
  
Abstract—We present a data mining technique for 

multi-criteria predictions of wind energy. A multi-criteria 
(MC) evolutionary computing method has been applied for 
the optimization of an Artificial Intelligence learning 
methodology “Support Vector Machines” (SVM). The 
multi-criteria SVM method is applied and tested on a dataset 
within North America, for predictions of wind energy using 
climate variables. The SVM training employs Swarm 
Intelligence method for multi-criteria optimization. The 
National Center for Environmental Prediction (NCEP)’s 
global reanalysis gridded dataset has been employed in this 
study. The gridded dataset for this particular application 
consists of 4- points each consisting of five variables. In order 
to study the impact of higher dimensions on the performance 
of SVM, Principal Component Analysis (PCA) is applied on 
the input data to reduce the dimensionality of the data. The 
results of multi-criteria SVM for the prediction of wind 
energy are reported with and without the pre-processing 
using PCA. 
 

Index Terms— Multi-Criteria optimization, Swarm 
Intelligence, Evolutionary computing, Principal Component 
Analysis, Support Vector Machines, Wind energy.  
 

I. INTRODUCTION 
The current paper describes a method for training 

support vector machine (SVM) in applications for wind 
energy predictions at a wind-farm level. The proposed 
methodology employs a Multi-Objective Evolutionary 
Optimization approach for training the SVM. The SVM is 
a powerful learning algorithm developed by Vapnik 
primarily for classification problems and later was 
extended to deal with regression [4 and 5].  The method is 
well-suited for the operational predictions and forecasting 
of wind power, which is an important variable for power 
utility companies.   

 
The Multi-Objective optimization approach differs from 

single objective in that the objective to be optimized is now 
a vector consisting of more than one objective. The current 
multi-objective methodology employs Swarm Intelligence 
based evolutionary computing multi-objective strategy 
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called Multi-objective Particle Swarm Optimization 
(MOPSO) [6].  The PSO method has been developed for 
single objective optimization by R. C. Eberhart and J. 
Kennedy [1]. It has been later extended to solve 
multi-objective problems by various researchers including 
the method by [6].  

 
The method originates from the swarm paradigm, called 

particle swarm, and is expected to provide the so-called 
global or near-global optimum.  PSO is characterized by an 
adaptive algorithm based on a social-psychological 
metaphor [1] involving individuals who are interacting 
with one another in a social world. This sociocognitive 
view can be effectively applied to computationally 
intelligent systems [8]. The governing factor in PSO is that 
the individuals, or “particles,” keep track of their best 
positions in the search space thus far obtained, and also the 
best positions obtained by their neighboring particles. The 
best position of an individual particle is called ‘‘local 
best,’’ and the best of the positions obtained by all the 
particles is called the “global best.” Hence the global best 
is what all the particles tend to follow. The algorithmic 
details on PSO can be found in [1, 2, 3, and 6]. The 
approach in [6] presents a multiobjective framework for 
SVM optimization using MOPSO. 

 
The multiobjective approach to the PSO algorithm is 

implemented by using the concept of Pareto ranks and 
defining the Pareto front on the objective function space. 
Mathematically, a Pareto optimal front is defined as 
follows: A decision vector Sx ∈1

G  is called Pareto optimal 
if there does not exist another Sx ∈2

G that dominates it. Let 
mP ℜ⊆ be a set of vectors. The Pareto optimal 

front PP ⊆* contains all vectors Px ∈1
G , which are not 

dominated by any vector Px ∈2
G

 : 
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In the MOPSO algorithm, as devised here [6], the 

particles will follow the nearest neighboring member of the 
Pareto front based on the proximity in the objective 
function (solution) space. At the same time, the particles in 
the front will follow the best individual in the front, which 
is the median (middle particle) of the Pareto front. The 
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term ‘follow’ means assignments done for each particle in 
the population set to decide the direction and offset 
(velocity) in the subsequent iteration. These assignments 
are done based on the proximity in the objective function 
or solution space. The best individual is defined in a 
relative sense and may change from iteration to iteration 
depending upon the value of objective function. 

 
The unique formulation of MOPSO helps it to avoid 

getting struck in local optima, when making a search in the 
multi-dimensional parameter domain. In the current 
research, the MOPSO is used to parameterize the three 
parameters of SVM namely; the trade-off or cost parameter 
‘C’, the epsilon ‘ε’, and the kernel width ‘γ’. The MOPSO 
method uses a population of parameter sets to compete 
against each other through a number of iterations in order 
to improve values of specified multi-objective criteria 
(objective functions) e.g., root mean square error (RMSE), 
bias, histogram error (BinRMSE), correlation, etc. The 
optimum parameter search is conducted in an intelligent 
manner by narrowing the desired regions of interest and 
avoids getting struck in local optima. 

 
In our earlier efforts, a single objective optimization 

methodology has been employed for optimization of three 
SVM parameters. The approach was tested on a number of 
sites and results were encouraging. However, it has been 
noticed that using a single objective optimization method 
can result in sub-optimal predictions when looking at 
multiple objectives. The single objective formulation 
(using PSO) employed coefficient of determination 
(COD ), as the only objective function, but it was noticed 
that the resulting distributions were highly distorted when 
compared to the observed distributions. The coefficient of 
determination (COD) is linearly related to RMSE and can 
range between –inf to 1; the value of 1 being a perfect fit.  
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where O stands for observed, P stands for predicted, 
O stands for mean of observed, and i is the index that goes 
from 1 to the length of time series ‘n’. 

 
It is shown in Figure 1 where a trade-off curve is 

presented between BinRMSE vs. COD.  It can be noticed 
that COD value increases with the increase in BinRMSE 
value. The corresponding histograms are also shown in 
Figure 2 for each of the extreme ends (maximum COD and 
minimum BinRMSE) and the best compromise solution 
from the curve. The histograms shown in Figure 2 make it 
clear that the best COD (or RMSE) is the one with highest 
BinRMSE and indeed misses the extreme ends of the 
distribution. Thus no matter how tempting it is to achieve 
best COD value it does not cover the extreme ends of the 
distribution. On the other hand the best BinRMSE comes 

at the cost of lowest COD (or highest RMSE) and is not 
desired either. Thus it is required to have a multi-objective 
scheme that simultaneously minimize these objectives and 
provide a trade-off surface and therefore a compromise 
solution can be chosen between the two objectives. Figure 
2 also shows the histogram for the best compromise 
solution which provides a decent distribution when 
compared to observed data. 
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Figure 1: Trade-off curve between BinRMSE and COD  

II. MATERIAL AND METHOD 
 

The current procedures primarily employ SVM for 
building regression models for assessing and forecasting 
wind resources. The primary inputs to the SVM come from 
the National Center for Environmental Prediction 
(NCEP)’s reanalysis gridded data [7] centered on the wind 
farm location. The target is the measurements of wind farm 
aggregate power. The current training uses a k-fold cross 
validation scheme referred to as “Round-Robin strategy”. 
The idea within the “Round-Robin” is to divide the 
available training data into two sets; use one for training 
and hold the other for testing the model. In this particular 
“Round-Robin strategy” data is divided into months. The 
training is done on all the months except one, and the 
testing is done on the hold-out month. The current 
operational methods employ manual calibration for the 
SVM parameters in assessment projects and a simple 
grid-based parameter search in forecasting applications. 
The goal in using MOPSO is to explore the regions of 
interest with respect to the specific multi-objective criteria 
in an efficient way. Another attractive feature of MOPSO 
is that it results in a so-called Pareto parameter space, 
which accounts for parameter uncertainty between the two 
objective functions. Thus the result is an ensemble of 
parameter sets cluttered around the so called global 
optimum w.r.t. the multi-objective space. This ensemble of 
parameter sets also gives tradeoffs on different objective 
criteria. The MOPSO-SVM method is tested on the data 
from an operational assessment site in North America. The 
results are compared with observed data using a number of 
evaluation criteria on the validation sets.  

 
As stated above, the data from 4 NCEP’s grid points 

each consisting of 5 variables (total 20 variables) is used.  
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Figure 2: Histogram comparison between Observed, BinRMS best, COD best, and the best compromise solution 

 

 
Figure 3: Trade-off curve between the two objectives BinRMS vs. RMSE for SVM and PCA-SVM 

 
The problem therefore has a dimensionality of 20 and 

can pose a difficult task for SVM. In order to study this 
impact, Principal Component Analysis (PCA) is applied 
and the PCs explaining 95% of the variance are included as 
inputs to SVM. The comparison is made with SVM that 
does not use PCA as pre-processing step.   
 

MOPSO require a population consisting of parameter 
sets to be evolved through a number of iterations 
competing against each other to obtain an optimum 
(minimum in this case) value for the BinRMSE and 
RMSE. In the current formulation, a 50 member 
population is evolved for 100 iterations within MOPSO for 
wind power predictions at the wind farm.   

III. RESULTS AND DISCUSSION 
The MOPSO-SVM results are shown with and without 

PCA pre-processing.  This wind farm site is located in 
Canada and has 29 months of energy data available. The 
MOPSO is used to train SVM over the available 17 months 
of training data (@ 6-hourly time resolution) using a 
“Round-Robin” cross-validation strategy. This gives an 
opportunity to train on 16 months and test the results on a 
‘hold-out’ one month test set. By repeating the process for 
all the 17 months, gives a full 17 months of test data to 
compare against the observed.  Since there is 29 months of 
data available for this site, a full one- year of data is used in 
validation (completely unseen data). The results that 
follow are the predictions on the validation set.  The results 
are shown on the normalized (between -1 and 1) dataset. 
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Figure 4: Scatter plot for the mean monthly wind energy data for SVM and PCA-SVM 
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Figure 5: Histogram for SVM and PCA-SVM along with observed  

 
 The trade-off curve for MOPSO SVM optimization for the 
two objectives is shown in Figure 3. The trade-off between 
BinRMS vs. RMSE is shown for the SVM using original 
input compared against SVM using Principal Components 
(PCs) as inputs. A best fit line has also been shown for the 
two curves. It can be noticed that there is little difference 
between the two approaches. The PCA-SVM produced a 
better objective function result for BinRMS, where as 
simple SVM provided a better objective function result for 
RMSE. 
 

Figure 4 shows the monthly mean wind power for the 12 
months compared against the observed data. The results 
are shown for SVM prediction with and without the 
pre-processing using PCA. As stated above, there is a very 
little difference between the two approaches and a good fit 
has been found. It can be noticed that predictions are in 
reasonable agreement with the observed data.  The results 
in Figure 5 show histogram of observed vs. the predicted 

wind power data at the 6-hourly time resolution (the 
prediction time step).  The results are shown for SVM 
prediction with and without the pre-processing using PCA. 
It can be noticed that the distributions are well-maintained 
using MOPSO methodology and a reasonable agreement 
between observed and predicted power is evident from the 
figure.  

 
A number of goodness-of-fit measures are evaluated in 

Table 1, which are monthly root mean square error 
(RMSE), monthly coefficient of determination (COD), 
instantaneous RMSE, instantaneous COD, and BinRMSE 
(histogram bin RMSE). The results in Table 1 are 
presented for SVM prediction with and without the 
pre-processing using PCA.  Both monthly and 
instantaneous wind power are of significant interest, and 
thus are included in the current analysis.  It can be noticed 
that not only monthly but also instantaneous power 
predictions are in close agreement with the observed.             
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Table 1: Wind energy goodness-of-fit 
 

MC-SVM 
Goodness measure SVM  PCA-SVM 

Monthly RMSE 0.053 0.064 
Monthly COD 0.954 0.934 

Instantaneous RMSE 0.380 0.382 
Instantaneous COD 0.735 0.734 

BinRMSE 37.758 36.491 
 

IV. CONCLUSIONS 
In the present paper, a multi-objective evolutionary 
computing method MOPSO is used to optimize the three 
parameters of SVM for wind energy predictions. The 
approach has been tested on data from a wind farm using 
NCEP’s re-analysis grid data. The prediction strategy 
employs SVM with and without the pre-processing using 
PCA. A number of graphical and tabular results in the form 
of goodness-of-fit measures are presented for wind energy 
predictions. The SVM predictions at the wind farm level 
produced excellent agreement with the observed data for 
the validation set. The results for the two approaches are 
quite similar but SVM without any pre-processing using 
PCA produced slightly better results. Overall, the results 
have been encouraging and it is recommended to use 
MOPSO-SVM approach for other operational projects in 
the area of wind power predictions and forecasting. While 
further modifications and advancements are underway, the 
current procedure is sound enough to be applied in 
operational settings.  
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