) 

with existing algorithms (ARIMA-GARCH methodology, 
MLP, GS (GRNN with a single predictor) and GM (GRNN 
with multiple predictors)) on thirty synthetic datasets and ten 
real-world datasets. The real-world datasets (obtained from 
http://statistik.mathematic.uniwuerzburg.de/timeseries) are 
the Airline Data, the Bankruptcy Data, the Electricity Data, 
the Hong Kong Data, the Nile Data, the Share Data, the Star 
Data, the Car Data, the Sunspot Data, and the Temperatures 
Data. The algorithms are applied to make 10-step-ahead 
out-of-sample forecasts. These algorithms were ranked in 
terms of their accuracy in the interval estimation, and interval 
length. We assign rank 1 to the best algorithm, the rank 2 to 
the next best algorithm and so on. Table 1 summarizes the 
results. Obviously, the higher the accuracy the better. The 
lower the average interval length, the better the performance 
of the algorithms and the lower the standard deviation, the 
more consistent and reliable the algorithm.  Appendix Tables 
A1-A4 give an overview of the statistical test results.  

 
Key Findings: 
• GRNN-ensemble is statistically significantly superior to 

the other four algorithms both at very short horizons (one 
step-ahead) and at longer horizons (five and ten step-ahead).  

 
 
• The GRNN with multiple predictors perform 

significantly worse compared with the other algorithms at all 
three forecast horizons. It is difficult to say for sure what 
causes this algorithm to generate a bad performance. One 
possible cause would be that the GRNN does not assign 
weights to the input variables. Lagged input variables are 
highly correlated and they might make each other redundant 
to a great extent. These algorithms match patterns based on 
the Euclidean distance between input patterns and stored 
reference pattern. The distance increases many fold above the 
actual distance as the number of input variables increases. 

We also tried with the Mahalanobis distance providing 
correlation weighted distance but the performance did not 
improve. Our initial suspect is the high degree of redundancy 
among predictors. Multicollinearity among the predictors 
may lead to systematic overestimation of Euclidean (and 
Mahalanobis) length. This issue deserves further 
investigation. However, our empirical results demonstrate 
that our new algorithm (GRNN-Ensemble) does not suffer 
from this shortcoming anymore. 
 
 

V. SUMMARY AND CONCLUSION 
We propose a simpler and more efficient algorithm 

(GRNN ensemble) for forecasting univariate time series. We 
compare GRNN ensemble with existing algorithms (ARIMA 
& GARCH, MLP, GRNN with a single predictor and GRNN 
with multiple predictors) on forty datasets. The one-step 
process is iterated to obtain predictions ten-steps-ahead. The 
results obtained from the experiments show that the GRNN 
ensemble is superior to existing algorithms. 
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Table 1: Summary Results 
  One-step-ahead 

forecast  
Five-Step-ahead 
forecast 

Ten-step-ahead forecast 

 Accuracy 
(%) 

All 
data 

Synthetic 
data 

Real 
data 

All 
data 

Synthetic 
data 

Real 
data 

All 
data 

Synthetic 
data 

Real data 

Rank 1   1   1   
Mean  98 98 98 97 97 97 94 94 93 
STD  2 1 2 2 2 2 4 4 4 
Max  100 100 100 100 100 99 100 100 96 
Min  95 95 95 94 93 93 84 84 86 

GRNN 
ensemble 
(GE) 

CI width 10 10 11 23 22 28 43 43 45 
Rank 2   4   4   
Mean   91 91 90 88 88 74 80 81 77 
STD  4 4 3 6 7 9 8 7 10 
Max   98 98 96 98 98 94 97 97 92 
Min  83 83 87 81 71 58 64 64 64 

GRNN with 
a single 
predictor 
(GS) 

CI width 13 13 14 31 35 22 49 51 46 
Rank 5   5   5   
Mean   82 82 84 76 74 83 72 71 74 
STD  7 7 6 10 9 10 12 13 9 
Max  95 95 95 94 94 94 94 94 91 
Min  70 70 71 61 58 58 37 37 63 

GRNN with 
multiple 
predictors 
(GM) 

CI width 20 20 17 44 44 45 62 59 71 
Rank 3   3   3   
Mean   91 91 90 89 90 85 82 82 80 
STD  5 5 4 7 7 5 9 8 10 
Max  100 100 94 98 98 91 100 100 92 
Min  82 83 82 75 75 75 57 62 57 

ARIMA & 
GARCH 
(A&G) 

CI width 17 16 20 28 27 25 45 45 42 
Rank 4   2   2   
Mean   90 90 90 90 90 92 84 85 83 
STD  5 4 5 5 5 3 10 9 13 
Max  99 99 97 100 100 95 100 100 99 
Min  79 81 79 80 80 80 63 67 63 

MLP 

CI width 17 19 13 30 31 25 49 46 56 
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Appendix 
 

Table A1: Friedman two-way analysis of variance by ranks 
Hypothesis Test Statistic Test Result 
Ho: There is no difference in rank totals of the 
5 algorithms in the case of 
one-step-ahead-forecasting 
Ha: A difference exists in rank totals of the 5 
algorithms in one-step-ahead forecasting. 

N=40 
Chi-square=107.302 
df=4 
Asymp. Sig.=0.000 
  

Reject the null hypothesis and 
conclude that there is a difference in 
the performance of 
one-step-ahead-forecast across 
algorithms with p<0.005 

Ho: There is no difference in rank totals of the 
5 algorithms in the case of 
five-step-ahead-forecasting 
Ha: A difference exists in rank totals of the 5 
algorithms in five-step-ahead forecasting. 

N=40 
Chi-square=96.840 
df=4 
Asymp. Sig.=0.000 
 

Reject the null hypothesis and 
conclude that there is a difference in 
the performance of five-step-ahead 
forecasting across algorithms with 
p<0.005 

Ho: There is no difference in rank totals of the 
5 algorithms in the case of 
ten-step-ahead-forecasting 
Ha: A difference exists in rank totals of the 5 
algorithms in ten-step-ahead forecasting. 

N= 30 
Chi-square=76.100 
df = 4 
Asymp. Sig = 0.000 

Reject the null hypothesis and 
conclude that there is a difference in 
the performance of ten-step-ahead 
forecasting across algorithms with 
p<0.005 

 
 

Table A2: Results of Multiple Comparison Tests (in one-step-ahead forecasting) 

 GRNN- Ensemble GS GM ARIMA & GARCH MLP 

GRNN-Ensemble - Yes Yes Yes Yes 

GS Yes - Yes No No 

GM Yes Yes - Yes Yes 

ARIMA & GARCH Yes No Yes - No 
MLP Yes No Yes Yes  

* ‘Yes’ indicates a significant difference in rank totals between two algorithms at the 5% level of significance, while ‘No’ indicates no 
significant difference.   
 
 

Table A3: Results of Multiple Comparison Tests (in five-step-ahead forecasting) 

 GRNN-Ensemble GS GM ARIMA & GARCH MLP 
GRNN- Ensemble - Yes Yes Yes Yes 

GS Yes - Yes Yes No 

GM Yes Yes - Yes Yes 
ARIMA & GARCH Yes Yes Yes - No 
MLP Yes No Yes No  

* ‘Yes’ indicates a significant difference in rank totals between two algorithms at the 5% level of significance, while ‘No’ indicates no 
significant difference.   
 
 

Table A4: Results of Multiple Comparison Tests (in ten-step-ahead forecasting) 

 
GRNN ensemble GS GM ARIMA & GARCH MLP 

GRNN-Ensemble - Yes Yes Yes Yes 

GS Yes - No No No 

GM Yes No - Yes Yes 

ARIMA & GARCH Yes No Yes - No 

MLP Yes No Yes No  
• ‘Yes’ indicates a significant difference in rank totals between two algorithms at the 5% level of significance, while ‘No’ indicates no 

significant difference.   
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