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Abstract—In this paper, we consider the generalized viscosity
implicit rules for fixed points of total asymptotically nonex-
pansive mapping in Hilbert spaces, and obtain some strong
convergence theorems under certain assumptions imposed on
the parameters. The results presented in this paper extend and
improve varieties of results in the recent literature.
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I. I NTRODUCTION

T HROUGHOUT this paper, we assume thatC is a
nonempty subset of real Hilbert spaceH. Let T : C →

C be a mapping andF (T ) be the set of fixed points ofT .
Now we recall the following basic definitions.

Definition 1.1 A nonlinear mappingT : C → C is said to
be

(i) contraction if there exists a constantα ∈ [0, 1) such
that

‖ T (x)− T (y) ‖≤ α‖x− y‖, ∀x, y ∈ C;

whenα = 1, thenT is called nonexpansive;
(ii) asymptotically nonexpansive if there exists a real

number sequence{µn} ⊆ [0,+∞) with limn→∞ µn = 0
such that

‖Tnx− Tny‖ ≤ (1 + µn)‖x− y‖, ∀x, y ∈ C, n ≥ 1;

(iii) asymptotically nonexpansive in the intermediate sense
if T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0;
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If we let ξn = max{0, supx,y∈C(‖Tnx−Tny‖−‖x−y‖)},
then limn→∞ ξn = 0, and relational expression of (iii) is
reduced to

‖Tnx− Tny‖ ≤ ‖x− y‖+ ξn, ∀x, y ∈ C, n ≥ 1;

(iv) generalized asymptotically nonexpansive if there exist
two real number sequences{µn}, {ξn} ⊆ [0,+∞) with
µn → 0 andξn → 0 asn →∞ such that

‖Tnx−Tny‖ ≤ (1 + µn)‖x− y‖+ ξn, ∀x, y ∈ C, n ≥ 1;

(v) ({µn}, {ξn}, ζ)-total asymptotically nonexpansive if
there exist two nonnegative real number sequences{µn} and
{ξn} with µn → 0 and ξn → 0 as n → ∞ and a strictly
increasing continuous functionζ : R+ → R+ with ζ(0) = 0
such that, for anyx, y ∈ C andn ≥ 1,

‖Tnx− Tny‖ ≤ ‖x− y‖+ µnζ(‖x− y‖) + ξn;

(vi) uniformly L−Lipschitzian if there exists a constant
L > 0 such that

‖Tnx− Tny‖ ≤ L‖x− y‖, ∀x, y ∈ C, n ≥ 1.

Remark 1.1 If ζ(x) = x, total asymptotically nonexpansive
mappings coincides with generalized asymptotically nonex-
pansive mappings. In addition, ifµn = 0 for all n ∈ N ,
then generalized asymptotically nonexpansive mappings co-
incides with asymptotically nonexpansive mappings in the
intermediate sense; ifξn = 0, then generalized asymptoti-
cally nonexpansive mappings coincides with asymptotically
nonexpansive mappings; ifµn = 0 and ξn = 0, then we
obtain nonexpansive mappings.

The interest and importance of construction of fixed points
of nonlinear operators stem mainly from the fact that it have
been widely applied to signal processing, imagine recovery,
equilibrium problem, optimization problem and so on, see [1-
5] and the references therein. Recently, the viscosity iterative
algorithms have become an important tool for approximating
fixed points of nonexpansive mappings and asymptotically
nonexpansive mappings, an effective approach for finding
the solutions of variational inequality problems, and they
have been investigated by many authors; see [6-11] and
the references therein. For instance, Xu [6] introduced the
explicit viscosity method for nonexpansive mappings:

xn+1 = αnf(xn) + (1− αn)Txn, n ∈ N, (1)

where αn ∈ (0, 1) and f is a contraction. Under some
suitable conditions on{αn}, he proved that the sequence
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{xn} generated by(1) converges strongly toq ∈ F (T ) in
Hilbert spaces or uniformly smooth Banach spaces, which
also solves the variational inequality:

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ F (T ). (2)

On the other hand, the implicit midpoint rule is one of the
powerful numerical methods for solving ordinary differential
equations and differential algebraic equations, see [12-16]
and the references therein.

In 2015, Xu et al. [17] applied the viscosity technique
to the implicit midpoint rule for nonexpansive mappings
and presented the following viscosity implicit midpoint
rule(VIMR):

xn+1 = αnf(xn) + (1− αn)T (
xn + xn+1

2
), n ∈ N, (3)

whereαn ∈ (0, 1) andf is a contraction. They also proved
that VIMR converges strongly to a fixed point ofT , which
is also the unique solution of the variational inequality (2).

In the same year, Yao et al. [18] presented a modified
semi-implicit midpoint rule with the viscosity technique for
nonexpansive mappings:

{
wn = 1

2 (xn + xn+1),
xn+1 = αnf(xn) + βnxn + γnTwn, n ∈ N,

(4)

where{αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {γn} ⊂ (0, 1) are
three sequences satisfyingαn + βn + γn = 1 for all n ≥
0. They proved that the suggested algorithm (4) converges
strongly to a special fixed point of nonexpansive mappings
under some different conditions.

Later on, Ke and Ma [19] developed the following gen-
eralized viscosity implicit scheme to approximate the fixed
point of a nonexpansive mappingT in a Hilbert space:

{
wn = snxn + (1− sn)xn+1,
xn+1 = αnf(xn) + βnxn + γnTwn, n ∈ N,

(5)

where f is a contraction, and sequences{αn},{βn},{γn},
{sn} are in (0, 1) for all n ∈ N . With appropriate assump-
tions on control sequences, they established the strong con-
vergence results for (5), and solved the variational inequality
(2).

In 2018, Yan and Cai [20] introduced the following
viscosity implicit midpoint scheme in a Hilbert space:
{

wn = 1
2 (xn + xn+1),

xn+1 = αnf(xn) + βnxn + γnTnwn, n ∈ N,
(6)

where{αn},{βn} and{γn} are in[0, 1] with αn+βn+γn =
1 , f is a contractive mapping andT is an asymptotically
nonexpansive mapping in the intermediate sense. They also
proved that the sequence{xn} generated by (6) converges
strongly to a pointp ∈ F (T ), which is also the unique
solution of the variational inequality (2).

Recently, Sang B Mendy et al. [21] studied the following
implicit iterative algorithm in Hilbert space:
{

wn = snxn + (1− sn)xn+1,
xn+1 = αnf(xn) + βnxn + γnTnwn, n ∈ N,

(7)

where{αn},{βn} ,{γn} and {sn} are in [0, 1] with αn +
βn +γn = 1, f is a contractive mapping andT is an asymp-
totically nonexpansive mapping. Under suitable conditions,
they proved that the sequence{xn} converge strongly to a

fixed point ofT , which also solves the variational inequality
(2).

Motivated and inspired by the above work, in this paper we
investigate the general viscosity implicit iteration generated
by (7) for a total asymptotically nonexpansive mapping in
Hilbert spaces. Under suitable assumptions imposed on the
parameters, we obtain some strong convergence theorems for
finding a fixed point of the total asymptotically nonexpansive
mapping. The results we presented extend and improve the
corresponding results of [20], [21] and others.

II. PRELIMINARIES

Set H be a Hilbert space with inner product〈, 〉 and
norm ‖ · ‖, respectively, and letC be a nonempty, closed,
and convex subset ofH. Then we have the nearest point
projection fromH onto C, PC , defined by

PC(x) := arg min
z∈C

‖x− z‖2, x ∈ H.

Namely, PC(x) is the only point in C that minimizes
the objective‖x − z‖2 over z ∈ C. Note thatPC(x) is
characterized as follows:

PC(x) ∈ C and 〈x−PC(x), y−PC(x)〉 ≤ 0, ∀y ∈ C.

In order to prove our results, we need the following
lemmas and results.

Lemma 2.1 [22] Let E be a reflexive Banach space with
weakly continuous normalised duality. LetC be a closed
convex subset ofE and T : C → C be a uniformly
continuous total asymptotically nonexpansive mapping with
bounded orbit, thenI − T is demiclosed at zero,whereI is
the identity mapping ofE.

Lemma 2.2 [23] Assume that{an} is a sequence of non-
negative real numbers such that

an+1 ≤ (1− δn)an + vn, ∀n ≥ 0,

where{δn} ⊆ (0, 1) and{vn} ⊆ R are two sequences such
that:

(1)
∑∞

n=1 δn = ∞;
(2) lim supn→∞

vn

δn
≤ 0 or

∑∞
n=1 |vn| < ∞.

Then limn→∞ an = 0.

I II. M AIN RESULTS

Theorem 3.1Assume thatC is a nonempty closed con-
vex subset of the real Hilbert spaceH. Let T : C →
C be a uniformly Lipschitzian and({µn}, {ξn}, ζ)-total
asymptotically nonexpansive mapping with two sequences
{µn}, {ξn} ⊆ [0,+∞), and f : C → C a contraction
with coefficientα ∈ [0, 1). Pick anyx1 ∈ C, let {xn} be
a sequence generated by (7), where{αn}, {βn}, {γn} are
three sequences in(0, 1) such thatαn + βn + γn = 1. If
limn→∞ ‖xn−Tnxn‖ = 0 andF (T ) 6= ∅, and the following
conditions hold:
(C1)

∑∞
n=1 αn = ∞;

(C2) limn→∞ γn = 1;
(C3) limn→∞

µn

αn
= 0;

(C4)
∑∞

n=1 ξn < +∞;
(C5) sn ∈ (0, 1] for all n ≥ 0 and limn→∞ sn = s ∈ (0, 1];
(C6) there exists a constantM∗ > 0 such thatζ(x) ≤ M∗x
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for eachx ≥ 0.
Then{xn} converges strongly to a fixed pointz of T , which
is the unique solution of the variational inequality

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ F (T ).

Proof. We divide the proof into five steps as follows.

(I) we show that sequence{xn} is bounded.

For anyq ∈ F (T ), from (7) and (C6) we have

‖xn+1 − q‖
= ‖αnf(xn) + βnxn + γnTnwn − q‖
≤ αn‖f(xn)− q‖+ βn‖xn − q‖+ γn‖Tnwn − q‖
≤ αn‖f(xn)− f(q)‖+ αn‖f(q)− q‖+ βn‖xn − q‖

+γn[‖wn − q‖+ µnζ(‖wn − q‖) + ξn]
≤ αnα‖xn − q‖+ αn‖f(q)− q‖+ βn‖xn − q‖

+γn[‖wn − q‖+ µnM∗‖wn − q‖+ ξn]
≤ αnα‖xn − q‖+ βn‖xn − q‖+ γnsn‖xn − q‖

+γn(1− sn)‖xn+1 − q‖+ γnµnM∗sn‖xn − q‖
+γnµnM∗(1− sn)‖xn+1 − q‖+ αn‖f(q)− q‖
+γnξn

= [αnα + βn + γnsn(1 + µnM∗)]‖xn − q‖
+γn(1− sn)(1 + µnM∗)‖xn+1 − q‖
+αn‖f(q)− q‖+ γnξn,

that is

[1− γn(1− sn)(1 + µnM∗)]‖xn+1 − q‖
≤ [αnα + βn + γnsn(1 + µnM∗)]‖xn − q‖

+αn‖f(q)− q‖+ γnξn. (8)

From αn + βn + γn = 1 and (C2), we obtain that

lim
n→∞

αn = 0; (9)

and

lim
n→∞

βn = 0. (10)

SinceM∗ is a constant, by conditions (C2), (C3), (C5) and
(9), for any given positive numberε(0 < ε < 1 − α), there
exists a sufficiently large positive integerN such that, for
any n > N ,

γnµnM∗ ≤ µnM∗ ≤ εαn (11)

and

γn

1− γn(1− sn)(1 + µnM∗)
≤ 2

s
, (12)

where lim
n→∞

γn

1−γn(1−sn)(1+µnM∗) = 1
s . From (8), (11) and

(12), for anyn > N , we have

‖xn+1 − q‖
≤ αnα + βn + γnsn(1 + µnM∗)

1− γn(1− sn)(1 + µnM∗)
‖xn − q‖

+
αn‖f(q)− q‖

1− γn(1− sn)(1 + µnM∗)

+
γnξn

1− γn(1− sn)(1 + µnM∗)

= [1 +
αnα− αn + γnµnM∗

1− γn(1− sn)(1 + µnM∗)
]‖xn − q‖

+
αn‖f(q)− q‖

1− γn(1− sn)(1 + µnM∗)

+
γn

1− γn(1− sn)(1 + µnM∗)
ξn

≤ [1 +
αnα− αn + εαn

1− γn(1− sn)(1 + µnM∗)
]‖xn − q‖

+
αn‖f(q)− q‖

1− γn(1− sn)(1 + µnM∗)
+

2
s
ξn

= [1− αn(1− α− ε)
1− γn(1− sn)(1 + µnM∗)

]‖xn − q‖

+
αn(1− α− ε)

1− γn(1− sn)(1 + µnM∗)
‖f(q)− q‖
1− α− ε

+
2
s
ξn

≤ max{‖xn − q‖, ‖f(q)− q‖
1− α− ε

}+
2
s
ξn.

By induction, it follows that

‖xn − q‖
≤ max{‖x1 − q‖, ‖f(q)− q‖

1− α− ε
}

+
2
s
(ξ1 + ξ2 + . . . + ξn−1)

≤ max{‖x1 − q‖, ‖f(q)− q‖
1− α− ε

}+
2
s

∞∑
n=1

ξn. (13)

From (C4) and (13), we know that the sequence{xn} is
bounded, and so are{f(xn)} and{Tn(xn)}.

(II) we prove thatlimn→∞ ‖xn+1 − xn‖ = 0.
Indeed, it follows from (7) that

‖xn+1 − xn‖
≤ ‖xn+1 − Tnxn‖+ ‖Tnxn − xn‖
≤ ‖αnf(xn) + βnxn + γnTnwn − Tnxn‖

+‖Tnxn − xn‖
≤ αn‖f(xn)− Tnxn‖+ βn‖xn − Tnxn‖

+γn‖Tnwn − Tnxn‖+ ‖Tnxn − xn‖
≤ αn‖f(xn)− Tnxn‖+ (1 + βn)‖xn − Tnxn‖

+γn[‖wn − xn‖+ µnζ(‖wn − xn‖) + ξn]
≤ αn‖f(xn)− Tnxn‖+ (1 + βn)‖xn − Tnxn‖

+γn(1− sn)‖xn+1 − xn‖+ γnµnM∗(1− sn)
×‖xn+1 − xn‖+ γnξn

≤ αn‖f(xn)− Tnxn‖+ (1 + βn)‖xn − Tnxn‖
+γn(1− sn)(1 + µnM∗)‖xn+1 − xn‖+ ξn.

Since{f(xn)} and{Tnxn} are bounded, there existsK > 0
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such thatsupn≥1 ‖f(xn)− Tnxn‖ ≤ K. Thus,

‖xn+1 − xn‖
≤ αnK + (1 + βn)‖xn − Tnxn‖

+γn(1− sn)(1 + µnM∗)‖xn+1 − xn‖+ ξn.

It tours out that

‖xn+1 − xn‖ ≤ αnK

1− γn(1− sn)(1 + µnM∗)

+
(1 + βn)‖xn − Tnxn‖

1− γn(1− sn)(1 + µnM∗)

+
ξn

1− γn(1− sn)(1 + µnM∗)
. (14)

By condition (C4), we can see

lim
n→∞

ξn = 0. (15)

From (9), (14), (15) andlimn→∞ ‖xn − Tnxn‖ = 0, we
obtain that

lim
n→∞

‖xn+1 − xn‖ = 0. (16)

(III) we claim that limn→∞ ‖Txn − xn‖ = 0.
From (7) we get

‖xn+1 − Tnxn+1‖
≤ αn‖f(xn)− Tnxn+1‖+ βn‖xn − Tnxn+1‖

+γn‖Tnwn − Tnxn+1‖
≤ αn‖f(xn)− Tnxn+1‖+ βn‖xn − Tnxn+1‖

+γn‖wn − xn+1‖+ γnµnζ(‖wn − xn+1‖) + γnξn

≤ αnK + βn‖xn − Tnxn+1‖+ γnsn(1 + µnM∗)
×‖xn − xn+1‖+ ξn. (17)

By (15)-(17) and (9)-(10) we have

lim
n→∞

‖xn+1 − Tnxn+1‖ = 0. (18)

SinceT is uniformly continuous mapping, we obtain that

lim
n→∞

‖Txn+1 − Tn+1xn+1‖ = 0. (19)

Moreover,

‖Txn+1 − xn+1‖ ≤ ‖Txn+1 − Tn+1xn+1‖
+‖Tn+1xn+1 − xn+1‖. (20)

From (19), (20) andlimn→∞ ‖xn−Tnxn‖ = 0, we get that
limn→∞ ‖Txn+1 − xn+1‖ = 0, which implies that

lim
n→∞

‖Txn − xn‖ = 0. (21)

(IV) we show that

〈z − f(z), z − xn〉 ≤ 0, (22)

wherez = PF (T )f(z).
Indeed, take a subsequence{xni

} of {xn} such that

lim sup
n→∞

〈z − f(z), z − xn〉 = lim sup
i→∞

〈z − f(z), z − xni
〉

Since{xn} is bounded, there exists a subsequence of{xn}
which converges weakly tox∗. Without loss of generality,
we may assume thatxni ⇀ x∗ as i → ∞. From (21) we
have limi→∞ ‖Txni − xni‖ = 0, and by using Lemma 2.1

we obtain thatx∗ = Tx∗, that is,x∗ ∈ F (T ). This together
with the property of the metric projection implies that

lim sup
n→∞

〈z − f(z), z − xn〉 = lim sup
i→∞

〈z − f(z), z − xni
〉

= 〈z − f(z), z − x∗〉 ≤ 0.

(V) We prove thatxn → z asn → ∞, wherez ∈ F (T )
is the unique fixed point of contractionPF (T )f , that is,z =
PF (T )f(z).

Since{xn} is bounded, there existsM > 0 such that
supn≥1 ‖xn − z‖ ≤ M , and from (7) we have

‖xn+1 − z‖2
= 〈xn+1 − z, xn+1 − z〉
= 〈αnf(xn) + βnxn + γnTnwn − z, xn+1 − z〉
= αn〈f(xn)− f(z), xn+1 − z〉+ αn〈f(z)− z, xn+1

−z〉+ βn〈xn − z, xn+1 − z〉+ γn〈Tnwn − z,

xn+1 − z〉
≤ αn‖f(xn)− f(z)‖‖xn+1 − z‖+ αn〈f(z)− z,

xn+1 − z〉+ βn‖xn − z‖‖xn+1 − z‖
+γn‖Tnwn − z‖‖xn+1 − z‖

≤ αnα‖xn − z‖‖xn+1 − z‖+ αn〈f(z)− z, xn+1 − z〉
+βn‖xn − z‖‖xn+1 − z‖+ γn[‖wn − z‖
+µnζ(‖wn − z‖) + ξn]‖xn+1 − z‖

≤ αnα‖xn − z‖‖xn+1 − z‖+ αn〈f(z)− z, xn+1 − z〉
+βn‖xn − z‖‖xn+1 − z‖+ γnsn‖xn − z‖
×‖xn+1 − z‖+ γn(1− sn)‖xn+1 − z‖2
+γnµnM∗‖snxn + (1− sn)xn+1 − z‖‖xn+1 − z‖
+γnξn‖xn+1 − z‖

≤ (αnα + βn + γnsn + γnsnµnM∗)‖xn − z‖
×‖xn+1 − z‖+ αn〈f(z)− z, xn+1 − z〉
+[γn(1− sn)(1 + µnM∗)]‖xn+1 − z‖2
+γnξn‖xn+1 − z‖

≤ αnα + βn + γnsn(1 + µnM∗)
2

(‖xn − z‖2

+‖xn+1 − z‖2) + αn〈f(z)− z, xn+1 − z〉
+[γn(1− sn)(1 + µnM∗)]‖xn+1 − z‖2
+γnξn‖xn+1 − z‖

≤ αnα + βn + γnsn(1 + µnM∗)
2

‖xn − z‖2

+
αnα + βn + γn(2− sn)(1 + µnM∗)

2
‖xn+1 − z‖2

+αn〈f(z)− z, xn+1 − z〉+ γnξn‖xn+1 − z‖
≤ αnα + βn + γnsn(1 + µnM∗)

2
‖xn − z‖2

+
αnα + βn + γn(2− sn)(1 + µnM∗)

2
‖xn+1 − z‖2

+αn〈f(z)− z, xn+1 − z〉+ Mξn,

which implies

‖xn+1 − z‖2

≤ αnα + βn + γnsn(1 + µnM∗)
2− αnα− βn − γn(2− sn)(1 + µnM∗)

‖xn − z‖2

+
2αn〈f(z)− z, xn+1 − z〉+ 2Mξn

2− αnα− βn − γn(2− sn)(1 + µnM∗)
(23)
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From conditions(C2), (C3), (C5) and (9), it follows that
limn→∞[2− αnα− βn − γn(2− sn)(1 + µnM∗)] = s > 0,
and for sufficiently largen > N , we have

2− αnα− βn − γn(2− sn)(1 + µnM∗) > 0,

By (11) and (23) we know that

‖xn+1 − z‖2

≤ [1 +
2αnα + 2βn + 2γn − 2 + 2γnµnM∗

2− αnα− βn − γn(2− sn)(1 + µnM∗)
]

×‖xn − z‖2

+
2αn〈f(z)− z, xn+1 − z〉+ 2Mξn

2− αnα− βn − γn(2− sn)(1 + µnM∗)

= [1 +
2αnα− 2αn + 2γnµnM∗

2− αnα− βn − γn(2− sn)(1 + µnM∗)
]

×‖xn − z‖2

+
2αn〈f(z)− z, xn+1 − z〉+ 2Mξn

2− αnα− βn − γn(2− sn)(1 + µnM∗)

≤ [1 +
2αnα− 2αn + 2εαn

2− αnα− βn − γn(2− sn)(1 + µnM∗)
]

×‖xn − z‖2

+
2αn〈f(z)− z, xn+1 − z〉+ 2Mξn

2− αnα− βn − γn(2− sn)(1 + µnM∗)

= [1− 2αn(1− α− ε)
2− αnα− βn − γn(2− sn)(1 + µnM∗)

]

×‖xn − z‖2

+
2αn(〈f(z)− z, xn+1 − z〉+ M ξn

αn
)

2− αnα− βn − γn(2− sn)(1 + µnM∗)
= (1− δn)‖xn − z‖2 + vn, (24)

where

δn =
2αn(1− α− ε)

2− αnα− βn − γn(2− sn)(1 + µnM∗)
,

vn =
2αn(〈f(z)− z, xn+1 − z〉+ M ξn

αn
)

2− αnα− βn − γn(2− sn)(1 + µnM∗)
.

By conditions (C1) and (C4), we get that

lim
n→∞

ξn

αn
= 0. (25)

From (C1)-(C5), (22) and (25), we have{δn} ⊂ (0, 1),∑∞
n=1 δn = ∞, and

lim sup
n→∞

vn

δn
= lim sup

n→∞

〈f(z)− z, xn+1 − z〉+ M ξn

αn

1− α− ε
≤ 0.

It following form (24) and Lemma 2.2, we obtain that
xn → z = PF (T )f(z), which solves the following variational
inequality:

〈z − f(z), x− z〉 ≥ 0, ∀x ∈ F (T ).

The proof is completed.

Corollary 3.2 Assume thatC is a nonempty closed convex
subset of the real Hilbert spaceH. Let T : C → C be a uni-
formly Lipschitzian and({µn}, {ξn}, ζ)-total asymptotically
nonexpansive mapping with two sequences{µn}, {ξn} ⊆
[0,+∞), and f : C → C a contraction with coefficient

α ∈ [0, 1). Pick any x1 ∈ C, let {xn} be a sequence
generated by
{

wn = 1
2 (xn + xn+1),

xn+1 = αnf(xn) + βnxn + γnTnwn, n ∈ N,

where{αn}, {βn}, {γn} are three sequences in(0, 1) such
that αn + βn + γn = 1. If limn→∞ ‖xn − Tnxn‖ = 0 and
F (T ) 6= ∅, and conditions (C1)-(C4) and (C6) in Theorem
3.1 hold, then{xn} converges strongly to a fixed pointz of
T , which is the unique solution of the variational inequality

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ F (T ).

Proof. Take sn = 1
2 for any n ≥ 1 in Theorem 3.1, then

condition (C5) in Theorem 3.1 holds. From Theorem 3.1,
the proof is completed.

If T : C → C is a generalized asymptotically nonexpan-
sive mapping, we can obtain the following two results from
Theorem 3.1.

Corollary 3.3 Assume thatC is a nonempty closed convex
subset of the real Hilbert spaceH. Let T : C → C be a
uniformly Lipschitzian and generalized asymptotically non-
expansive mapping with sequences{µn}, {ξn} ⊆ [0,+∞),
and f : C → C a contraction with coefficientα ∈ [0, 1).
Pick anyx1 ∈ C, let {xn} be a sequence generated by
{

wn = snxn + (1− sn)xn+1,
xn+1 = αnf(xn) + βnxn + γnTnwn, n ∈ N,

where{αn}, {βn}, {γn} are three sequences in(0, 1) such
that αn + βn + γn = 1. If limn→∞ ‖xn − Tnxn‖ = 0 and
F (T ) 6= ∅, and conditions (C1)-(C5) in Theorem 3.1 hold,
then{xn} converges strongly to a fixed pointz of T , which
is the unique solution of the variational inequality

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ F (T ).

Proof. Takeζ(x) = x(x ≥ 0) in Theorem 3.1, then condition
(C6) in Theorem 3.1 is satisfied automatically. Hence the
conclusion of Corollary 3.3 can be obtained from Theorem
3.1 immediately.

Corollary 3.4 Assume thatC is a nonempty closed convex
subset of the real Hilbert spaceH. Let T : C → C be a
uniformly Lipschitzian and generalized asymptotically non-
expansive mapping with sequences{µn}, {ξn} ⊆ [0,+∞),
and f : C → C a contraction with coefficientα ∈ [0, 1).
Pick anyx1 ∈ C, let {xn} be a sequence generated by
{

wn = 1
2 (xn + xn+1),

xn+1 = αnf(xn) + βnxn + γnTnwn, n ∈ N,

where{αn}, {βn}, {γn} are three sequences in(0, 1) such
that αn + βn + γn = 1. If limn→∞ ‖xn − Tnxn‖ = 0 and
F (T ) 6= ∅, and conditions (C1)-(C4) in Theorem 3.1 hold,
then{xn} converges strongly to a fixed pointz of T , which
is the unique solution of the variational inequality

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ F (T ).

Proof. Take sn = 1
2 in Corollary 3.3, then condition (C5)
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in Corollary 3.3 holds. From Corollary 3.3, this completes
the proof.

If T : C → C is an asymptotically nonexpansive
mapping in the intermediate, we can obtain the following
two corollaries.

Corollary 3.5 Assume thatC is a nonempty closed convex
subset of the real Hilbert spaceH. Let T : C → C be
a asymptotically nonexpansive mapping in the intermediate
sense with sequence{ξn} ⊆ [0,+∞), and f : C → C a
contraction with coefficientα ∈ [0, 1). Pick anyx1 ∈ C, let
{xn} be a sequence generated by
{

wn = snxn + (1− sn)xn+1,
xn+1 = αnf(xn) + βnxn + γnTnwn, n ∈ N,

(26)

where{αn}, {βn}, {γn} are three sequences in(0, 1) such
that αn + βn + γn = 1. If limn→∞ ‖xn − Tnxn‖ = 0 and
F (T ) 6= ∅, and conditions (C1), (C2), (C4) and (C5) in
Theorem 3.1 hold, then{xn} converges strongly to a fixed
point z of T , which is the unique solution of the variational
inequality

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ F (T ).

Proof. Takeµn = 0 and ζ(x) = x(x ≥ 0), then conditions
(C3) and (C6) in Theorem 3.1 are satisfied automatically.
Hence the conclusion of Corollary 3.5 can be obtained from
Theorem 3.1.

Remark 3.1 Corollary 3.2-3.5 still are new consequences.

Corollary 3.6 Assume thatC is a nonempty closed convex
subset of the real Hilbert spaceH. Let T : C → C be a
asymptotically nonexpansive mapping in the intermediate
sense with sequence{ξn} ⊆ [0,+∞), and f : C → C a
contraction with coefficientα ∈ [0, 1). Pick anyx1 ∈ C, let
{xn} be a sequence generated by
{

wn = 1
2 (xn + xn+1),

xn+1 = αnf(xn) + βnxn + γnTnwn, n ∈ N,

where{αn}, {βn}, {γn} are three sequences in(0, 1) such
that αn + βn + γn = 1. If limn→∞ ‖xn − Tnxn‖ = 0 and
F (T ) 6= ∅, and conditions (C1), (C2) and (C4) in Theorem
3.1 hold, then{xn} converges strongly to a fixed pointz of
T , which is the unique solution of the variational inequality

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ F (T ).

Proof. Take sn = 1
2 , then condition (C4) in Corollary 3.5

holds. From conclusion of Corollary 3.6 can be obtained
from Corollary 3.5 immediately.

Remark 3.2 Corollary 3.6 improves and extends the
main results of [20] in regard to parameterαn.

If T : C → C is an asymptotically nonexpansive mapping,
we have the following two results.

Corollary 3.7 Assume thatC is a nonempty closed convex
subset of the real Hilbert spaceH. Let T : C → C

be a asymptotically nonexpansive mapping with sequence
{µn} ⊆ [0,+∞), and f : C → C a contraction with
coefficient α ∈ [0, 1). Pick any x1 ∈ C, let {xn} be a
sequence generated by{

wn = snxn + (1− sn)xn+1,
xn+1 = αnf(xn) + βnxn + γnTnwn, n ∈ N,

(27)

where{αn}, {βn}, {γn} are three sequences in(0, 1) such
that αn + βn + γn = 1. If limn→∞ ‖xn − Tnxn‖ = 0
andF (T ) 6= ∅, and conditions (C1), (C2) (C3) and (C5) in
Theorem 3.1 hold, then{xn} converges strongly to a fixed
point z of T , which is the unique solution of the variational
inequality

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ F (T ).

Proof. Takeξn = 0 in Corollary 3.3, then condition (C4) in
Corollary 3.3 is satisfied automatically, this completes the
proof.

Remark 3.3 Corollary 3.7 studied the strongly convergence
theorem without the monotonic increase of sequence{sn},
and so improves and extends the main results in [21].

Corollary 3.8 Assume thatC is a nonempty closed convex
subset of the real Hilbert spaceH. Let T : C → C be
a asymptotically nonexpansive mapping with sequence
{µn} ⊆ [0,+∞), and f : C → C a contraction with
coefficient α ∈ [0, 1). Pick any x1 ∈ C, let {xn} be a
sequence generated by{

wn = 1
2 (xn + xn+1),

xn+1 = αnf(xn) + βnxn + γnTnwn, n ∈ N,

where{αn}, {βn}, {γn} are three sequences in(0, 1) such
that αn + βn + γn = 1. If limn→∞ ‖xn − Tnxn‖ = 0 and
F (T ) 6= ∅, and conditions (C1), (C2) and (C3) in Theorem
3.1 hold, then{xn} converges strongly to a fixed pointz of
T , which is the unique solution of the variational inequality

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ F (T ).

Proof. Take sn = 1
2 , then condition (C5) in Corollary

3.7 holds. From Corollary 3.7 we can be obtained from
Corollary 3.5 immediately.

IV. A PPLICATION TO VARIATIONAL INEQUALITIES

Assume thatC is a nonempty closed convex subset of a
real Hilbert spaceH. Let A : H → H be a single-valued
monotone operator such thatC ⊂ dom(A). Next we consider
the following variational inequality (VI):

〈Ax0, x− x0〉 ≥ 0, x ∈ C. (28)

Notice that VI (28) is equivalent to the fixed point problem,
for any λ > 0,

PC(I − λA)x0 = x0. (29)

Definition 4.1 A nonlinear mappingA : H → H is L-
Lipschitzian for someL > 0, if

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ H.
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Definition 4.2 A nonlinear mappingA : H → H is η-
inverse-strongly monotone, for someη > 0, if

〈Ax−Ay, x− y〉η‖Ax−Ay‖2, ∀x, y ∈ H.

If A is Lipschitzian andη-inverse-strongly monotone, it
is well known [24] that the operatorT = PC(I − λA) is
nonexpansive provided0 < λ < 2η. Thus, we can get the
following theorem.

Theorem 4.1Assume thatC is a nonempty closed convex
subset of the real Hilbert spaceH. Let A : H → H be aL-
Lipschitzian andη-inverse-strongly monotone mapping and
f : C → C a contraction with coefficientα ∈ [0, 1). Assume
VI(28) is solvable. Let{xn} be a sequence generated by
{

wn = snxn + (1− sn)xn+1,
xn+1 = αnf(xn) + βnxn + γnPC(I − λA)wn,

(30)

where 0 < λ < 2η, and {αn}, {βn}, {γn} are three
sequences in(0, 1) such that αn + βn + γn = 1. If
limn→∞ ‖xn − Tnxn‖ = 0 and (C1), (C2) and (C5) in
Theorem 3.1 hold. Then{xn} converges strongly to a
solution x0 of VI (28), which is also a solution to the
variational inequality

〈(I − f)x0, x− x0〉 ≥ 0, x ∈ A−1(0). (31)
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