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Abstract—This paper deals with fault-tolerant asynchronous
control for Fornasini-Marchesini second model-based two-
dimensional Markov jump systems under actuator failures and
mode mismatches. The actuator failures are modeled as norm-
bounded uncertainties and the mode mismatches between the
plant and the designed controller are characterized by a hidden
Markov model. Employing the Lyapunov direct method, a
criterion is established to ensure the asymptotic mean square
stability and H∞ noise suppression performance of the closed-
loop system. Then, two design methods for the fault-tolerant
asynchronous controller are proposed for the cases where the
actuator fault matrix is known and unknown, respectively.
The required controller gains can be determined through
feasible solutions to the linear matrix inequalities. Finally, the
effectiveness of these design methods is demonstrated by the
Darboux equation.

Index Terms—FM second model, Markov jump system,
hidden Markov model, fault-tolerant control, asynchronous
control.

I. INTRODUCTION

TWO-dimensional (2D) systems, which can also be
called doubly-indexed systems, refer to a type of system

that evolves based on independent variables along two dif-
ferent directions. Compared with one-dimensional systems,
2D systems can describe more complex dynamic modeling
processes. Since the 1970s, 2D systems have found appli-
cations in various engineering fields, spanning from long-
wall coal cutting to metal rolling, gas filtration processes,
and digital filtering (see [1–3]). Among the 2D models,
the Roesser model [4] and the Fornasini-Marchesini second
(FM-II) model [5] stand out as two mainstream models. The
former can be transformed into the latter via specific model
transformations, suggesting that the FM-II model is more
general.

In theoretical research within the control field, the study
of Markov jump systems (MJSs) is crucial, as there may
be structural or parameter mutations in actual systems, and
MJSs can effectively simulate these scenarios by adhering
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to transition probabilities [6–10]. Over the past few decades,
control and filtering of 2D MJSs based on the FM-II model
have gained increasing attention. For instance, Dai et al. [11]
studied the extended dissipative control via non-fragile state
feedback. Under deficient uncertain transition probabilities,
Wei et al. first dealt with the issue of filtering in [12] and
then addressed the model approximation in [13]. Through the
selection of components from an augmented vector subject
to some algebraic constraints, Zhang et al. [14] developed
a delay-dependent H∞ filtering method to cope with such
systems subject to interval delays.

It is noteworthy that the reliability of actuators is not
considered in the existing references. For actuators that
operate over the long term, it is difficult to guarantee that
their working state remains normal. If actuator failures
occur, they can lead to various unpredictable adverse effects
on the system [15, 16]. In addition, most of the existing
references assumed that the controlled system information
could be completely captured when studying control/filtering
problems. However, in networked engineering applications,
the mode information on the controller or filter is likely
to mismatch the actual system modes [17]. Omitting the
mode mismatches may render the design methods of these
references inapplicable. Thus, the natural question arises:
can one design a control method for FM-II model-based
2D MJSs, effectively addressing actuator failures and mode
mismatches? This question, however, has received limited
attention in the literature, despite the ubiquity of actuator
failures and mode mismatches in practical control systems.

Motivated by the above analysis, this paper deals with
fault-tolerant asynchronous control for FM-II model-based
2D MJSs under actuator failures and mode mismatches. The
actuator failures are modeled as norm-bounded uncertainties
and the mode mismatches between the plant and the designed
controller are characterized by a hidden Markov model. The
aim is to design a fault-tolerant asynchronous controller
(FTAC) to ensure the asymptotic mean square stability
(AMSS) and H∞ noise suppression performance of the
closed-loop system. Employing the Lyapunov direct method,
the required criteria are derived. Then, design methods for
the FTAC are proposed for scenarios where the actuator fault
matrix (AFM) is either known or unknown. The required
controller gains can be determined through solving linear
matrix inequalities, which can be efficiently achieved nu-
merically. Finally, the effectiveness of these design methods
is demonstrated using the Darboux equation.

II. PRELIMINARIES

In this paper, the notations align with the definitions
provided in [18, 19], except where specifically illustrated.
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A. 2D FM-II MJS

We consider the following discrete-time 2D MJS with a
jump parameter, which is described by the FM-II model:

x(i+ 1, j + 1)=A1γi,j+1x(i, j + 1) +A2γi+1,jx(i+ 1, j)
+B1γi,j+1

uf (i, j + 1)
+B2γi+1,j

uf (i+ 1, j)
+ E2γi+1,j

w(i+ 1, j)
+ E1γi,j+1

w(i, j + 1),
y(i, j)=Cγi,jx(i, j)+Dγi,juf (i, j)+Fγi,jw(i, j),

(1)

where x(i, j) ∈ Rnx , uf (i, j) ∈ Rnu , w(i, j) ∈ Rnw , and
y(i, j) ∈ Rny denote the system state, the fault input vector,
the disturbance input and the system output, respectively.
The real-valued matrices A1γi,j

, A2γi,j
, B1γi,j

, B2γi,j
, Cγi,j

,
Dγi,j

, E1γi,j
, E2γi,j

, and Fγi,j
, which depend on γi,j , are

known and appropriately dimensioned. The random variable
γi,j obeys a Markov process with a transition probability
matrix Λ = {λpq}. Unlike continuous-time systems, λpq is
subject to

λpq =Pr {γi+1,j+1 = q|γi,j+1 = p}
=Pr {γi+1,j+1 = q|γi+1,j = p} ,

with λi,j ∈ [0, 1] and
∑k1

q=1 λpq = 1, where p, q ∈ K1 =
{1, 2, . . . , k1} [20, 21]. Furthermore, the boundary condition
(X0, P0) of 2D MJS (1) are defined as

X0 = {x(0, j), x(i, 0) | i, j = 0, 1, 2, . . .} ,
P0 = {γ0,j , γi,0 | i, j = 0, 1, 2, . . .} ,

and the zero boundary condition (ZBC) is given as x(0, j)=
x(i, 0) = 0, i, j = 0, 1, 2, . . ..

B. FTAC

When designing the FTAC, we assume that precise infor-
mation about γi,j is not available. First, the asynchronous
controller is detailed as follows:

u(i, j) = Kηi,j
x(i, j), (2)

where Kηi,j
∈ Rnu×nx represents the controller gain that

depend on the parameter ηi,j ∈ K2 = {1, 2, . . . , k2};
meanwhile, it satisfies the conditional probability matrix
Π = {πps} with

πps =Pr {ηi,j+1 = s | γi,j+1 = p}
=Pr {ηi+1,j = s | γi+1,j = p} ,

where πps ∈ [0, 1],
∑k2

s=1 πps = 1, ∀p ∈ K1, s ∈ K2. In this
way, {Λ,Π} consists a hidden Markov model [22–25]. Then,
we delve into the scenario of actuator failure in relation to
this controller. The FTAC is as follows:

uf (i, j) = Θγi,j
u(i, j), (3)

where Θγi,j
represents the fault matrix of the γi,j-th actuator

[26–28], which has the following form:

Θγi,j
= diag

{
θ1γi,j

, θ2γi,j
, . . . , θnuγi,j

}
,

where 0 ≤ θkγi,j
≤ θkγi,j

≤ θkγi,j
≤ 1 (k = 1, 2, . . . , nu),

θkγi,j
and θkγi,j

are known constants.

Remark 1. The degree of actuator failure is determined
by the upper and lower bounds θkγi,j

and θkγi,j
of the

fault matrix parameters. When θkγi,j
= 1, the actuator

is completely normal. When θkγi,j
= 0, the actuator is

completely failed. When θkγi,j
̸= 1 and θkγi,j ̸= 0, the

actuator is partially failed.

Next, we define

Θ0γi,j
= diag

{
θ
[γi,j ]
01 , θ

[γi,j ]
02 , . . . , θ

[γi,j ]
0nu

}
,

Θ1γi,j
= diag

{
θ
[γi,j ]
11 , θ

[γi,j ]
12 , . . . , θ

[γi,j ]
1nu

}
,

where θ
[γi,j ]
0k =(θkγi,j

+θkγi,j
)/2, θ[γi,j ]

1k = (θkγi,j
−θkγi,j

)/2.
Then, for |∆γi,j

| = diag
{
|δ1γi,j

|, |δ2γi,j
|, . . . , |δnuγi,j

|
}

,
fault matrix can be rewritten as

Θγi,j
= Θ0γi,j

+∆γi,j
, |∆γi,j

| ≤ Θ1γi,j
. (4)

Remark 2. In (4), the AFM is decomposed into two parts:
the known part and the unknown part. This decomposition
can be conceptualized as the fault parameter values oscillat-
ing around the mean of the upper and lower bounds within
these limits.

Remark 3. Obviously, whether the AFM corresponding to
(4) is known depends on ∆γi,j

. When ∆γi,j
= 0 (i.e.,

θkγi,j
= θkγi,j

), the fault matrix of the γi,j-th actuator is
known. When ∆γi,j

̸= 0 (i.e., θkγi,j
̸= θkγi,j

), the fault
matrix of the γi,j-th actuator is unknown.

C. Problem formulation

Under γi,j+1 = p or γi+1,j = p, A1γi,j+1 , A2γi+1,j ,
B1γi,j+1

, B2γi+1,j
, E1γi,j+1

, and E2γi+1,j
can be abbreviated

as A1p, A2p, B1p, B2p, E1p, and E2p. Then, the following
closed-loop 2D MJS can be obtained through (1), (2) and
(3):

x(i+ 1, j + 1) =Ā1psx(i, j + 1) + Ā2psx(i+ 1, j)

+ E1pw(i, j + 1) + E2pw(i+ 1, j),

y(i, j) =C̄psx(i, j) + Fpw(i, j),
(5)

where

Ā1ps = A1p +B1pΘpKs,

Ā2ps = A2p +B2pΘpKs,

C̄ps = Cp +DpΘpKs.

Next, through the expansion of the classical definitions of
1D systems, we obtain the corresponding forms of these defi-
nitions in 2D systems. In addition, we include an assumption
on the boundary condition and subsequently introduce three
lemmas.

Assumption 1. [29] Boundary X0 satisfies

lim
L→∞

E

{
L∑

l=0

(
∥x(0, l)∥2 + ∥x(l, 0)∥2

)}
< ∞. (6)

Definition 1. [30] If the closed-loop 2D MJS (5) satisfies
the following condition for any boundary condition (X0, P0)
when w(i, j) ≡ 0:

lim
i+j→∞

E
{
∥x(i, j)∥2

}
= 0, (7)

then the system has the AMSS.
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Definition 2. [31] The closed-loop 2D MJS (5) is said to
have an H∞ noise suppression performance µ, if
∞∑
i=0

∞∑
j=0

E

{∥∥∥∥[y(i, j + 1)
y(i+ 1, j)

]∥∥∥∥2
}

≤ µ2
∞∑
i=0

∞∑
j=0

∥∥∥∥[w(i, j + 1)
w(i+ 1, j)

]∥∥∥∥2
(8)

holds for any w(i, j) ∈ l2{[0,∞), [0,∞)} under the ZBC.

Lemma 1. [32] For a given matrix Z =

[
Z11 Z12

Z21 Z22

]
, where

Z11 ∈ Rr×r, the following three conditions are equivalent:
1) Z < 0;
2) Z11 < 0, Z22 − Z21Z

−1
11 Z12 < 0;

3) Z22 < 0, Z11 − Z12Z
−1
22 Z21 < 0.

Lemma 2. [33] For any two matrices X1 and X2 > 0 with
appropriate dimensions, the following inequality holds:

−XT
1 X

−1
2 X1 ≤ X2 −XT

1 −X1.

Lemma 3. [34] Let H , G, H1, and H2 be real matrices of
suitable dimensions. Then

H +H1GH2 +HT
2 G

THT
1 < 0

holds for GTG < I , if and only if there is a scalar σ > 0
such that

H + σ−1H1H
T
1 + σHT

2 H2 < 0.

The research purpose of this paper: We consider the design
of the FTAC for scenarios involving actuator failure to ensure
the AMSS and H∞ noise suppression performance of the
closed-loop 2D MJS (5). In the case of actuator failure, the
conclusion is extended from the case where the fault matrix
is known to the case where the fault matrix is unknown, i.e.,
when the AFM appears in the form of (4).

III. STABILITY AND PERFORMANCE ANALYSIS

In this section, we provide sufficient conditions for the
AMSS of the closed-loop 2D MJS (5) under H∞ noise
suppression performance.

Theorem 1. Consider the closed-loop 2D MJS (5) that
satisfies (6). Given scalars µ, ε1, and ε2 satisfying µ > 0,
ε1 > 0, ε2 > 0, ε1 + ε2 = 1, for ∀p ∈ K1, s ∈ K2, if there
exist matrices Rp > 0, Qps > 0, Ks, such that

k2∑
s=1

πps

[
Qps 0
0 Qps

]
<

[
ε1Rp 0
0 ε2Rp

]
, (9)

−R̄−1
p 0 0 Ā1ps Ā2ps E1p E2p

∗ −I 0 C̄ps 0 Fp 0
∗ ∗ −I 0 C̄ps 0 Fp

∗ ∗ ∗ −Qps 0 0 0
∗ ∗ ∗ ∗ −Qps 0 0
∗ ∗ ∗ ∗ ∗ −µ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −µ2I

 < 0,

(10)

hold, where R̄p =
∑k1

q=1 λpqRq , then the closed-loop 2D
MJS (5) has AMSS and H∞ noise suppression performance
µ.

Proof: First, the AMSS of the system is proved. We
introduce the Lyapunov function of the following form:

Vκ =ε1x
T (i, j + 1)Rpx(i, j + 1)

+ ε2x
T (i+ 1, j)Rpx(i+ 1, j),

Vκ+1 =xT (i+ 1, j + 1)Rqx(i+ 1, j + 1),

where κ is known as the global instant in the system,
satisfying the condition i+ j = κ. Define

∆V =xT (i+ 1, j + 1)Rqx(i+ 1, j + 1)

− ε1x
T (i, j + 1)Rpx(i, j + 1)

− ε2x
T (i+ 1, j)Rpx(i+ 1, j). (11)

According to the closed-loop 2D MJS (5) with w(i, j) ≡ 0,
we can obtain

∆V = ζT (i, j)Ξpqsζ(i, j), (12)

where

Ξpqs =

[
ĀT

1psRqĀ1ps − ε1Rp ĀT
1psRqĀ2ps

∗ ĀT
2psRqĀ2ps − ε2Rp

]
,

ζ(i, j) =

[
x(i, j + 1)
x(i+ 1, j)

]
.

Then, by performing the expectation operation on (12), we
obtain

E {∆V } = E
{
ζT (i, j)Ξ̄pqsζ(i, j)

}
, (13)

where

Ξ̄pqs =

k2∑
x=1

πps

[
ĀT

1psR̄pĀ1ps ĀT
1psR̄pĀ2ps

∗ ĀT
2psR̄pĀ2ps

]
−
[
ε1Rp 0
0 ε2Rp

]
.

From (10), by utilizing Lemma 1 and scaling, we can deduce
that[

ĀT
1psR̄pĀ1ps ĀT

1psR̄pĀ2ps

∗ ĀT
2psR̄pĀ2ps

]
<

[
Qps 0
0 Qps

]
. (14)

Then, with the assistance of (14), we can derive the following
from (13):

E{∆V } < E
{
ζT(i, j)

( k2∑
s=1

[
Qps 0
0 Qps

]
−
[
ε1Rp 0
0 ε2Rp

])
ζ(i, j)

}
. (15)

For (9), ∃α > 0, α is the minimum eigenvalue of([
ε1Rp 0
0 ε2Rp

]
−
∑k2

s=1 πps

[
Qps 0
0 Qps

])
, and then the

(15) is equivalent to

E{∆V } ⩽ −αE
{
∥ζ(i, j)∥2

}
. (16)

Summing up both sides of (16), we have

E


d1∑
i=0

d2∑
j=0

∥ζ(i, j)∥2
 ≤ − 1

α
E


d1∑
i=0

d2∑
j=0

∆V

 , (17)

where d1 and d2 are any positive integers. It can be obtained
from (11) that

d1∑
i=0

d2∑
j=0

∆V

=

d1∑
i=0

d2∑
j=0

(
(ε1 + ε2)x

T (i+ 1, j + 1)Rqx(i+ 1, j + 1)
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− ε1x
T (i, j + 1)Rpx(i, j + 1)

−ε2x
T (i+ 1, j)Rpx(i+ 1, j)

)
=ε1

d2∑
j=0

(
xT (d1 + 1, j + 1)Rγd1+1,j+1

x(d1 + 1, j + 1)

−xT (0, j + 1)Rγ0,j+1x(0, j + 1)
)

+ ε2

d1∑
i=0

(
xT (i+ 1, d2 + 1)Rγi+1,d2+1

x(i+ 1, d2 + 1)

−xT (i+ 1, 0)Rγi+1,0
x(i+ 1, 0)

)
. (18)

Combining (17) and (18), and scaling accordingly, we obtain

E


d1∑
i=0

d2∑
j=0

∥ζ(i, j)∥2


≤ 1

α
E

ε1

d2∑
j=0

xT (0, j + 1)Rγ0,j+1
x(0, j + 1)

+ ε2

d1∑
i=0

xT (i+ 1, 0)Rγi+1,0
x(i+ 1, 0)

}
. (19)

Let ε = max{ε1, ε2}, β be the maximum eigenvalue of
Rγ0,j+1

and Rγi+1,0
, and let d1 and d2 both tend to infinity.

Then, the above (19) is equivalent to

E


∞∑
i=0

∞∑
j=0

∥ζ(i, j)∥2


≤εβ

α
E

{ ∞∑
l=0

(
∥x(0, l)∥2 + ∥x(l, 0)∥2

)}
. (20)

Next, by combining the above inequality with (6), it is easy
to get that

E


∞∑
i=0

∞∑
j=0

∥ζ(i, j)∥2
 < ∞, (21)

which obviously guarantees the establishment of (7). At this
point, the AMSS is proven. Next, we consider the H∞ noise
suppression performance under the ZBC.

Recalling (11) for the closed-loop 2D MJS (5), we obtain
the following equation:

∆V =ξT (i, j)Y T
1 RqY1ξ(i, j)− ε1x

T (i, j + 1)Rpx(i, j + 1)

− ε2x
T (i+ 1, j)Rpx(i+ 1, j), (22)

where ξ(i, j) =

x(i, j + 1)
x(i+ 1, j)
w(i, j + 1)
w(i+ 1, j)

, Y1 =
[
Ā1ps Ā2ps E1p E2p

]
.

Then, based on the form of (8), we introduce the following
equation:∥∥∥∥[y(i, j + 1)

y(i+ 1, j)

]∥∥∥∥2 − µ2

∥∥∥∥[w(i, j + 1)
w(i+ 1, j)

]∥∥∥∥2
=yT (i, j + 1)y(i, j + 1) + yT (i+ 1, j)y(i+ 1, j)

−µ2wT (i, j + 1)w(i, j + 1)−µ2wT (i+ 1, j)w(i+ 1, j).
(23)

Combining the closed-loop 2D MJS (5) state equation, we
can obtain that (23) is equivalent to∥∥∥∥[y(i, j + 1)

y(i+ 1, j)

]∥∥∥∥2 − µ2

∥∥∥∥[w(i, j + 1)
w(i+ 1, j)

]∥∥∥∥2

=ξT (i, j)
(
Y T
2 Y2 − Ī

)
ξ(i, j), (24)

where Y2=

[
C̄ps 0 Fp 0
0 C̄ps 0 Fp

]
, Ī = diag {0, 0, µI, µI}.

Under the ZBC, we can derive the following condition from
(18):

∞∑
i=0

∞∑
j=0

∆V ≥ 0. (25)

Next, based on (25), we consider H∞ noise suppression
performance µ and set

J =
∞∑
i=0

∞∑
j=0

E

{[
y(i, j + 1)
y(i+ 1, j)

]T[
y(i, j + 1)
y(i+ 1, j)

]

−µ2

[
w(i, j + 1)
w(i+ 1, j)

]T[
w(i, j + 1)
w(i+ 1, j)

]}
(26)

≤
∞∑
i=0

∞∑
j=0

E

{[
y(i, j + 1)
y(i+ 1, j)

]T[
y(i, j + 1)
y(i+ 1, j)

]

−µ2

[
w(i, j + 1)
w(i+ 1, j)

]T[
w(i, j + 1)
w(i+ 1, j)

]
+∆V

}
. (27)

The above (27) combines (22) and (24), we have

J ≤
∞∑
i=0

∞∑
j=0

E
{
ξT (i, j)

k2∑
s=1

πps(Y
T
1 R̄pY1

+ Y T
2 Y2 − Ī)ξ(i, j)− ε1x

T (i, j + 1)Rpx(i, j + 1)

− ε2x
T (i+ 1, j)Rpx(i+ 1, j)

}
. (28)

Using Lemma 1 on (10), we can get

Y T
1 R̄pY1 + Y T

2 Y2 − Ī < Q̄ps, (29)

where Q̄ps = diag {Qps, Qps, 0, 0}. According to (28) and
(29), the following is satisfied:

J <
∞∑
i=0

∞∑
j=0

E
{
ξT (i, j)

k2∑
s=1

πpsQ̄psξ(i, j)

− ε1x
T (i, j + 1)Rpx(i, j + 1)

− ε2x
T (i+ 1, j)Rpx(i+ 1, j)

}
=

∞∑
i=0

∞∑
j=0

E

{
ζT (i, j)

(
k2∑
s=1

πps

[
Qps 0
0 Qps

]
−
[
ε1Rp 0
0 ε2Rp

])
ζ(i, j)

}
. (30)

From (9), it can be deduced that J < 0. Simultaneously,
from the definition of J in (26), it follows that the H∞ noise
suppression performance condition in (8) is guaranteed. The
proof is completed.

IV. FTAC DESIGN

In this section, we first provide a design method for
the FTAC based on known actuator fault matrix. Then, we
extend this design method to the case where the AFM is
unknown.
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A. Known actuator fault matrix

To begin with, based on Theorem 1, we present the design
method for the FTAC when the AFM is known.

Theorem 2. Consider the closed-loop 2D MJS (5) that
satisfies (6). If there exist a scalar µ̄ > 0, a set of matrices
R̃p > 0, Q̃ps > 0, K̃s, M̃s, such that

−ε1R̃p 0 T̄p 0

∗ −ε2R̃p 0 T̄p

∗ ∗ −Q̂p 0

∗ ∗ ∗ −Q̂p

 < 0, (31)

Ω1
ps Ω2

ps Ω3
ps

∗ −I 0

∗ ∗ −R̂

 < 0, (32)

where

Q̂p = diag
{
Q̃p1, Q̃p1, . . . , Q̃pk2

}
,

T̄p =
[√

πp1R̃p
√
πp2R̃p · · · √

πpk2R̃p

]
,

Ω1
ps = diag

{
Q̃ps−MT

s −Ms, Q̃ps−MT
s −Ms,−µ̄I,−µ̄I

}
,

Ω2
ps =

[
CpMs+DpΘpK̃s 0 Fp 0

0 CpMs+DpΘpK̃s 0 Fp

]T
,

Ω3
ps =

[√
λp1Ỹ

T
ps

√
λp2Ỹ

T
ps · · ·

√
λpk1

Ỹ T
ps

]
,

Ỹps =
[
A1pMs+B1pΘpK̃s A2pMs+B2pΘpK̃s E1p E2p

]
,

R̂ = diag
{
R̃1, R̃2, . . . , R̃k1

}
,

hold for ∀p ∈ K1, s ∈ K2, then the closed-loop 2D MJS
(5) is asymptotically mean square stable with H∞ noise
suppression performance µ =

√
µ̄, and the controller gain

can be expressed in the following form:

Ks = K̃sM
−1
s . (33)

Proof: First, we demonstrate the equivalence between
(9) and (31). Let us introduce the following notations: R̃p =
R−1

p , Q̃ps = Q−1
ps .

By pre-multiplying and post-multiplying (31) with
diag {Rp, Rp, I, I} and its transpose matrix, it can be shown
to be equivalent to

−ε1Rp 0 Tp 0
∗ −ε2Rp 0 Tp

∗ ∗ −Q̂p 0

∗ ∗ ∗ −Q̂p

 < 0, (34)

where Tp =
[√

πp1I
√
πp2I · · · √

πpk2I
]
. Obviously,

through Lemma 1, (34) is equivalent to (9).
Next, we prove that (10) can be guaranteed by (32). Here,

we introduce the slack matrix Ms. The invertibility of Ms

can be ensured by (32). According to Lemma 2, we have

−MT
s Q̃−1

ps Ms ≤ Q̃ps −MT
s −Ms. (35)

From (32) and (35), it can be inferred that the following
condition holds: Ω̄1

ps Ω2
ps Ω3

ps

∗ −I 0

∗ ∗ −R̂

 < 0, (36)

where

Ω̄1
ps = diag

{
−MT

s Q̃−1
ps Ms,−MT

s Q̃−1
ps Ms,−µ̄I,−µ̄I

}
.

Pre-multiplying and post-multiplying (36) by
diag

{
(MT

s )−1, (MT
s )−1, I, · · · , I

}
, we can obtain that−Q̄ps − Ī Y T

2 Ȳps

∗ −I 0

∗ ∗ −R̂

 < 0, (37)

where Ȳps =
[√

λp1Y
T
1

√
λp2Y

T
1 · · ·

√
λpk1Y

T
1

]
. By uti-

lizing Lemma 1 of (37), we obtain (29), which ensures that
(10) is established. At this point, the proof ends.

B. Unknown actuator fault matrix

Below, we extend the aforementioned design method for
the FTAC to the case where the AFM is unknown.

Theorem 3. Consider the closed-loop 2D MJS (5) that
satisfies (6). Given scalars θkγi,j

and θkγi,j
, if there exist

scalars µ̄ > 0, σ > 0, and a set of matrices R̃p > 0,
Q̃ps > 0, K̃s, M̃s, for ∀p ∈ K1, s ∈ K2, such that (31) and
the following condition hold:Σ Σ1 Σ2

∗ −σI 0
∗ ∗ −σI

 < 0, (38)

where

Σ =

Ω1
ps Ω̄2

ps Ω̄3
ps

∗ −I 0

∗ ∗ −R̂

 ,

Ω̄2
ps =

[
CpMs+DpΘ0pK̃s 0 Fp 0

0 CpMs+DpΘ0pK̃s 0 Fp

]T
,

Ω̄3
ps =

[√
λp1Ŷ

T
ps

√
λp2Ŷ

T
ps · · ·

√
λpk1

Ŷ T
ps

]
,

Ŷps =
[
A1pMs+B1pΘ0pK̃s A2pMs+B2pΘ0pK̃s E1p E2p

]
,

Σ1 =

[
WaF̂
0

]
,Wa =

[
K̃T

s 0

0 K̃T
s

]
, F̂ =

[
ΘT

1p 0
0 ΘT

1p

]
,

Σ2 =
[
0 σWb σWc

]T
,Wb =

[
DT

p 0
0 DT

p

]
,

Wc =
[√

λp1Wd

√
λp2Wd · · ·

√
λpk1

Wd

]
,

Wd =
[
B1p B2p

]T
.

Then, the system controller designed when the AFM is
unknown ensures that the closed-loop 2D MJS (5) is asymp-
totically mean square stable with H∞ noise suppression
performance µ, where µ =

√
µ̄. Furthermore, the controller

gain can be described by (33). The symbols R̃p and Q̃ps

have the same meaning as Theorem 2.

Proof: Through Lemma 1, (38) can be equivalent to

Σ+ σ−1

[
Wa

0

]
F̂ F̂T

[
Wa

0

]T
+ σ

[
0 Wb Wc

]T [
0 Wb Wc

]
< 0. (39)

It can be obtained from (39)

Σ+ σ−1

[
Wa

0

]
F̃ F̃T

[
Wa

0

]T
+ σ

[
0 Wb Wc

]T [
0 Wb Wc

]
< 0, (40)

where

F̃ =

[
∆T

p 0
0 ∆T

p

]
, |∆p| ≤ Θ1p.
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From (4) and (32), we can derive

Σ+

[
Wa

0

]
F̃
[
0 Wb Wc

]
+
[
0 Wb Wc

]T
F̃T

[
Wa

0

]T
< 0. (41)

Through Lemma 3, we can ensure the equivalence between
(40) and (41), that is, (38) can ensure the establishment of
(32). Thus, by (31) and (38), the AMSS and H∞ noise
suppression performance µ of the closed-loop 2D MJS (5)
are guaranteed. Here, the proof ends.

V. APPLICATION EXAMPLES

In this section, we will utilize the Darboux equation [35]
to validate the effectiveness of the controllers designed in
Theorem 2 and 3, respectively. The dynamics of the Darboux
equation can be expressed as

∂s(x, t)

∂x∂t
=aγ(x,t)s(x, t) + bγ(x,t)

∂s(x, t)

∂t

+ cγ(x,t)
∂s(x, t)

∂x
+ dγ(x,t)s(x, t)f(x, t). (42)

Similar to the technique used in [36]. Here we can get the
parameter matrices of the 2D MJS based on the FM-II model
with two modes

A1p =

[
1 + bp∆x (bpcp+ap)∆x

0 0

]
,

A2p =

[
0 0
∆t 1 + cp∆t

]
,

B1p =

[
dp∆x
0

]
, B2p =

[
0
0

]
.

Then, by appropriately selecting other system matrices and
setting ∆x = 0.3, ∆t = 0.35, a1 = 1.2, b1 = −3, c1 = −1,
d1 = 0.5, a2 = 0.5, b2 = −1, c2 = −2, d2 = 0.5, we can
obtain

Mode 1:

A11 =

[
0.1 1.26
0 0

]
, A21 =

[
0 0

0.35 0.65

]
, B11 =

[
0.15
0

]
,

B21 =

[
0
0

]
, E11 =

[
0.2
0.04

]
, E21 =

[
0.08
0

]
,

C1 =
[
0.5 0.3

]
, D1 =

[
0.05

]
, F1 =

[
−0.1

]
.

Mode 2:

A12 =

[
0.7 0.75
0 0

]
, A22 =

[
0 0

0.35 0.3

]
, B12 =

[
0.15
0

]
,

B22 =

[
0
0

]
, E12 =

[
0.05
0.01

]
, E22 =

[
0

0.02

]
,

C2 =
[
0.1 0.3

]
, D2 =

[
0.05

]
, F2 =

[
−0.2

]
.

Under the asynchronous condition, the transition probability
matrix Λ and the conditional probability matrix Π are
described as follows:

Λ =

[
0.1 0.9
0.7 0.3

]
,Π =

[
0.3 0.7
0.8 0.2

]
.

The conditional probability matrix Π under synchroniza-
tion and mode independence are

Π =

[
1 0
0 1

]
,Π =

[
1 0
1 0

]
,

TABLE I
THE OPTIMAL µ∗ CORRESPONDING TO THE THREE SITUATIONS.

synchronous asynchronous mode-independent

0.2089 0.2211 0.2247

Fig. 1. Trajectory of x1 of the unforced system.

respectively. Here we give the boundary value and distur-
bance as

x(0, j) =

{
[0.3 0.4], 0 ≤ j ≤ 10;

[0 0], j > 10.

x(i, 0) =

{
[0.4 0.3], 0 ≤ i ≤ 10;

[0 0], i > 10.

w(i, j) =

{
1.2, 0 ≤ i, j ≤ 10;

0, elsewhere.

Under the asynchronous condition, we apply Theorem 2
with θk1 = θk1 = 0.8, θk2 = θk2 = 0.9 to solve for the
control gains, resulting in

K1 = [−2.7502 − 7.2514],K2 = [−2.2424 − 8.1222],

with the optimal H∞ noise suppression performance µ∗ =
0.2211. Under the conditions of synchronous, asynchronous,
and mode-independent, the optimal performance µ∗ of The-
orem 2 with θk1 = θk1 = 0.8, θk2 = θk2 = 0.9 obtained
respectively is shown in TABLE I. This table also sup-
ports our conjecture: in addressing the problem of actuator
failure, the theoretical conditions for the synchronous case
are relatively ideal, resulting in the smallest performance
µ∗. The results for the asynchronous case account for the
additional challenge of system mode mismatch. Although
the performance µ∗ is larger, the theoretical outcomes are
more aligned with actual systems, making the trade-off
of using asynchronous control relatively reasonable. The
mode-independent case, which does not consider any mode
conditions, obviously has the largest performance µ∗.

Similarly, in the asynchronous condition, solving Theorem
3 with 0.8I ≤ Θ1 ≤ I , 0.7I ≤ Θ2 ≤ 0.9I (i.e., θk1 =0.8,
θk1 = 1, θk2 = 0.7, θk2 = 0.9) yields the corresponding
control gains as

K1 = [−2.9377 − 7.1765],K2 = [−2.1360 − 7.9596],
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Fig. 2. Trajectory of x2 of the unforced system.

Fig. 3. Trajectory of x1 under the control input.

Fig. 4. Trajectory of x2 under the control input.

which correspond to the optimal H∞ performance µ∗ =
0.2287. Fig. 1 and Fig. 2 show the state trajectories of the

TABLE II
THE OPTIMAL µ∗ UNDER DIFFERENT FAULT DEGREES.

Actuator 1 Actuator 2
µ∗

θk1 θk1 θk2 θk2

0.8 1 0.7 0.9 0.2287
0.7 0.9 0.6 0.8 0.2309
0.6 0.8 0.5 0.7 0.2345
0.5 0.7 0.4 0.6 0.2416
0.4 0.6 0.3 0.5 0.2607
0.3 0.5 0.2 0.4 0.3797
0.2 0.4 0.1 0.3 ∼

Fig. 5. Binary function µ(̂i, ĵ) trajectory for Theorem 3 with θk1=0.8,
θk1=1 and θk2=0.7, θk2=0.9.

two components of x(i, j) of the system without control
input, and the AFM is unknown. It is obvious that this system
is unstable. Fig. 3 and Fig. 4 illustrate the trajectories of
the two components of x(i, j) of the closed-loop system. It
can be observed that the trajectories of state x(i, j) quickly
converge to zero under the action of the controller. It is worth
noting that, considering the system’s equal importance in
both directions, so we choose a diagonal traversal method.
The specific traversal sequence rule is as follows:{

(i, j) < (h, v), i+ j = h+ v and i < h,

(i, j) < (h, v), i+ j < h+ v.

TABLE II shows the optimal performance µ∗ obtained by
solving Theorem 3 when different actuators have different
fault levels. We can observe from TABLE II that as the
degree of actuator failure increases, the optimal performance
µ∗ also increases.

Based on (8), we introduce the following binary equation
under the ZBC:

µ(̂i, ĵ) =

√√√√√√√√
∑î

i=0

∑ĵ
j=0

∥∥∥∥[y(i, j + 1)
y(i+ 1, j)

]∥∥∥∥2∑î
i=0

∑ĵ
j=0

∥∥∥∥[w(i, j + 1)
w(i+ 1, j)

]∥∥∥∥2
.

The trajectory of the binary function µ(̂i, ĵ) for Theorem 3
with θk1=0.8, θk1=1 and θk2=0.7, θk2=0.9 is shown in
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Fig. 3. The trajectory of µ(̂i, ĵ) in Fig. 5 converges to 0.1174,
which is lower than the optimal performance µ∗ = 0.2287
obtained by solving Theorem 3. The above results all verify
the effectiveness of the proposed design methods.

VI. CONCLUSION

This paper investigated the fault-tolerant asynchronous
control problem for 2D MJS based on the FM-II mode under
actuator failures and mode mismatches. The actuator failures
were modeled as norm-bounded uncertainties, and the mode
mismatches between the plant and the designed controller
were characterized by a hidden Markov model. By employ-
ing the Lyapunov direct method, a sufficient condition for
the AMSS and H∞ noise suppression performance of the
closed-loop 2D MJS was obtained. Then, by introducing
a slack matrix and scaling to handle nonlinear terms, the
FTAC was developed for cases where the AFM is known
and unknown, respectively. Finally, the effectiveness of the
design methods was validated through the Darboux equation.
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