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Study of Fold Bifurcation in a Discrete
Recurrent Neural Network

R. Marichal, J.D. Pifieiro, and E. Gonzélez

Abstract— A simple two-neuron model of discrete recurrent
neural network is analyzed. The local stability is malyzed with
the associated characteristic model. In order to sty the
dynamic behavior, it is considerate the Fold bifuration. In the
case of two neurons, one necessary condition thatoguces the
Fold bifurcation is found. In addition to this, the stability and
direction of the fold bifurcation are determined by applying the
normal form theory and the center manifold theorem.

Index Terms— Nonlinear System, Neural Networks, Fold
Bifurcation, Fixed Paints.

I. INTRODUCTION

The purpose of this work is to present some resultthe
analysis of the dynamics of a discrete recurrentrale
network. The particular model of network in whicle are
interested is the Williams-Zipser network, also wnoas
Discrete-Time Recurrent Neural Network (DTRNN) 14 [ts
state evolution equation is

x(k+1) = f w0+ S wou ) rw,) O

where

x, (k) is theith neuron output.
u,, (k) is themth input of the network.

W,

in?
network inputs andy", is a bias weight.

N is the number of neuron.

M is the number of input.

f(D) is a continuous, bounded, monotonically increasi

function such as the hyperbolic tangent.

The neural network have presents different clasdes
equivalent dynamics. A system will be equivaleranother if
its trajectories have the same qualitative behavidhis is
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made precise mathematically in the definition qfdimgical
equivalence [2. The simplest trajectories are tholke are
points of equilibrium or fixed points that do ndtange in
time. Their character or stability is given by thacal
behaviour of nearby trajectories. A fixed point cattract
(sink), repel (source) or have directions of aticac and
repulsion (saddle) of close trajectories [3]. Neixt
complexity are periodic trajectories, quasiperiodic
trajectories or even chaotic sets, each with ita swbility
characterization. All this features are similaranclass of
topologically equivalent systems. When a systerapater is
varied the system can reach a critical point inciht is no
longer equivalent. This is called a bifurcationd éine system
will exhibit new behaviours. The study of how thebanges
can be carried out will be another powerful tool the
analysis.

With respect to discrete recurrent neural netwoaks
systems, several results about their dynamics\aiéable in
the literature. The most general result is deriusthg the
Lyapunov stability theorem in [4] and it stablishbat for a
symmetric weight matrix there are only stable efjdiim
states are fixed points and period two limit cychesl also
gives the conditions under which there are onlgdipoint
attractors. More recently Cao [5] have proposedemth
condition less restrictive and more complex. In [@jaos is
found even in a simple two-neuron network in a #jmec
weight configuration by demonstrating its equivakemvith a
1-dimension chaotic system (the logistic map). Vilederive
necessary conditions for the onset of chaos in reergé
configuration for this simple model. In [7], thensa author

w,, are the weight factors of the neuron outputgjescribes another interesting type of trajectoriése

quasi-periodic orbits. These are closed orbits withttional
periods that appear in complex phenomena

frequency-locking and synchronisation typical oblbgical
networks. In the same paper, conditions for thbilia of

like

Nhese orbits are given that can be simplified ashed show.

Passeman [8] obtains some experimental resultsesuttte
coexisting of the periodic, quasi-periodic and dlao
attractors. In other hand, In [9] give the positinnmber and
stability types of fixed points of a two-neuron aiste
recurrent network with nonzero weights are invegéd.

There are some works that analyze the hopfieldinons
neural networks [10, 11] like [12, 13, 14, 15],tiis paper
shown the stability of hopf-bifurcation with two ldgs.

We attempt first the determination of number and
stability-type characterization of the fixed poinihe next
subject is the analysis of fold bifurcation. Figallthe
simulations are shown and conclusions are given.
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Il. DETERMINATION OF FIXED POINTS

For simplicity, we have studied the two-neuron roaty
This allows visualizing easily the problem. In thidel, we
have considered zero inputs to isolate the dynafrocs the
input action. Secondly, and without loss of gengratith
respect to dynamics, we have taken zero bias veeigtite
activation function is the hyperbolic tangent.

With these conditions, the network mapping funcign

X (k +1) = tanhfw,,x, (k) + w,,X, (k)) 1
%,(k +1) = tanhf, (k) + W (k)

wherex(k) andy(k) are the neural output of the step
The fixed points are solutions of the following atjans

X p = tanh@vllxl,p +w12x2'p) @

Xop = tanhQ/v21xLp +w22x2,p)

The point 0, 0 is always a fixed point for every value of

the weights. The number of fixed points is odd hieeafor
every other fixed pointx{ p, %.p), (X1p- %, iS also a fixed
point.

To graphically determine the configuration of fixadints,
we redefine the above equations as

_atanh(x; ;) —w;x,

2.p = F(Xl,p'Wll'le)

W12 (3)

_atanhx, ;) = w,,x, ,

=F(X, ,,W,,,W,,)
1p 2,p? 77220 TN21
W21

where W is the weight matrix determinant.

If wi>1, wor>1 and W>wy+W,, —1 then there can exist 9,
7 or 5 fixed points. When this condition fails teere 3 fixed
points.

When a diagonal weight is less than one can bel¥iged
points.

In the development below two-neurons neural netvemek
considerate. It is usual that the activation futis a sigmoid
function or tangent hyperbolic function.

Considering the fixed point equation (2), the eletaeof
the Jacobian matrix in the fixed point () are

5 oWt ) W f(x)
{wﬂf'(xz) wzzf'(xz)}

LOCAL STABILITY ANALYSIS

The associated characteristic equation of the lined
system evaluated in the fixed point is

F =g, ) +wn,f O HW ) F'0) =0

wherew;,w,, and|W| are the diagonal elements and the
determinant of the matrix weight, respectively.
We can define new variables

o = wy, FI(%,) +w,, F(X,)
1 2

g, =W| (%) F'(x,)

There are two qualitative behaviors function of the

diagonal weights. We are going to determine the bramof
fixed points using the graphical representatiorthef above
equations (3). First we can show that the graphhefF

function has a maximum and a minimumwijf>1 or it is like

the hyperbolic arctangent function with the opp®sit

condition.

v

The eigenvalues of the characteristic equation a4
defined as

The Fold bifurcation appears when two complex cgaie
eigenvalues reach the unit circle. It is easy towskhat the
limit conditions are

A=1

Fig 1. The two possible behaviors of the F function. The

left figure corresponds to the respective diagomelght
lower than unity and on the right the opposite dtmal

The combination of these two possibilities with e
condition on the ratio of slopes in the origin loé two curves
(3) gives the number of fixed points. The lattendition can
be expressed as

|VV| =W11+W22_1
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40, ¢(0) associate to third term of Taylor development. His t
case, the fold bifurcation is rename [2] pitchftifurcation.
The a(0) sign determinate the bifurcation direction. \Whe
a(0) is negative the stable fixed point disappeat appear
two additional fixed points (saddle and source)opposite
case,a(0) positive, a unstable fixed point disappear and

SOURCE] ZONE

SINK| zONE appear two unstable fixed points.
o, In the neural network mappingy andq are
Fold bifurcation
W]=w 1+ Wp,-1
g= 1 e -1l ®
e+d | wy,X,,
SADDLE ZONE SADDLE ZONE
p= {L,—l} ©)
W12 X 1,0
SOURCE] ZONE
Where
Fig. 2. The stability regions and the fold bifurcation d=w,Xy, -1
line in the fixed point(, 0). e=W,X,,-1
. . - Xio=1- X120
The boundaries between the regions shown in Faye2 ' )
the bifurcations, that is to say, the limit zondseve the fixed Xo0=1= X350
point changes its character. The fold bifurcatiepresented
by the line \WM=w,+w,,-1 in Fig. 2. X10 and X, are the fixed point coordinates where the
bifurcation is produced.
IV. FOLDBIFURCATIONDIRECTION The Taylor development terms are
In order to determinate the direction and stabitifyfold ,
bifurcation it is necessary to use the center mhitheory B.(q,q) = z a,d,

[2]. The center manifold theory demonstrate thatrttapping S F10X 00X,
behavior in the bifurcation is the complex mappiedow
= £"(0) Z 0 Wy Wy 9

0 =u+a(O)u? +c()u’® +0(u[*) (5) e
= 1703, wia],
The parameters(0) andb(0) are [2] 1= (20)
i
Ci(g,9,9) = ~- o oo 4,469
1 i kMl
a(0) =§(p, B(q,9)) (6) 1= 0%, ax ax' )
1 1 _ = £"(0) Z 0y Oy Wy Wy W, 0,4, 1
c(0) = £ (p.C(a.0.8) - (P.B(a(A-E)"B(a,q))) e |
= f"’(O)Z w;g3q;

wherekE is the identity matrixB andC are the second and
third derivative terms of the mapping Taylor degshent,
respectivelyJ is the Jacobian matrix, the notatitv and
<.,.> representshe inverse matrix and scalar product, whered; is the Kronecker delta.
respectively, an@, q are the eigenvector Jacobian matrix and
its transpose, respectively. These vectors satitfg  |n order to determinate the paramet#®y andc(0) is
normalization condition necessary calculate the second and third derigites by

equations (10) and (11), respectively.
(p.a)=1
_oh =2x; (L= x7)wy wy,

The above coefficients are evaluated in the ctitca  9X;0X,
parameter of the system where produce the bifuncdtikes af , .
place. In order to simplify the analytical calcigat into ~———o o = 20 x7)(3x%7 —Dwywy wy

0x,0%, 0%

account the quadiatric term in the equation (5)cdse that
a(0) is zero will be necessargonsiderate the parameter
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then the Taylor development terms are b) W, +W,, =2
2
B, (a,b) = -2 Z X, (L- Xiz)Wij W, ajbk In this paper it considerate only the a) conditimtause
jk=1 the b) condition implies that appear another kinfl o
2 ) ) bifurcation known like Neimark-Sacker and it waadst in
Ci(a,b,c) =2 > (- x7)(3x7 —1)wyw, w;a,b,Cprevious paper [16].
ik, l=1

Taking account the a) condition and the paramefeaton
that determinate the bifurcation

Taking account the below equations and dhreutovector

equation (8) then |VV| =Wy Wy, -1
2 th
Xl,O x l,OWlZ en
+d)2
B(g,q) =-2 (e*d) 2 W,W,, =0
y2,OX2,OW12
(e+ d)2 In this particular case the eigenvalues match elgment

diagonal of weight matrix

2X 10 (3Xf.o - 1)W132

d3 Al = Wll
C 1“1 = 2 2 . /1 =w
(,0,0) 1-3x2,) 2 = Wy
Xﬁ,o With the new g and p eigenvector give as

In the rest of the section it can differentiatevin the q= {110}
Pitchfork bifurcation associate with the zero fixgaint, and W,
Fold bifurcation that it appears in the fixed peidifference p=41-—

to the zero. W, —1

A. Pitchfork Bifurcation in zero fixed point Thec(0) coefficient is

Firstly, it can show, in the equation (2), that #exo is
always fixed point. In this case the B coefficignte by the 1 1, 1
expression (10) is always zero. The normal form ]  C(O :E<puC(Q:q'Q)> =_§W11 :-5

redefine like Pitchfork bifurcation, this is

Therefore, in this case particularly, the coeffitief the

- 3 4
u(k +1) =u(k) + c(Qu(k)” +o(u(k)") normal formc (0) is negative, a fixed point stable becomes a
saddle fixed point while that appear two stable regtnical
wherec(0) is redefine fixed points.

B. Fold Bifurcation

1
c(0) = —< p,C(q,d, q)> In the normal form (5) it supposed that fixed painzero.
6 In general the normal form to fixed point differerto zero is

because
+)=B+|1+ + 2 4 3
B(a.b)=0 nk+1) =B+ [1+ Ak + a©@n(k)* +o(7(k)*)
where

Replacing the expressions@{q,q,q), g andp given by the
equations (11), (8) and (9), respectively, andataig them du 2
in the zero fixed point, the previous coefficient i B(w,,) = |a(0)|OTO (W, —W5,) + O(|W21 -W,, ) (12)

21
W, (Wy, = 1) + (W, —1)° and

1 -
C(O) = 6<p,C(q’q’q)> 3(1—W11)2(2_W11 _Wgz)

U, = < P, Xo> = XoPy T X500,

The expression previous is not defined in the foihy ] = eigenvalue-1
=el valu

cases:

—_ +
w, =1 War is the parameter that the bifurcation is produced.

ISBN:978-988-18210-2-7 WCECS 2009
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X1 0and % oare the fixed point coordinates.

To properly determine the address the parameténaes3
is necessary determinate the partial derivative dppear in
equation (12)

ou, _ ex,

aWZl W12W21XO

The normal formala(0) give by the equation (6) is

— 1 — (d2X2,0 B eV\{le,oxz,o)
a(0) = 2<p, B(q,q)) =

V. SIMULATIONS

In order to show the result that has been obtained,
two examples are considered. In the first simuiaiiaos
considerate the Pitchfork bifurcation, in the figs3
considered bifurcation the diagonal element matrix
weightw like parameter that produce the Pitchfork. In
the fig 3.a it can see the dynamical configurabefore
the bifurcation is produced, only exist one stdbted
point, in other hand when the bifurcation is praslig
3.b appears two new stable fixed points and the zer
fixed point is convert in unstable fixed point (tlee
bifurcation parameter is negative). In the second

2(e+ d)2 X5 simulation fig 4 it show the Fold bifurcation andakes
' the bifurcation parameter the non-diagonal weight
elementwy,is bifurcation parameter. In the fig 4.a. it can
@ see the dynamical configuration before the bifuorsis
' produced, only exist one stable fixed point, ineothand
1 when the bifurcation is produce fig 4.b. appeansr fo
o new stable fixed points (two stable and two sadaie)
“ the zero fixed point disappear (the a bifurcation
Z: parameter is negative).
X 0 &
(@)
-0.41
-0.61 1
-0.81 0.81
I 05 0 05 1 0.4l
Xl 0.2+
Xz of I
(b)
1 T 06
0.8 + q 08
0.6 b A 05 0 05 1
0.4 - X,
0.2r 4
X, o A 1 (b)
02r ) 1 H A
-04r B 0.81
06} i 0.6F
08t + il 0.4f
Eh 05 0 05 1 Xz or IN
Xl -02F
Fig. 3. The dynamical behavior when the Pitchfork :Z::
bifurcation is produced. + anch  is the saddle and L : ‘ ‘ ‘
source fixed point, respectively. (a);,=0.9,w;,=0.1, ' '
X1

Wy.=1 andw,,=0.5 ; (b):wy;=1.1, w;,=0.1, w»;=1 and
W22=0.5 .

ISBN:978-988-18210-2-7

Fig. 4. The dynamical behavior when the Fold
bifurcation is produced. + an&x is the saddle and
source fixed point, respectively. (&);,=2.5, wi=-1,
Wo1=4 andw,,=3 ; (b) wy=2.5, w;=-0.7, w,,=4 and
W22=3 .
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VI. CONCLUSION

In this paper we have considered a simple discrete
recurrent two-neuron network model. We have
analyzed the dynamical configurations and exploned
very rich dynamics of this network. We have disedgss
the number of fixed points and the kind of stapilitve
have shown the bifurcation Fold direction and the
dynamical behavior associated.

The two-neuron networks discussed above are quite
simple, but they are potentially useful since the
complexity found in these simple cases might baexr
over to larger discrete recurrent neural netwolieré
exists the possibility of generalizing some of thes
results to higher dimensions and use them to design
training algorithms that avoid the problems asdedia
with the learning process.
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