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Abstract—A digraph that has arcs of two colours is called a
two-coloured digraph. In this case, the colours used are red and
black. Let d and k be non-negative integers, where d represents
the number of red arcs and k represents the number of black
arcs. A (d, k)-walk on the two-coloured digraph is defined as
a walk with d red arcs and k black arcs. The smallest integer
sum of d and k such that there is a (d, k)-walk from vertex
y to vertex z is called the exponent number of two-coloured
digraph, whereas the smallest integer sum of d and k such
that there is (d, k)-walk from each vertex to vertex vx is called
the inner local exponent of a vertex vx. This article discusses
the inner local exponent of a two-cycle non-Hamiltonian two-
coloured digraph with cycle lengths n and 3n+1. This digraph
has exactly four red arcs. The four red arcs are combined
consecutively or alternately when there is one allied vertex.

Index Terms—primitive-digraph, two-coloured-digraph, non-
Hamiltonian-digraph, inner-local-exponent.

I. INTRODUCTION

A directed graph, or digraph, D consists of a finite,
non-empty set P (D) and a set H(D), which contains

ordered pairs of elements from P (D). An element of P (D)
is called a vertex, and an element of H(D) is referred to as
an arc. A digraph for which each pair of vertices has a path
in each direction is called a strongly connected digraph. A
digraph that has arcs in two colours is called a two-coloured
digraph and denoted as D(2). In this case, the colours used
are red and black.

Let d and k be non-negative integers, where d represents
the number of red arcs, and k represents the number of black
arcs. A (d, k)-walk on the two-coloured digraph is defined
as a walk with d red arcs and k black arcs. For a walk
M in D(2), a(M) and b(M) denote the number of red and
black arcs, respectively, contained in M . The vector denotes
the composition of the walk M . If each pair of vertices on
the two-coloured digraph D(2) has a (d, k)-walk, then the
digraph is said to be primitive. The smallest integer sum
of d and k such that there is a (d, k)-walk from vertex y
to vertex z is called the exponent number of two-coloured
digraph, whereas the smallest integer sum of d and k such
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that there is (d, k)-walk from each vertex to vertex vx is
called the inner local exponent of vertex vx and is denoted
by inexp(vx,D(2)).

Fornasini and Valcher [1] examined the relationship be-
tween the (d, k)-walk on two-coloured digraph and the
specific product of the neighbour matrix. For non-negative
matrices R and B and non-negative integers d and k, the
Hurwitz Product (d, k) of the matrices R and B, denoted
by (R,B)(d,k), is the sum of all matrix products consisting
of the d matrix R and k matrix B. In this case, R is the
neighbour matrix for the red arc, and B is the neighbour
matrix for the black arc. In general, the Hurwitz Product
(d, k) of the matrices R and B can be defined recursively as:
(R,B)(d,0) = (R)d for all d ≥ 0, (R,B)(0,k) = (B)k for all
k ≥ 0, and (R,B)(d,k) = R(R,B)(d−1,k) +B(R,B)(d,k−1)

for all d, k ≥ 1. The inner local exponent of a primitive
two-coloured digraph D(2) is obtained by using the Hurwitz
Product (d, k) on the recursively defined neighbouring ma-
trices R and B. For the local exponent, the entries of the
vertices into the two-coloured digraph D(2) are obtained by
looking at the entries (i, j) of (R,B)(d,k) in the ith column
with positive values.

Research on matrix exponent was initiated by Wielandt
[2]. Other matrix exponent studies were carried out by Liu
et al. [3], Shen [4], Beasley [5] and Shader and Suwilo [6].
These field developed into graph exponent research, which
have been done by, among others, Zhou [7], Kim et al. [8],
O’Mahony and Quinlan [9] and Surbakti et al. [10]. Others
exponent research on digraphs conducted by Shao [11], Shen
and Neufeld [12] and Rosiak [13], among others.

The exponent study of two-cycle two-coloured digraph can
be grouped into several types based on the lengths of the
cycle. The first type of the study is two-cycle two-coloured
digraph exponent study with a difference of t, as in the
study of Gao and Shao [14]. This first type of the study
was also conducted by Suwilo [15], [16] with a difference
of 1. Furthermore, Shao et al. [17] and Syahmarani and
Suwilo [18] conducted this type of study with a difference
of 2. The second type of the study conducts exponent
research on two-cycle two-coloured digraphs with differences
(m−1)n+1, m ≥ 2. This second type of research has been
carried out by Luo [19] and Sumardi and Suwilo [20] with
a difference of n + 1. Sumardi and Suwilo [20] examined
the exponent of two-cycle two-coloured digraphs that were
non-Hamiltonian graphs with one allied vertex. Meanwhile,
exponent studies of two-cycle two-coloured digraphs with a
difference (m−1)n+1 for m ≥ 3 have not discussed in the
literature, as it is also true for the case of non-Hamiltonian
graphs with one allied vertex. This article discusses the inner
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local exponent of two-cycle non-Hamiltonian two-coloured
digraph with cycle lengths of n and 3n + 1 and one allied
vertex.

II. METHOD

The concepts of primitivity and exponent digraph were
generalized into two-coloured digraphs by Fornasini and
Valcher [1]. The algebraic characterization of a primitive
two-coloured digraph is provided in the following theorem.

Theorem II.1. [1] Given a strongly connected two-coloured
digraph D(2) with at least one arc of each colour and cycle
M matrix, the two-coloured digraph D(2) is said to be
primitive if and only if the content of the cycle matrix is
1.

Corollary II.1. Given that D(2) is a strongly connected
two-coloured digraph with length n for the first cycle and
length 3n + 1 for the second cycle, if D(2) is also prim-

itive then the cycle matrix is L =

[
1 3

n− 1 3n− 2

]
or

L =

[
n− 1 3n− 2
1 3

]
.

Proof: Suppose D(2) has the cycle matrix L =[
d1 d2
n 3n+ 1

]
, where 0 ≤ d1 ≤ n and 0 ≤ d2 ≤

3n + 1. Since D(2) is a primitive two-coloured digraph,
the determinant of the cycle matrix is ±1. If det (L) = 1,
then (3d1 − d2)n + d1 = 1. Since 0 ≤ d2 ≤ 3n + 1,
3d1 − d2 = 0. Consequently, d1 = 1 and d2 = 3.

Thus, L =

[
1 3

n− 1 3n− 2

]
. If det (L) = −1, then

(d2 − 3d1)n−d1 = 1. Since 0 ≤ d2 ≤ 3n+1, d2−3d1 = 1.
Consequently, d1 = n − 1 and d2 = 3n − 2. Thus,

L =

[
n− 1 3n− 2
1 3

]
.

Corollary II.1’s cycle matrix L =

[
1 3

n− 1 3n− 2

]
results

in four red arcs for the two-coloured digraph.
The proof of the lower and upper limits of the inner local

exponent can be obtained using the proposition and lemmas
produced by Suwilo’s research [15].

Proposition II.1. [15] Let D(2) be a two-coloured digraph
that has two cycles and vz be any vertex on both cycles. If
the system

Lw +

[
a(Pvy,vz )
b(Pvy,vz )

]
=

[
d
k

]
has a non-negative integer completion, then there is a (d, k)-
walk from vertex y to z.

Lemma II.1. [15] Let D(2) be a primitive two-coloured
digraph and vy be any vertex in D(2) with the inner local
exponent inexp(vy,D(2)). For every x = 1, 2, . . . , 3n + 1,
inexp(vx,D(2)) ≤ inexp(vy,D(2)) + δ(vy, vx).

Lemma II.2. [15] Let a primitive two-coloured digraph D(2)

have two cycles, namely G1 and G2, and det(L) = 1. If
inexp(vx,D(2)) is obtained using the (dx, kx)-walk, then[

dx
kx

]
≥ L

[
b(G2)a(Pvz,vx)− a(G2)b(Pvz,vx)
a(G1)b(Pvy,vx)− b(G1)a(Pvy,vx

)

]
for the paths Pvz,vx

and Pvy,vx .

III. RESULTS AND DISCUSSION

This study considers a non-Hamiltonian two-coloured di-
graph with two cycles of lengths n and 3n + 1. There is
exactly one allied vertex in this two-coloured digraph (see
Figure 1).

Fig. 1. Non-Hamiltonian two-coloured digraph with cycles of length n
and 3n+ 1 and one allied vertex.

The first cycle is G1 : v1 → v2 → · · · → vn−1 → vn =
v1, and the second cycle is G2 : v1 → vn+1 → · · · → v3n →
v3n+1 → v1. The red arc in the first cycle is vp → vp+1,
where 1 ≤ p ≤ n. The other three red arcs are in the second
cycle, namely vq → vq+1, vr → vr+1 and vs → vs+1, where
1 ≤ q < r < s ≤ n − 1. The distance from vq+1 to v1 is
denoted by δ1, the distance from vr+1 to v1 is denoted by
δ2, the distance from vs+1 to v1 is denoted by δ3 and the
distance from vp+1 to v1 is denoted by δ4.

Theorem III.1. Given D(2), a primitive two-cycle non-
Hamiltonian two-coloured digraph with cycle lengths n and
3n + 1, then if the three red arcs in the second cycle are
consecutive, for every x = 1, 2, ..., 3n+ 1,
inexp(vx,D(2)) =

9n2 − 6n+ δ3 + δ (v1, vx) ,
for δ3 ≥ δ4, δ3 − δ4 ≤ 2n− 1, δ4 = n−1

9n2 − 6n+ 3n(δ4 − δ3) + δ4 + δ (v1, vx) ,
for δ3 < δ4

3n2 − 2n+ 3n(δ3 − δ4) + δ3 + δ (v1, vx) ,
for δ3 > δ4, δ3 − δ4 ≥ 2n− 1, δ4 < n−1

9n2 − 6n− 3nδ3 + δ (v1, vx) ,
for δ3 = δ4 = 0

Proof: The path (dx, kx) is used for proving the expres-
sions for inexp(vx,D(2)) for x = 1, 2, ..., 3n+1. The proof
of Theorem III.1 divided into four cases.
Case 1.1 : δ3 ≥ δ4, δ3 − δ4 ≤ 2n− 1, δ4 = n−1

First, we have to show that inexp(vx,D(2)) ≥ 9n2 −
6n + δ3 + δ (v1, vx). Select path Pvq,vx and path Pvs+1,vx

and define h1 = b(G2)a(Pvq,vx) − a(G2)b(Pvq,vx) and
h2 = a(G1)b(Pvs+1,vx) − b(G1)a(Pvs+1,vx). There are four
subcases that must be considered.
Subcase 1.1.1
The vertex vx is on the path v1 → vq . Utilizing path Pvq,vx ,
namely (3, δ3 + δ(v1, vx)), we get h1 = 9n − 6 − 3(δ3 +
δ(v1, vx)). Utilizing path Pvs+1,vx , namely (0, δ3+δ(v1, vx)),
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we get h2 = δ3 + δ(v1, vx). By Lemma II.2, we get[
dx
kx

]
≥ L

[
h1

h2

]
=

[
9n− 6

9n2 − 15n+ 6 + δ3 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2 − 6n+ δ3 + δ (v1, vx) (1)

for every vertex vx on the path v1 → vq .
Subcase 1.1.2
The vertex vx is on the path vq+1 → vr. Utilizing path
Pvq,vx

, namely (1, δ3 − 3n + 1 + δ(v1, vx)), we get h1 =
12n− 5− 3(δ3+ δ(v1, vx)). Utilizing path Pvs+1,vx , namely
(1, δ3 − 1 + δ(v1, vx)), we get h2 = δ3 − n+ δ(v1, vx). By
Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=

[
9n− 5

9n2 − 15n+ 5 + δ3 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2 − 6n+ δ3 + δ (v1, vx) (2)

for every vertex vx on the path vq+1 → vr.
Subcase 1.1.3
The vertex vx is on the path vr+1 → vs. Utilizing path
Pvq,vx , namely (2, δ3 − 3n+ δ(v1, vx)), we get h1 = 15n−
4−3(δ3+δ(v1, vx)). Utilizing path Pvs+1,vx , namely (2, δ3−
2+ δ(v1, vx)), we get h2 = δ3 − 2n+ δ(v1, vx). By Lemma
II.2, we get [

dx
kx

]
≥ L

[
h1

h2

]
=

[
9n− 4

9n2 − 15n+ 4 + δ3 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2 − 6n+ δ3 + δ (v1, vx) (3)

for every vertex vx on the path vr+1 → vs.
Subcase 1.1.4
The vertex vx is on the path vs+1 → v3n+1. Utilizing path
Pvq,vx , namely (3, δ3 − 3n − 1 + δ(v1, vx)), we get h1 =
18n− 3− 3(δ3+ δ(v1, vx)). Utilizing path Pvs+1,vx , namely
(0, δ3−3n−1+δ(v1, vx)), we get h2 = δ3−3n−1+δ(v1, vx).
By Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=

[
9n− 6

9n2 − 18n+ 5 + δ3 + δ(v1, vx)

]
.

Let k1 = 9n− 6 and k2 = 9n2 − 18n+ 5 + δ3 + δ(v1, vx).
Examining the path (k1, k2) from vs+1 to vx, note that the
path Pvs+1,vx is (0, δ3 − 3n − 1 + δ(v1, vx)) and that the

completion to the system Lw +

[
a(Pvs+1,vx)
b(Pvs+1,vx

)

]
=

[
k1
k2

]
is w1 = 45n+6 and w2 = 0. The shortest walk from vs+1 to
vx containing at a minimum the k1 red arc and k2 black arc

is the (k1+a(G2), k2+b(G2))-walk. Since a(G2)+b(G2) =
3n+ 1, we have[

dx
kx

]
≥

[
k1
k2

]
+

[
a(G2)
b(G2)

]

=

[
9n− 3

9n2 − 15n+ 3 + δ3 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2 − 6n+ δ3 + δ(v1, vx) (4)

for every vertex vx on the path vs+1 → v3n+1.
Hence, in (1), (2), (3) and (4), inexp(vx,D(2)) ≥ 9n2 −

6n+ δ3 + δ(v1, vx) for every x = 1, 2, ..., 3n+ 1.
Furthermore, we need to prove that inexp(vx,D(2)) ≤

9n2 − 6n + δ3 + δ(v1, vx) for every x = 1, 2, ..., 3n + 1.
First, we show that inexp(v1,D(2)) = 9n2 − 6n + δ3 since
Lemma II.1 guarantees that inexp(vx,D(2)) ≤ 9n2 − 6n +
δ3 + δ(v1, vx) for every x = 1, 2, ..., 3n+ 1.

From (1), we have inexp(vx,D(2)) ≥ 9n2 − 6n +
δ3 + δ(v1, vx). Furthermore, it is enough to prove that
inexp(v1,D(2)) ≤ 9n2−6n+δ3 for every u = 1, 2, ..., 3n+1,
where the system of equations

Lw +

[
a(Pvu,v1)
b(Pvu,v1)

]

=

[
9n− 6

9n2 − 15n+ 6 + δ3

]
(5)

has a non-negative integer solution for the path Pvu,v1 . From
(5), we have w1 = 9n − 6 − 3δ3 − (3n − 2)a(Pvu,v1) +
3b(Pvu,v1

) and w2 = 6n+δ3−(1−n)a(Pvu,v1)−b(Pvu,v1
).

If vu is on v1 → vq , then there is a path (3, 3n − 2 −
δ(v1, vu)). Utilizing this path, we obtain w1 = 9n − 6 −
3(δ3 + δ(v1, vu)) ≥ 0 since δ3 + δ(v1, vu) ≤ 3n − 2 and
w2 = 6n−1+δ3+δ(v1, vu) ≥ 5 since δ3+δ(v1, vu) ≥ n−1
where n ≥ 1. If vu is on vs+1 → v3n+1, then there is a path
(0, 3n+ 1− δ(v1, vu)). Utilizing this path, we obtain w1 =
18n−3−3(δ3+δ(v1, vu)) ≥ 3 since δ3+δ(v1, vu) ≤ 6n−2,
where n ≥ 1 and w2 = 3n − 1 + δ3 + δ(v1, vu) ≥ 6 since
δ3 + δ(v1, vu) ≥ 3n+ 1, where n ≥ 1.

Consequently, the system of equations (5)
has a non-negative integer completion for every
u = 1, 2, ..., 3n + 1. Proposition II.1 ensures that
there is a path Pvu,v1 with d = 9n − 6 and
k = 9n2 − 15n + 6 + δ3 for every u = 1, 2, ..., 3n + 1. So,
inexp(v1,D(2)) ≤ 9n2−6n+δ3. Using Lemma II.1, we can
conclude that inexp(vx,D(2)) ≤ 9n2 − 6n + δ3 + δ(v1, vx)
for every x = 1, 2, ..., 3n+ 1.

Case 2.1 : δ3 < δ4
First, we have to show that inexp(vx,D(2)) ≥ 9n2 − 6n +
3n(δ4 − δ3) + δ4 + δ (v1, vx). Select path Pvq,vx and path
Pvp+1,vx and define h1 = b(G2)a(Pvq,vx)− a(G2)b(Pvq,vx)
and h2 = a(G1)b(Pvp+1,vx) − b(G1)a(Pvp+1,vx). The fol-
lowing four subcases must be considered.
Subcase 2.1.1
The vertex vx is on the path v1 → vq . Utilizing path
Pvq,vx , namely (3, δ3 + δ(v1, vx)), we get h1 = 9n − 6 −
3(δ3 + δ(v1, vx)). Utilizing path Pvp+1,vx , namely (0, δ4 +
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δ(v1, vx)), we get h2 = δ4 + δ(v1, vx). By Lemma II.2, we
get [

dx
kx

]
≥ L

[
h1

h2

]
=[

9n− 6 + 3(δ4 − δ3)
9n2 − 15n+ 3n(δ4 − δ3) + 6 + 3δ3 − 2δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2 − 6n+3n(δ4 − δ3) + δ4 + δ (v1, vx)
(6)

for every vertex vx on the path v1 → vq .
Subcase 2.1.2
The vertex vx is on the path vq+1 → vr. Utilizing path
Pvq,vx

, namely (1, δ3 − 3n + 1 + δ(v1, vx)), we get h1 =
12n− 5− 3(δ3+ δ(v1, vx)). Utilizing path Pvp+1,vx

, namely
(1, δ4 − 1 + δ(v1, vx)), we get h2 = δ4 − n+ δ(v1, vx). By
Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=[

9n− 5 + 3(δ4 − δ3)
9n2 − 15n+ 3n(δ4 − δ3) + 5 + 3δ3 − 2δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2 − 6n+3n(δ4 − δ3) + δ4 + δ (v1, vx)
(7)

for every vertex vx on the path vq+1 → vr.
Subcase 2.1.3
The vertex vx is on the path vr+1 → vs. Utilizing path
Pvq,vx

, namely (2, δ3 − 3n+ δ(v1, vx)), we get h1 = 15n−
4−3(δ3+δ(v1, vx)). Utilizing path Pvp+1,vx , namely (2, δ4−
2+ δ(v1, vx)), we get h2 = δ4 − 2n+ δ(v1, vx). By Lemma
II.2, we get [

dx
kx

]
≥ L

[
h1

h2

]
=[

9n− 4 + 3(δ4 − δ3)
9n2 − 15n+ 3n(δ4 − δ3) + 4 + 3δ3 − 2δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2 − 6n+3n(δ4 − δ3) + δ4 + δ (v1, vx)
(8)

for every vertex vx on the path vr+1 → vs.
Subcase 2.1.4
The vertex vx is on the path vs+1 → v3n+1. Utilizing path
Pvq,vx

, namely (3, δ3 − 3n − 1 + δ(v1, vx)), we get h1 =
18n− 3− 3(δ3+ δ(v1, vx)). Utilizing path Pvp+1,vx , namely
(3, δ4 − 3+ δ(v1, vx)), we get h2 = δ4 − 3n+ δ(v1, vx). By
Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=[

9n− 3 + 3(δ4 − δ3)
9n2 − 15n+ 3n(δ4 − δ3) + 3 + 3δ3 − 2δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2 − 6n+3n(δ4 − δ3) + δ4 + δ (v1, vx)
(9)

for every vertex vx on the path vs+1 → v3n+1.
In each of (6), (7), (8) and (9), inexp(vx,D(2)) ≥ 9n2 −

6n+3n(δ4 − δ3)+δ4+δ (v1, vx) for every x = 1, 2, ..., 3n+
1.

Furthermore, we need to prove that inexp(vx,D(2)) ≤
9n2 − 6n + 3n(δ4 − δ3) + δ4 + δ (v1, vx) for every x =
1, 2, ..., 3n + 1. First, we show that inexp(v1,D(2)) =
9n2 − 6n + 3n(δ4 − δ3) + δ4. Lemma II.1 guarantees that
inexp(vx,D(2)) ≤ 9n2−6n+3n(δ4 − δ3)+δ4+δ (v1, vx)+
δ(v1, vx) for every x = 1, 2, ..., 3n+ 1.

From (6), we have inexp(vx,D(2)) ≥ 9n2 − 6n +
3n(δ4 − δ3) + δ4 + δ (v1, vx). Furthermore, it is enough to
prove that inexp(v1,D(2)) ≤ 9n2 − 6n + 3n(δ4 − δ3) + δ4
for every u = 1, 2, ..., 3n+ 1, when the system of equations

Lw +

[
a(Pvu,v1)
b(Pvu,v1)

]
=

[
9n− 6 + 3(δ4 − δ3)

9n2 − 15n+ 3n(δ4 − δ3) + 6 + 3δ3 − 2δ4

]
(10)

has a non-negative integer completion for the path Pvu,v1 .
From (10), we have w1 = 9n−6−3δ3−(3n−2)a(Pvu,v1)+
3b(Pvu,v1) and w2 = δ4 − (1− n)a(Pvu,v1)− b(Pvu,v1).

If vu is on v1 → vq then there is a path (3, 3n − 2 −
δ(v1, vu)). Utilizing this path, we obtain w1 = 9n − 6 −
3(δ3 + δ(v1, vu)) ≥ 0 since δ3 + δ(v1, vu) ≤ 3n − 2 and
w2 = δ4 − 1 + δ(v1, vu) ≥ 1 since δ4 + δ(v1, vu) ≥ n
where n ≥ 1. If vu is on vs+1 → v3n+1, then there is a
path (0, 3n + 1 − δ(v1, vu)). Utilizing this path, we obtain
w1 = 18n−3−3(δ3+δ(v1, vu)) ≥ 3 since δ3+δ(v1, vu) ≤
3n+1, where n ≥ 1 and w2 = δ4 − 3n− 1+ δ(v1, vu) ≥ 1
since δ4 + δ(v1, vu) ≥ 3n+ 2, where n ≥ 1.

Consequently, the system of equations (10)
has a non-negative integer solution for every
u = 1, 2, ..., 3n + 1. Proposition II.1 ensures that there
is a path Pvu,v1 with d = 9n− 6 + 3(δ4 − δ3) and
k = 9n2 − 15n+ 3n(δ4 − δ3) + 6 + 3δ3 − 2δ4 for every
u = 1, 2, ..., 3n + 1. So, inexp(v1,D(2)) ≤ 9n2 − 6n +
3n(δ4 − δ3) + δ4. Using Lemma II.1, we can conclude that
inexp(vx,D(2)) ≤ 9n2 − 6n+3n(δ4 − δ3) + δ4 + δ (v1, vx)
for every x = 1, 2, ..., 3n+ 1.

Case 3.1 : δ3 > δ4, δ3 − δ4 ≥ 2n− 1, δ4 < n− 1
First, we have to show that inexp(vx,D(2)) ≥ 3n2 − 2n +
3n(δ3 − δ4) + δ3 + δ (v1, vx). Select path Pvp,vx and path
Pvs+1,vx and define h1 = b(G2)a(Pvp,vx)− a(G2)b(Pvp,vx)
and h2 = a(G1)b(Pvs+1,vx)−b(G1)a(Pvs+1,vx

). The follow-
ing four subcases must be considered.
Subcase 3.1.1
The vertex vx is on the path v1 → vq . Utilizing path Pvp,vx ,
namely (1, δ4 + δ(v1, vx)), we get h1 = 3n − 2 − 3(δ4 +
δ(v1, vx)). Utilizing path Pvs+1,vx , namely (0, δ3+δ(v1, vx)),
we get h2 = δ3 + δ(v1, vx). By Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=[

3n− 2 + 3(δ3 − δ4)
3n2 − 5n+ 3n(δ3 − δ4) + 2− 2δ3 + 3δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 3n2 − 2n+3n(δ3 − δ4) + δ3 + δ (v1, vx)
(11)

for every vertex vx on the path v1 → vq .
Subcase 3.1.2
The vertex vx is on the path vq+1 → vr. Utilizing path
Pvp,vx , namely (2, δ4−1+δ(v1, vx)), we get h1 = 6n−1−
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3(δ4 + δ(v1, vx)). Utilizing path Pvs+1,vx , namely (1, δ3 −
1 + δ(v1, vx)), we get h2 = δ3 − n+ δ(v1, vx). By Lemma
II.2, we get [

dx
kx

]
≥ L

[
h1

h2

]
=[

3n− 1 + 3(δ3 − δ4)
3n2 − 5n+ 3n(δ3 − δ4) + 1− 2δ3 + 3δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 3n2 − 2n+3n(δ3 − δ4) + δ3 + δ (v1, vx)
(12)

for every vertex vx on the path vq+1 → vr.
Subcase 3.1.3
The vertex vx is on the path vr+1 → vs. Utilizing path
Pvp,vx , namely (3, δ4 − 2 + δ(v1, vx)), we get h1 = 9n −
3(δ4 + δ(v1, vx)). Utilizing path Pvs+1,vx , namely (2, δ3 −
2+ δ(v1, vx)), we get h2 = δ3 − 2n+ δ(v1, vx). By Lemma
II.2, we get [

dx
kx

]
≥ L

[
h1

h2

]
=[

3n+ 3(δ3 − δ4)
3n2 − 5n+ 3n(δ3 − δ4)− 2δ3 + 3δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 3n2 − 2n+3n(δ3 − δ4) + δ3 + δ (v1, vx)
(13)

for every vertex vx on the path vr+1 → vs.
Subcase 3.1.4
The vertex vx is on the path vs+1 → v3n+1. Utilizing path
Pvp,vx , namely (4, δ4−3+δ(v1, vx)), we get h1 = 12n+1−
3(δ4 + δ(v1, vx)). Utilizing path Pvs+1,vx , namely (0, δ3 −
3n − 1 + δ(v1, vx)), we get h2 = δ3 − 3n − 1 + δ(v1, vx).
By Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=[

3n− 1 + 3(δ3 − δ4)
3n2 − 5n+ 3n(δ3 − δ4) + 1− 2δ3 + 3δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 3n2 − 2n+3n(δ3 − δ4) + δ3 + δ (v1, vx)
(14)

for every vertex vx on the path vs+1 → v3n+1.
For each of (11), (12), (13) and (14), inexp(vx,D(2)) ≥

3n2 − 2n + 3n(δ3 − δ4) + δ3 + δ (v1, vx) for every x =
1, 2, ..., 3n+ 1.

Furthermore, we need to prove that inexp(vx,D(2)) ≤
3n2 − 2n + 3n(δ3 − δ4) + δ3 + δ (v1, vx) for every x =
1, 2, ..., 3n + 1. First, we show that inexp(v1,D(2)) =
3n2 − 2n + 3n(δ3 − δ4) + δ3. Lemma II.1 guarantees that
inexp(vx,D(2)) ≤ 3n2 − 2n+3n(δ3 − δ4) + δ3 + δ (v1, vx)
for every x = 1, 2, ..., 3n+ 1.

From (11), we have that inexp(vx,D(2)) ≥ 3n2 − 2n +
3n(δ3 − δ4) + δ3 + δ (v1, vx). Furthermore, it is enough to
prove that inexp(v1,D(2)) ≤ 3n2 − 2n + 3n(δ3 − δ4) + δ3
for every u = 1, 2, ..., 3n+ 1, when the system of equations

Lw +

[
a(Pvu,v1)
b(Pvu,v1

)

]
=

[
3n− 2 + 3(δ3 − δ4)

3n2 − 5n+ 3n(δ3 − δ4) + 2− 2δ3 + 3δ4

]
(15)

has a non-negative integer solution for the path Pvu,v1 . From
(15), we have w1 = 3n − 2 − 3δ4 − (3n − 2)a(Pvu,v1) +
3b(Pvu,v1) and w2 = δ3 − (1− n)a(Pvu,v1)− b(Pvu,v1).

If vu is on v1 → vq then there is a path (3, 3n − 2 −
δ(v1, vu)). Utilizing this path, we obtain w1 = 3n − 2 −
3(δ4 + δ(v1, vu)) ≥ 1 since δ4 + δ(v1, vu) ≤ n − 1 and
w2 = δ3 − 1 + δ(v1, vu) ≥ 3 since δ3 + δ(v1, vu) ≥ 3n+ 1
where n ≥ 1. If vu is on vs+1 → v3n+1, then there is a
path (0, 3n + 1 − δ(v1, vu)). Utilizing this path, we obtain
w1 = 12n+1−3(δ4+δ(v1, vu)) ≥ 1 since δ4+δ(v1, vu) ≤
3n+1, where n ≥ 1 and w2 = δ3 − 3n− 1+ δ(v1, vu) ≥ 0
since δ3 + δ(v1, vu) ≥ 3n+ 1.

Consequently, the system of equations (15)
has a non-negative integer solution for every
u = 1, 2, ..., 3n + 1. Proposition II.1 ensures that there
is a path Pvu,v1 with d = 3n− 2 + 3(δ3 − δ4) and
k = 3n2 − 5n+ 3n(δ3 − δ4) + 2− 2δ3 + 3δ4 for every
u = 1, 2, ..., 3n + 1. So, inexp(v1,D(2)) ≤ 3n2 − 2n +
3n(δ3 − δ4) + δ3. Using Lemma II.1, we can conclude that
inexp(vx,D(2)) ≤ 3n2 − 2n+3n(δ3 − δ4) + δ3 + δ (v1, vx)
for every x = 1, 2, ..., 3n+ 1.

Theorem III.2. Let D(2) be a primitive two-cycle non-
Hamiltonian two-coloured digraph with cycle lengths n and
3n + 1. If the three red arcs in the second cycle alternate,
then for every x = 1, 2, ..., 3n+ 1,
inexp(vx,D(2)) =

9n2 + 3n(δ3 − δ1) + δ3 + δ (v1, vx) ,
for δ3 ≥ δ4, δ3 − δ4 ≤ n, δ4 = n−1

9n2 + 3n(δ4 − δ1) + δ4 + δ (v1, vx) ,
for δ3 < δ4

3n2 − 2n+ 3n(δ3 − δ4) + δ3 + δ (v1, vx) ,
for δ3 > δ4, δ3 − δ4 ≥ n, δ4 < n−1

9n2 − 3nδ1 + δ (v1, vx) ,
for δ3 = δ4 = 0

Proof: The path (dx, kx) will be used for proving the
expressions used in inexp(vx,D(2)) for x = 1, 2, ..., 3n+1.
The proof of Theorem III.2 divided into four cases.
Case 1.2 : δ3 ≥ δ4, δ3 − δ4 ≤ n, δ4 = n−1
First, we have to show that inexp(vx,D(2)) ≥ 9n2 +
3n(δ3 − δ1) + δ3 + δ (v1, vx). Select path Pvq,vx and path
Pvs+1,vx and define h1 = b(G2)a(Pvq,vx)− a(G2)b(Pvq,vx)
and h2 = a(G1)b(Pvs+1,vx

)−b(G1)a(Pvs+1,vx). The follow-
ing four subcases must be considered.
Subcase 1.2.1
The vertex vx is on the path v1 → vq . Utilizing path Pvq,vx ,
namely (3, δ1 − 2 + δ(v1, vx)), we get h1 = 9n − 3(δ1 +
δ(v1, vx)). Utilizing path Pvs+1,vx , namely (0, δ3+δ(v1, vx)),
we get h2 = δ3 + δ(v1, vx). By Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=

[
9n− 3δ1 + 3δ3

9n2 + 3n(δ3 − δ1)− 9n+ 3δ1 − 2δ3 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2+3n(δ3 − δ1)+δ3+δ (v1, vx) (16)

for every vertex vx on the path v1 → vq .
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Subcase 1.2.2
The vertex vx is on the path vq+1 → vr. Utilizing path
Pvq,vx , namely (1, δ1 − 3n − 1 + δ(v1, vx)), we get h1 =
12n+1− 3(δ1+ δ(v1, vx)). Utilizing path Pvs+1,vx , namely
(1, δ3 − 1 + δ(v1, vx)), we get h2 = δ3 − n+ δ(v1, vx). By
Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=

[
9n− 3δ1 + 3δ3

9n2 + 3n(δ3 − δ1)− 9n+ 3δ1 − 2δ3 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2+3n(δ3 − δ1)+δ3+δ (v1, vx) (17)

for every vertex vx on the path vq+1 → vr.
Subcase 1.2.3
The vertex vx is on the path vr+1 → vs. Utilizing path
Pvq,vx

, namely (2, δ1 − 3n − 2 + δ(v1, vx)), we get h1 =
15n+2− 3(δ1+ δ(v1, vx)). Utilizing path Pvs+1,vx

, namely
(2, δ3 − 2+ δ(v1, vx)), we get h2 = δ3 − 2n+ δ(v1, vx). By
Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=

[
9n− 3δ1 + 3δ3

9n2 + 3n(δ3 − δ1)− 9n+ 3δ1 − 2δ3 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2+3n(δ3 − δ1)+δ3+δ (v1, vx) (18)

for every vertex vx on the path vr+1 → vs.
Subcase 1.2.4
The vertex vx is on the path vs+1 → v3n+1. Utilizing path
Pvq,vx

, namely (3, δ1 − 3n − 3 + δ(v1, vx)), we get h1 =
18n+3− 3(δ1+ δ(v1, vx)). Utilizing path Pvs+1,vx

, namely
(0, δ3−3n−1+δ(v1, vx)), we get h2 = δ3−3n−1+δ(v1, vx).
By Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=

[
9n+ 3δ3

9n2 + 3n(δ3 − δ1)− 12n− 1− 2δ3 + δ(v1, vx)

]
.

Let k1 = 9n+ 3δ3 and k2 =
9n2 + 3n(δ3 − δ1)− 12n− 1− 2δ3 + δ(v1, vx). Examining
the path (k1, k2) from vs+1 to vx, note that the path
Pvs+1,vx is (0, δ3 − 3n − 1 + δ(v1, vx)) and that the

completion to the system Lw +

[
a(Pvs+1,vx)
b(Pvs+1,vx)

]
=

[
k1
k2

]
is w1 = 9n− 3δ1 + 3δ3 and w2 = 0. The shortest walk
from vs+1 to vx containing at a minimum the k1 red arc
and k2 black arc is the (k1 + a(G2), k2 + b(G2))-walk.
Since a(G2) + b(G2) = 3n+ 1, we obtain[

dx
kx

]
≥

[
k1
k2

]
+

[
a(G2)
b(G2)

]
=

[
9n− 3δ1 + 3δ3

9n2 + 3n(δ3 − δ1)− 9n+ 3δ1 − 2δ3 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2+3n(δ3 − δ1)+δ3+δ (v1, vx) (19)

for every vertex vx on the path vs+1 → v3n+1.
In each of (16), (17), (18) and (19), inexp(vx,D(2)) ≥

9n2+3n(δ3 − δ1)+δ3+δ (v1, vx) for every x = 1, 2, ..., 3n+
1.

Furthermore, we need to prove that inexp(vx,D(2)) ≤
9n2+3n(δ3 − δ1)+δ3+δ (v1, vx) for every x = 1, 2, ..., 3n+
1. First, we show that inexp(v1,D(2)) = 9n2+3n(δ3 − δ1)+
δ3. Lemma II.1 guarantees that inexp(vx,D(2)) ≤ 9n2 +
3n(δ3 − δ1) + δ3 + δ (v1, vx) for every x = 1, 2, ..., 3n+ 1.

From (16), we have that inexp(vx,D(2)) ≥ 9n2 +
3n(δ3 − δ1) + δ3 + δ (v1, vx). Furthermore, it is enough to
prove that inexp(v1,D(2)) ≤ 9n2 + 3n(δ3 − δ1) + δ3 for
every u = 1, 2, ..., 3n+ 1, when the system of equations

Lw +

[
a(Pvu,v1)
b(Pvu,v1

)

]
=

[
9n− 3δ1 + 3δ3

9n2 + 3n(δ3 − δ1)− 9n+ 3δ1 − 2δ3 + δ(v1, vx)

]
(20)

has a non-negative integer completion for the path Pvu,v1 .
From (20), we have that w1 = 9n−3δ1−(3n−2)a(Pvu,v1)+
3b(Pvu,v1) and w2 = δ3 − (1− n)a(Pvu,v1)− b(Pvu,v1

).
If vu is on v1 → vq then there is a path (3, 3n − 2 −

δ(v1, vu)). Utilizing this path, we obtain w1 = 9n− 3(δ1 +
δ(v1, vu)) ≥ 0 since δ1 + δ(v1, vu) ≤ 3n and w2 = δ3 −
1 + δ(v1, vu) ≥ 0 since δ3 + δ(v1, vu) ≥ n where n ≥ 1. If
vu is on vs+1 → v3n+1, then there is a path (0, 3n + 1 −
δ(v1, vu)). Utilizing this path, we obtain w1 = 18n + 3 −
3(δ1 + δ(v1, vu)) ≥ 6 since δ1 + δ(v1, vu) ≤ 6n − 1, and
w2 = δ3−3n−1+δ(v1, vu) ≥ 0 since δ3+δ(v1, vu) ≥ 3n+1.

Consequently, the system of equations (20)
has a non-negative integer solution for every
u = 1, 2, ..., 3n + 1. Proposition II.1 ensures that
there is a path Pvu,v1 with d = 9n+ 3(δ3 − δ1)
and k = 9n2 − 9n+ 3n(δ3 − δ1) + 3δ1 − 2δ3 for
every u = 1, 2, ..., 3n + 1. So, inexp(v1,D(2)) ≤
9n2+3n(δ3 − δ1)+δ3. Using Lemma II.1, we can conclude
that inexp(vx,D(2)) ≤ 9n2 + 3n(δ3 − δ1) + δ3 + δ (v1, vx)
for every x = 1, 2, ..., 3n+ 1.

Case 2.2 : δ3 < δ4
First, we have to show that inexp(vx,D(2)) ≥ 9n2 +
3n(δ4 − δ1) + δ4 + δ (v1, vx). Select path Pvq,vx and path
Pvp+1,vx and define h1 = b(G2)a(Pvq,vx)− a(G2)b(Pvq,vx)
and h2 = a(G1)b(Pvp+1,vx) − b(G1)a(Pvp+1,vx). The fol-
lowing four subcases must be considered.
Subcase 2.2.1
The vertex vx is on the path v1 → vq . Utilizing path
Pvq,vx , namely (3, δ1 − 2 + δ(v1, vx)), we get h1 =
9n − 3(δ1 + δ(v1, vx)). Utilizing path Pvp+1,vx , namely
(0, δ4 + δ(v1, vx)), we get h2 = δ4 + δ(v1, vx). By Lemma
II.2, we get [

dx
kx

]
≥ L

[
h1

h2

]
=[

9n+ 3(δ4 − δ1)
9n2 − 9n+ 3n(δ4 − δ1) + 3δ1 − 2δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2+3n(δ4 − δ1)+δ4+δ (v1, vx) (21)

for every vertex vx on the path v1 → vq .
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Subcase 2.2.2
The vertex vx is on the path vq+1 → vr. Utilizing path
Pvq,vx

, namely (1, δ1 − 3n − 1 + δ(v1, vx)), we get h1 =
12n+1− 3(δ1+ δ(v1, vx)). Utilizing path Pvp+1,vx , namely
(1, δ4 − 1 + δ(v1, vx)), we get h2 = δ4 − n+ δ(v1, vx). By
Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=[

9n+ 1 + 3(δ4 − δ1)
9n2 − 9n− 1 + 3n(δ4 − δ1) + 3δ1 − 2δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2+3n(δ4 − δ1)+δ4+δ (v1, vx) (22)

for every vertex vx on the path vq+1 → vr.
Subcase 2.2.3
The vertex vx is on the path vr+1 → vs. Utilizing path
Pvq,vx , namely (2, δ1 − 3n − 2 + δ(v1, vx)), we get h1 =
15n+2− 3(δ1+ δ(v1, vx)). Utilizing path Pvp+1,vx , namely
(2, δ4 − 2+ δ(v1, vx)), we get h2 = δ4 − 2n+ δ(v1, vx). By
Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=[

9n+ 2 + 3(δ4 − δ1)
9n2 − 9n− 2 + 3n(δ4 − δ1) + 3δ1 − 2δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2+3n(δ4 − δ1)+δ4+δ (v1, vx) (23)

for every vertex vx on the path vr+1 → vs.
Subcase 2.2.4
The vertex vx is on the path vs+1 → v3n+1. Utilizing path
Pvq,vx , namely (3, δ1 − 3n − 3 + δ(v1, vx)), we get h1 =
18n+3− 3(δ1+ δ(v1, vx)). Utilizing path Pvp+1,vx , namely
(3, δ4 − 3+ δ(v1, vx)), we get h2 = δ4 − 3n+ δ(v1, vx). By
Lemma II.2, we get[

dx
kx

]
≥ L

[
h1

h2

]
=[

9n+ 3 + 3(δ4 − δ1)
9n2 − 9n− 3 + 3n(δ4 − δ1) + 3δ1 − 2δ4 + δ(v1, vx)

]
.

Thus,

inexp(vx,D(2)) ≥ 9n2+3n(δ4 − δ1)+δ4+δ (v1, vx) (24)

for every vertex vx on the path vs+1 → v3n+1.
In each of (21), (22), (23) and (24), inexp(vx,D(2)) ≥

9n2+3n(δ4 − δ1)+δ4+δ (v1, vx) for every x = 1, 2, ..., 3n+
1.

Furthermore, we need to prove that inexp(vx,D(2)) ≤
9n2+3n(δ4 − δ1)+δ4+δ (v1, vx) for every x = 1, 2, ..., 3n+
1. First, we show that inexp(v1,D(2)) = 9n2+3n(δ4 − δ1)+
δ4. Lemma II.1 guarantees that inexp(vx,D(2)) ≤ 9n2 +
3n(δ4 − δ1) + δ4 + δ (v1, vx) for every x = 1, 2, ..., 3n+ 1.

From (21), we have that inexp(vx,D(2)) ≥ 9n2 +
3n(δ4 − δ1) + δ4 + δ (v1, vx). Furthermore, it is enough to
prove that inexp(v1,D(2)) ≤ 9n2 + 3n(δ4 − δ1) + δ4 for
every u = 1, 2, ..., 3n+ 1, when the system of equations

Lw +

[
a(Pvu,v1)
b(Pvu,v1)

]

=

[
9n− 3δ1 + 3δ4

9n2 + 3n(δ4 − δ1)− 9n+ 3δ1 − 2δ4 + δ(v1, vx)

]
(25)

has a non-negative integer completion for the path Pvu,v1 .
From (25), we have w1 = 9n− 3δ1 − (3n− 2)a(Pvu,v1) +
3b(Pvu,v1

) and w2 = δ4 − (1− n)a(Pvu,v1)− b(Pvu,v1).
If vu is on v1 → vq , then there is a path (3, 3n − 2 −

δ(v1, vu)). Utilizing this path, we obtain w1 = 9n− 3(δ1 +
δ(v1, vu)) ≥ 0 since δ1+ δ(v1, vu) ≤ 3n and w2 = δ4− 1+
δ(v1, vu) ≥ 0 since δ4 + δ(v1, vu) ≥ 1. If vu is on vs+1 →
v3n+1, then there is a path (0, 3n+1− δ(v1, vu)). Utilizing
this path, we obtain w1 = 18n+ 3− 3(δ1 + δ(v1, vu)) ≥ 9
since δ1 + δ(v1, vu) ≤ 5n − 1, where n ≥ 1, and w2 =
δ4 − 3n− 1 + δ(v1, vu) ≥ 1 since δ4 + δ(v1, vu) ≥ 3n+ 2.

Consequently, the system of equations (25)
has a non-negative integer solution for every
u = 1, 2, ..., 3n + 1. Proposition II.1 ensures that
there is a path Pvu,v1 with d = 9n+ 3(δ4 − δ1)
and k = 9n2 − 9n+ 3n(δ4 − δ1) + 3δ1 − 2δ4 for
every u = 1, 2, ..., 3n + 1. So, inexp(v1,D(2)) ≤
9n2+3n(δ4 − δ1)+δ4. Using Lemma II.1, we can conclude
that inexp(vx,D(2)) ≤ 9n2 + 3n(δ4 − δ1) + δ4 + δ (v1, vx)
for every x = 1, 2, ..., 3n+ 1.

Case 3 : δ3 > δ4, δ3 − δ4 ≥ n, δ4 < n− 1
Case 3 in the same in Theorems III.1 and III.2, so that the
proofs are identical (see the proof in Theorem III.1).

IV. CONCLUSION

The inner local exponent a two-cycle non-Hamiltonian
two-coloured digraph with cycle lengths n and 3n + 1 is
generally obtained by determining the inner local exponent
at point one, then adding the distance from point one to the
point where the value is to be determined. In this case, the
number of red arcs is exactly four arcs. In further research,
we plan to determine inner local exponents for other classes,
for example, when k > 3 or for more than one allied point.

REFERENCES

[1] E. Fornasini and M.E. Valcher, ”Primitivity of positive matrix pairs:
algebraic characterization, graph theoretic description and 2D systems
interpretation,” SIAM J. Matrix Anal. Appl., vol. 19, pp. 71–88, 1998.

[2] H. Wielandt, ”Unzerlechbare, nich negative Matrizen,” Math. Z., vol.
52, pp. 642-645, 1958.

[3] B. Liu, B.D.M. Kay, N.C. Wormald and Z.K. Min, ”The exponent set
of symmetric primitive (0,1) matrices with zero trace,” Linear Algebra
and its Applications, vol. 133, pp. 121–131, 1990.

[4] J. Shen, ”A bound of the exponent of primitive in terms of diameter,”
Linear Algebra and its Applications, vol. 244, pp. 21–33, 1996.

[5] L.B. Beasley, ”On the exponent of a primitive matrix containing a
primitive submatrix,” Linear Algebra and its Applications, vol. 261,
pp. 195–205, 1997.

[6] B.L. Shader and S. Suwilo, ”Exponents of nonnegative matrix pairs,”
Linear Algebra Appl., vol. 363, pp. 275–293, 2003.

[7] B. Zhou, ”Exponents of primitive graphs,” Australasian Journal Of
Combinatorics, vol. 28, pp. 67–72, 2003.

[8] B.M. Kim, B.C. Song and W. Hwang, ”Primitive graphs with given
exponents and minimum number of edges,” Linear Algebra and its
Applications, vol. 420, pp. 648–662, 2007.

[9] O. O’Mahony O and R. Quinlan, ”Edge-minimal graph of exponent
2,” Linear Algebra and its Applications, pp. 1–18, 2017.

[10] I.Y. Surbakti, S. Suwilo, E.A. Butar-butar and H. Oktaviani, ”Primitive
graphs with small exponents and small scrambling indexes,” IOP Conf.
Series: Materials Science and Engineering, vol. 300, pp. 1–6, 2018.

[11] J. Shao, ”On the exponent of a primitive digraph,” Linear Algebra and
its Applications, vol. 64, pp. 21–31, 1985.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 10, October 2024, Pages 1923-1930

 
______________________________________________________________________________________ 



[12] J. Shen and S. W. Neufeld, ”Local exponents of primitive digraphs,”
Linear Algebra and its Applications, vol. 268, pp. 117–129, 1998.

[13] J. Rosiak, ”The minimum exponent of the primitive digraphs on the
given number of arcs,” Opuscula Mathematica, vol. 24 (2), pp. 197–
202, 2004.

[14] Y. Gao and Y. Shao, ”Generalized exponents of primitive two-colored
digraphs,” Linear Algebra Appl, vol. 430, pp. 1550–1565, 2009.

[15] S. Suwilo, ”Vertex exponent of two-colored extremal ministrong
digraph,” Global Journal of Technology and Optimization, vol. 2 (2),
pp. 166–174, 2011.

[16] S. Suwilo, ”Exponents of two-colored digraphs consisting of two
cycles,” AIP Conf. Proc., vol. 1450, pp. 297–304, 2012.

[17] Y. Shao, Y. Gao and L. Sun, ”Exponents of a class of two-colored
digraphs,” Linear and Multilinear Algebra, vol. 53 (3), pp. 175–178,
2005.

[18] A. Syahmarani and S. Suwilo, ”Vertex exponents of a class of two-
colored Hamiltonian digraphs,” J. Indones. Math. Soc., vol. 18 (1), pp.
1–19, 2012.

[19] M. Luo, ”The exponent set of a class of two-colored digraphs with
one common vertex,” Advances material research, vol. 774–776, pp.
1823–1826, 2013.

[20] H. Sumardi and S. Suwilo, ”Local exponents of a class of two-colored
digraphs consisting of two cycles with lengths 2s+1 and s,” AIP Conf.
Proc., vol. 1775, pp. 1–9, 2016.

Yogo Dwi Prasetyo (M2021) was born in Banyumas, August 16 1987. He
completed his postgraduate studies in Mathematics at Universitas Sumatera
Utara, Medan, Indonesia, in 2015. Currently, he works as a Lecturer
in the Information Systems Study Program at Institut Teknologi Telkom
Purwokerto, Central Java, Indonesia. Several studies conducted include
“Incoming Local Exponent for a Two-cycle Bicolour Hamiltonian Digraph
with a Difference of 2n + 1”, Application of Ant Colony Optimization
(ACO) Algorithm to Optimize Trans Banyumas Bus Routes, and Application
of Artificial Neural Network on Forecasting Exchange Rate of Rupiah To
US Dollar.

Sri Wahyuni completed the undergraduate program in mathematics in
1982 at Universitas Gadjah Mada, Indonesia. In 1989 she earned her
M.Sc. in mathematics at Institut Teknologi Bandung, Indonesia. In 1996,
he completed his Ph.D. program in mathematics at the University of Graz,
Austria.

Currently, he is a professor of mathematics at Universitas Gadjah Mada.
Her primary interest is rings and modules, while her little interest is
Algebraic structure and graph theory. Research-related publications include
the titles On Unique Factorization Modules: A Submodule Approach, Krull
modules and completely closed modules, Positively Graded Rings which
are Unique Factorization Rings.

Prof. Wahyuni was elected president of the Indonesian Mathematical
Society for two periods, 2002-2004 and 2004-2006. Since 2017, Prof.
Wahyuni has been a member of the American Mathematical Society and
the International Linear Algebra Society.

Yeni Susanti earned her bachelor’s and master’s degrees from the Universi-
tas Gadjah Mada mathematics study program in 2002 and 2005. In 2013 she
completed her doctoral studies at the University of Potsdam, Germany. Cur-
rently, she is an Associate Professor and joined the mathematics department
at Gadjah Mada University from 2002 until now.

Her research interest is semigroup theory and graph theory. Her research
publications include On Total Edge Irregularity Strength of Centralized
Uniform Theta Graphs, On Edge Irregularity Strength of Staircase Graphs
and Related Graphs, and Total Edge Irregularity Strength of Ladder Related
Graphs.

Diah Junia Eksi Palupi earned a bachelor’s degree in mathematics at
Universitas Gadjah Mada. Her master’s degree was obtained from the Institut
Teknologi Bandung, also in mathematics. She completed her doctoral studies
in the mathematics program at Universitas Gadjah Mada. Her research
interest is regarding group and ring theory and cryptography.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 10, October 2024, Pages 1923-1930

 
______________________________________________________________________________________ 




