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Abstract—In graph theory, graph labeling is an essential
area of study because labeled graphs offer useful
mathematical models for coding theory, cryptography,
astronomy, radar, database administration and communication
networks. Consider a bijection for a graph G of order n,
f : V (G) → {1, 2, . . . , n}. The weight of a vertex z of G,
expressed as w(z), is defined as the sum of labels assigned
to all vertices adjacent to vertex z in G. If the weights
are distinct for every unique pair of vertices y, z in V (G),
then the labeling f is referred to as distance antimagic. A
distance antimagic graph is any graph G that accepts such a
labeling. Distance antimagic labeling on various basic graph
products are discussed in this paper. We explore results on
(a, d)-distance antimagic labeling for the lexicographic product
G◦H and distance antimagic labeling for the cartesian product
G□H , tensor product G×H and strong product G⊠H in this
work, where the graphs G and H are cycle related graphs,
paths or complete graphs. Also, computer-aided algorithms
are designed to verify that vertex weights are distinct.

Index Terms—Distance magic labeling, distance antimagic
labeling, (a, d)-distance antimagic labeling, cartesian product,
lexicographic product, tensor product, strong product.

I. INTRODUCTION

GRAPH labeling is the process of mapping a
graph’s edge or vertex set, under specific criteria,

into a set of positive integers. The significance of
this subject of study lies in its many applications in
coding theory, cryptography, urban planning, networking,
telecommunication and crystallography.

Potential applications of graph labeling include solving
issues with Mobile Adhoc Networks. A graph model can be
used to investigate problems with connectivity, scalability,
routing, network modeling, and simulation. Graphs can be
represented as matrices and problems can be analysed using
algorithms. It is possible to represent node density, mobility,
link building, and routing using ideas associated with random
graphs. Congestion in Mobile Adhoc Networks can be
analysed using a variety of techniques and graph theory
principles can be used to model these networks. Another
application that has been addressed with the concept of 2-
odd labeling in graphs is how to effectively and efficiently
design the restricted frequency spectrum of the global
mobile communication system with an increasing number
of subscribers [1]. Graph labeling also finds application in a
transportation network stand where adjacent stations of the
same degree are needed to maintain roughly equal capacity
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and the diversity of connecting highways between stations
reaches an extreme value can be represented by the Adjacent
Vertex Reducible Total Labeling model [2]. In particular,
antimagic labeling in lexicographic order has been used
in cryptographic applications that involves encryption and
decryption and a plain-text message that has been encrypted
produces cipher-text in [3].

This work takes into consideration any finite undirected
connected graphs without loops or numerous edges. For a
graph G = (V,E), we assume that the order |V | and the
size |E| are represented by n and m respectively. Chartrand
and Lesniak [4] provide terminologies and notations related
to graph theory.

Consider a bijection f : V → {1, 2, ..., n}. A graph G
of order n is said to have a distance magic labeling f
if there is a constant k

′
such that for every u ∈ V , we

have
∑

v∈N(u) f(v) = k
′

where N(u) = {v ∈ V :
v is adjacent to u} is the open neighbourhood of u. The
weight of u is the sum

∑
v∈N(u) f(v) and it is represented

asw(u).
Another variation of distance magic labeling is distance

antimagic labeling, proposed by Kamatchi and Arumugam
[5], in which all vertex weights are distinct integers. Also,
distance antimagic labeling in which the set of all vertex
weights form an arithmetic progression with initial term a
and common difference d called (a, d)-distance antimagic
labeling is another type arising from distance magic labeling
[6]. We refer to Gallian [7] and Arumugam et al. [8] for more
insights into recent survey and open problems on labeling.

In [5] Kamatchi and Arumugam posed the problem
and asked if join of graphs G + K1, G + K2 and
the cartesian product G□K2 distance antimagic if G is
distance antimagic? By introducing the idea of arbitrary
distance antimagic labeling, Handa et al. [9] demonstrated
the existence of distance antimagic labeling of the join
of two graphs. Further in [10] Cutinho et al. proved that
G = Kn□Kn is distance antimagic if and only if n ̸= 2.
They also proved that G = K3□Cn is distance antimagic for
odd integer n. Further they posed the problem of distance
antimagic labeling of G = K3□Cn if n is even? Further,
Simanjuntak and Tritama [11] proved several results on
distance antimagic labeling of graph products.

In this paper, we first discuss distance antimagic labeling
of G□K3 and then compute distance antimagic labeling
of K3□C+

2nandK3□Wn. We also discuss the (a, d)-
distance antimagic labeling for lexicographic product Kn ◦
Kn andKn ◦ C3 and examine distance antimagic labeling
of lexicographic product of star K1,n and bistar Bn,n with
K2. Further, in the last section it is proved that tensor
product Kn × C3 and strong product Pn ⊠K2 are distance
antimagic. It is also shown that vertex weights are distinct
using computer-aided algorithms in Python.
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II. PRELIMINARY DEFINITIONS

Definition 1 ([6]). Consider a bijection f : V → {1, 2, ..., n}
and let the vertex weight for any z ∈ V be w(z) =∑

y∈N(z) f(y) where open neighbourhood of z is denoted by
N(z) = {y ∈ V : y is adjacent to z}. If the set of all vertex
weights forms an arithmetic progression with difference d
and first term a and the set of all vertex weights generated
is {a, a + d, a + 2d, . . . , a + (n − 1)d}, then graph G is
considered to be (a, d)-distance antimagic.

Definition 2 ([5]). The bijection f : V → {1, 2, . . . , n} for
a graph G is referred to as distance antimagic labeling if
for each pair of different vertices y, z ∈ V (G), we have
w(y) ̸= w(z) where w(a) =

∑
b∈N(a) f(b) is the weight of

vertex a and N(a) is open neighbourhood of a ∈ V . G is
referred to as a distance antimagic graph if such a labeling
is present.

Definition 3. Consider the cycle C2n =
(u1, u2, . . . , u2n, u1). M-augmentation of C2n represented
by C+

2n is the graph that is created by appending a perfect
matching made up of the edges u1un+1 and uiu2n+2−j

where 2 ≤ j ≤ n.

Definition 4. Consider the cycle Cn = (u1, u2, . . . , un, u1)
of order n. The graph that results by adding vertex un+1 to
Cn and connecting it to all vertices of Cn is called a wheel.
It is denoted by Wn+1.

Definition 5. A star graph is the complete bipartite graph
K1,n of order (n + 2) containing a central vertex u and
(n+ 1) adjacent vertices.

Definition 6. A bistar graph Bn,n is the graph of order
(2n+2) in which the central vertex in two copies of K1,(n−1)

are joined together.

Definition 7. Consider two graphs G and G0. The graph
represented by G□G0 is the cartesian product of G and G0.
It has vertex set V (G□G0) = {(y, z) : y ∈ V (G) and z ∈
V (G0)} and edge set E(G□G0) = {(y, z)(y′

, z
′
) : y =

y
′
and zz

′ ∈ E(G0) or z = z
′
and yy

′ ∈ E(G)}.

Definition 8. Consider two graphs G and G0. The graph
that has vertex set V (G◦G0) = {(y, z) : y ∈ V (G) and z ∈
V (G0)} and edge set E(G ◦ G0) = {(y, z)(y′

, z
′
) :

yy
′ ∈ E(G) or y = y

′
and zz

′ ∈ E(G0)} is known as the
lexicographic product of G and G0 and is represented as
G ◦G0.

Definition 9. Consider two graphs G and G0. The graph
that has vertex set V (G×G0) = {(y, z) : y ∈ V (G) and z ∈
V (G0)} and edge set E(G × G0) = {(y, z)(y′

, z
′
) : yy

′ ∈
E(G) and zz

′ ∈ E(G0)} is known as the tensor product of
G and G0 and is represented as G×G0.

Definition 10. Consider two graphs G and G0. The graph
that has vertex set V (G⊠G0) = {(y, z) : y ∈ V (G) and z ∈
V (G0)} and edge set E(G ⊠ G0) = {(y, z)(y′

, z
′
) : yy

′ ∈
E(G) and zz

′ ∈ E(G0) or y = y
′
and zz

′ ∈ E(G0) or z =
z

′
and yy

′ ∈ E(G)} is known as the strong product of G and
G0 and is represented as G⊠G0.

Definition 11. Consider a graph G with n vertices. G is
regarded as a monotonically decreasing graph if there is a

bijection h : V → {1, 2, ..., n} such that w(y) ≥ w(z) for
all h(y) < h(z).

III. DISTANCE ANTIMAGIC LABELING OF CARTESIAN
PRODUCT OF GRAPHS

This section discusses distance antimagic labeling of
cartesian product G□K3 and later distance antimagic
labeling of K3 with cycle related graphs are determined.

Theorem 1. Assume that graph G has n vertices and is r-
regular.. Then G□K3 is distance antimagic if G is monotonic
decreasing and r >

√
2n− 1, r > 1+

√
1+8n
2 or r > n +√

n2 − 1.

Proof: Consider a bijection h : V (G) → {1, 2, ..., n}
where V (G) is the vertex set of G and h(xi) = i for 1 ≤
i ≤ n. As G is monotonically decreasing, we have τ(x1) ≥
τ(x2) ≥ · · · ≥ τ(xn) where τ(xi) is the weight of vertex
xi in G. Let V (G□K3) = {xi : 1 ≤ i ≤ n} ∪ {yi : 1 ≤
i ≤ n} ∪ {zi : 1 ≤ i ≤ n} and E(G□K3) = E(G) ∪
{(xi, yi) : 1 ≤ i ≤ n}∪{(yi, zi) : 1 ≤ i ≤ n}∪{(xi, zi) : 1 ≤
i ≤ n}∪{(yi, yj) : 1 ≤ i < j ≤ n where (xi, xj) ∈ E(G)}∪
{(zi, zj) : 1 ≤ i < j ≤ n where (xi, xj) ∈ E(G)}. Also,
assume that w(xi) is the weight of vertices in V (G□K3).
Define a bijection g : V (G□K3) → {1, 2, . . . , 3n} such that

g(xi) = h(xi) = i

g(yi) = 2n+ 1− i

g(zi) = 2n+ i

Now, w(xi) = τ(xi) + g(yi) + g(zi) = τ(xi) + 4n+ 1
Also,

w(yi) =
∑

(yi,x)∈G□K3

g(x) =
∑

(xi,xj)∈V (G)

g(yj) + g(xi) + g(zi)

= 2n+ 2i+ r(2n+ 1)− τ(xi)

w(zi) =
∑

(zi,x)∈G□K3

g(x) =
∑

(xi,xj)∈V (G)

g(zj) + g(xi) + g(yi)

= 2n(1 + r) + 1 + τ(xi)

As τ(xi) ≥ τ(xi+1) =⇒ 4n + 1 + τ(xi) ≥ 4n +
1 + τ(xi+1) =⇒ w(xi) ≥ w(xi+1). Similarly, τ(xi) ≥
τ(xi+1) =⇒ 2n+2i+r(2n+1)−τ(xi) < 2n+2i+r(2n+
1)− τ(xi+1) =⇒ w(yi) < w(yi+1) for 1 ≤ i ≤ (n− 1).
Also, τ(xi) ≥ τ(xi+1) =⇒ 2n(1 + r) + 1 + τ(xi) ≥
2n(1 + r) + 1 + τ(xi+1) =⇒ w(zi) ≥ w(zi+1) for
1 ≤ i ≤ (n− 1).
To complete the proof, we have to show that for all i ̸= j

w(xi) ̸= w(yj)

w(xi) ̸= w(zj)

w(yi) ̸= w(zj)

We first prove w(xi) ̸= w(yj) for i ̸= j. Let us assume on
the contrary w(xi) = w(yj) for some i ̸= j.
=⇒ τ(xi) + 4n+ 1 = 2n+ 2i+ r(2n+ 1)− τ(xj)
=⇒ τ(xi) + τ(xj) = r(2n+ 1)− 2n+ 2i− 1
Since, τ(xi) + τ(xj) ≤ 2nr − r2 + r so r(2n + 1) − 2n +
2i − 1 ≤ 2nr − r2 + r =⇒ r2 − 2n + 2i − 1 ≤ 0 =⇒
r2 − 2n+ 1 ≤ 0 as 1 ≤ i.
=⇒ r ≤

√
2n− 1 which is a contradiction.
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Further to prove w(xi) ̸= w(zj) for i ̸= j. Let us assume on
the contrary w(xi) = w(zj) for some i ̸= j.
=⇒ τ(xi) + 4n + 1 = 2n + 1 + 2nr + τ(xj) =⇒
τ(xi)− τ(xj) = 2nr − 2n
As τ(xi) − τ(xj) ≤ τ(xi) + τ(xj) ≤ 2nr − r2 + r =⇒
2nr − 2n ≤ 2nr − r2 + r
=⇒ r2 − r + 2n ≤ 0 =⇒ r ≤ 1+

√
1+8n
2 which is a

contradiction.
Lastly, to prove w(yi) ̸= w(zj) for i ̸= j. Let us assume on
the contrary w(yi) = w(zj) for some i ̸= j.
=⇒ 2n+ 2i+ 2nr + r − τ(xi) = 2n+ 2nr + 1 + τ(xj)
=⇒ τ(xi) + τ(xj) = 2i+ r − 1
Since, τ(xi)+τ(xj) ≤ 2nr−r2+r so 2i+r−1 ≤ 2nr−r2+r
=⇒ r2 − 2nr + (2i− 1) ≤ 0 =⇒ r2 − 2nr + 1 ≤ 0 =⇒
r ≤ n+

√
n2 − 1 which is a contradiction.

As vertex weights of G□K3 are distinct, so G□K3 is
distance antimagic.

We now provide distance antimagic labeling of cartesian
product of graphs where G is not regular or monotonic
decreasing.

Theorem 2. The graph G = K3□C+
2n is distance antimagic

for all n except for n ≡ 0(mod3).

Proof: Let G = K3□C+
2n and n ̸≡ 0(mod3), n > 1.Let

V (C+
2n) = {u1, u2, . . . , u2n} and V (K3) = {v1, v2, v3}. We

denote the vertex (vi, uj) in K3□C+
2n by xij .

Define g : V (G) → {1, 2, ..., 6n} as g(xij) = 3(j − 1) + i,
1 ≤ i ≤ 3 and 1 ≤ j ≤ 2n. Clearly, g is a bijection. The
vertex weights of graph G are given as

w(xij) =



9n+ 8 :i = 1, j = 1

6n− 1 + 9j :i = 1, 2 ≤ j ≤ n, n+ 2 ≤ j ≤ 2n− 1

12n+ 8 :i = 1, j = n+ 1

18n− 1 :i = 1, j = 2n

w(x1j) + 2 :i = 2, 1 ≤ j ≤ 2n

w(x1j) + 4 :i = 3, 1 ≤ j ≤ 2n
(1)

Let xik and xrs be two distinct vertices in G and suppose
w(xik) = w(xrs) and the following cases be considered
Case 1. i = r and k ̸= s.If i = r = 1, then w(x1k) = w(x1s)
implies n ≡ 0(mod3) or n = 0, 1 which is a contradiction.
If i = r = 2, 3 then again we get a contradiction using the
case i = 1.
Case 2. i ̸= r and k = s. If i = 1 and r = 2, then w(x1k) =
w(x2k) implies w(x1k) = w(x1k) + 2 using (1) which is
a contradiction. Similar contradictions can be seen if i =
1, r = 3 and i = 2, r = 3.
Case 3. i ̸= r and k ̸= s. If k = 1, 2 ≤ s ≤ 2n and i ̸= r,
then w(xi1) = w(xrs) implies the following using (1)

Subcase (i): w(x11) = w(x1s) + 2 if i = 1 and r = 2

Subcase (ii): w(x11) = w(x1s) + 4 if i = 1 and r = 3

Subcase (iii): w(x11) + 2 = w(x1s) + 4 if i = 2 and r = 3
In all subcases we get that n is not an integer for any 2 ≤
s ≤ 2n. So, there is a contradiction in all subcases.
Similarly if 2 ≤ k ≤ n or n + 2 ≤ k ≤ 2n − 1, s ̸= k
and i ̸= r, then w(xik) = w(xrs) again implies n is not an
integer which is a contradiction using (1).
Also if k = n+1 or k = 2n, s ̸= k and i ̸= r, then using the
same technique as above for subcases we get a contradiction
using (1).

Hence w(xik) ̸= w(xrs) and so G is distance antimagic
when n ̸≡ 0(mod3).
The algorithm to check that vertex weights of graph G
are distinct is given below and is verified using Python
programming :

Algorithm 1 An algorithm to check vertex weights are
distinct.
Require: n > 1

Array=np.zeros(3, 2× n)
Total no of elements=3× 2× n
if (n% 3) ̸= 0 then:

for a in range (3) ▷ loop to iterate over rows of
matrix

for b in range (2× n) ▷ loop to iterate over columns
of matrix

if b = 0 then:
Array[a, b] = 9× n+ 8 + 2× a

else if ((b ≥ 1 and b ≤ (n− 1))) or (b ≥ (n− 1) and
b ≤ 2× n− 2)) then:

Array[a, b] = 6× (n− 1) + 9× (b+ 1) + 2× a
else if b = n then:

Array[a, b] = 12× n+ 8 + 2× a
else if b = 2× n− 1 then:

Array[a, b] = 18× n− 1 + 2× a
end for ▷ end for inner loop
end for ▷ end for outer loop

Fig. 1: Distance antimagic labeling of G = K3□C+
4 . The

vertex weights are given in brackets and labels in usual font.

Theorem 3. The graph G = K3□Wn is distance antimagic
for all n except n ≡ 0(mod4).

Proof: Let G = K3□Wn and n ̸≡ 0(mod4), n >
2. Let V (Wn) = {u1, u2, . . . , un, un+1} and V (K3) =
{v1, v2, v3}. We denote the vertex (vi, uj) in K3□Wn by
xij .
Define g : V (G) → {1, 2, ..., 3n+3} as g(xij) = 3(j−1)+i,
1 ≤ i ≤ 3 and 1 ≤ j ≤ n+1. It is evident that g is a bijection
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and vertex weights are computed as

w(xij) =



6n+ 8 :i = 1, j = 1

3n− 4 + 12j :i = 1, 2 ≤ j ≤ n− 1

12n− 4 :i = 1, j = n

w(x1j) + 2 :i = 2, 1 ≤ j ≤ n

w(x1j) + 4 :i = 3, 1 ≤ j ≤ n

w(x1n+1) + (n− 1)(i− 1) :2 ≤ i ≤ 3, j = n+ 1
(2)

w(xij) = (n+ 2)(2n+ 2− k) : i = 1, j = n+ 1, n = 2k + 1

w(xij) = 2(k + 1)(3n+ 5) : i = 1, j = n+ 1, n = 4k + 2
(3)

Let xim and xrs be two distinct vertices in G and suppose
w(xim) = w(xrs) and the following cases be considered.
Case 1. i = r and m ̸= s. If i = r = 1 and m, s ̸= (n+ 1),
then w(x1m) = w(x1s) implies n ≡ 0(mod4) or n = 2
which is a contradiction. In case m, s = (n + 1), then
w(x1m) = w(x1s) implies k is not an integer which is
a contradiction. If i = r = 2, 3 then again we get a
contradiction using the case i = r = 1.
Case 2. i ̸= r and m = s. If i = 1 and r = 2 and m, s ̸= (n+
1) then w(x1m) = w(x2m) implies w(x1m) = w(x1m) + 2
using (2) which is a contradiction. If m, s = (n + 1) then
w(x1m) = w(x2m) implies w(x1n+1) = w(x1n+1) + (n −
1)(i−1) using (2) implying n = 1 which is a contradiction.
Similar contradictions can be seen if i = 1, r = 3 and i =
2, r = 3.
Case 3. i ̸= r and m ̸= s. If m = 1 and 2 ≤ s ≤ n, then
w(xi1) = w(xrs) implies the following using (2)

Subcase (i): w(x11) = w(x1s) + 2 if i = 1 and r = 2

Subcase (ii): w(x11) = w(x1s) + 4 if i = 1 and r = 3

Subcase (iii): w(x11) + 2 = w(x1s) + 4 if i = 2 and r = 3
In all subcases we get that n is not an integer for any 2 ≤
s ≤ n. So, there is a contradiction in all subcases.

If m = 1 and s = n + 1, then w(xi1) = w(xrs) implies
the following using (2)

Subcase (i): w(x11) = w(x2(n+1)) = w(x1(n+1)) + (n− 1)
if i = 1 and r = 2.
Subcase (ii): w(x11) = w(x3(n+1)) = w(x1(n+1))+2(n−1)
if i = 1 and r = 3.
Subcase (iii): w(x21) = w(x3(n+1)) =⇒ w(x11) + 2 =
w(x1(n+1)) + 2(n− 1) if i = 2 and r = 3.
In all subcases we get that n is not an integer which is a
contradiction.
Similarly, if 2 ≤ m ≤ (n − 1), s ̸= m and i ̸= r, then
w(xim) = w(xrs) implies n is not an integer which is a
contradiction.
Also if m = n or m = (n+1), s ̸= m and i ̸= r, then using
the same technique as above for subcases we get that n is
not an integer which is a contradiction.

Hence w(xim) ̸= w(xrs) and so G is distance antimagic
when n ̸≡ 0(mod4).

The algorithm to check that vertex weights of graph G
are distinct is given below and is verified using Python
programming:

Algorithm 2 An algorithm to check vertex weights are
distinct.
Require: n > 2

if (n%2) ̸= 0 then:
k = n÷ 2

else if (n% 4) ̸= 0 then:
k = n÷ 4
Array=np.zeros(3, 2× (n+ 1)
Total no of elements=3× (n+ 1)
if (n% 4) ̸= 0 then:

for a in range (3) ▷ loop to iterate over rows of
matrix

for b in range (n+ 1) ▷ loop to iterate over
columns of matrix

if (a = 1 or a = 2) and (b = n) then:
Array[a, b]=Array[0][a] + (n− 1)× a

else if b = 0 then:
Array[a, b] = 6× n+ 8 + 2× a

else if b ≥ 1 and b ≤ (n− 2) then:
Array[a, b] = 3× n− 4 + 12× (b+ 1) + 2× i

else if b = n− 1 then:
Array[a, b] = 12× n− 4 + 2× a

else if b = n and n% 2) ̸= 0 then:
Array[a, b] = (n+2)× (2×n+2− k)+2×a

else if b = n and n% 4) ̸= 0 then:
Array[a, b] = (3×n+5)× (2× k+2)+2× a
end for ▷ end for inner loop
end for ▷ end for outer loop

Fig. 2: Distance antimagic labeling of G = K3□W5. The
vertex weights are given in brackets and labels in usual font.

IV. DISTANCE ANTIMAGIC LABELING OF TENSOR AND
STRONG PRODUCT OF GRAPHS

The distance antimagicness of graphs generated by basic
graph products: the tensor product and the strong product, is
examined in this section.

Theorem 1. The tensor product G = Kn × C2 is distance
antimagic.

The tensor product G = Kn ×C2 is an n-crown graph is
distance antimagic as shown in [12].

Theorem 2. The tensor product G = Kn × C3 is distance
antimagic.
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Proof: Let V (Kn) = {u1, u2, . . . , un} and V (C3) =
{v1, v2, v3}. We denote the vertex (ui, vj) in G = Kn ×C3

by xij .
Define g : V (G) → {1, 2, ..., 3n} as

g(xij) =


i if j = 1

n+ i if j = 2

2n+ i if j = 3

where 1 ≤ i ≤ n. It is evident that g is a bijection and vertex
weights are computed as

w(xij) =


4n2 − 2n− 2i if j = 1

3n2 − n− 2i if j = 2

2n2 − 2i if j = 3

As the vertex weights are monotonically decreasing, so they
are all distinct. Therefore, G is distance antimagic graph.

Fig. 3: Distance antimagic labeling of G = K4 × C3. The
vertex weights are given in brackets and labels in usual font.

Theorem 3. The strong product G = Pn ⊠ K2 is distance
antimagic.

Proof: Let V (Pn) = {u1, u2, . . . , un} and V (K2) =
{v1, v2}. We denote the vertex (ui, vj) in G = Pn ⊠K2 by
xij .
Define g : V (G) → {1, 2, ..., 2n} as

g(xi1) =

{
i if i is odd
2n+ 1− i if i is even

g(xi2) =

{
2n+ 1− i if i is odd
i if i is even

where 1 ≤ i ≤ n. It is evident that g is a bijection and vertex
weights are computed as

w(xi1) =



4n+ 1 i = 1

6n+ 3− i i is odd, 3 ≤ i ≤ n− 1

4n+ 2 + i i is even, 2 ≤ i ≤ n− 1

3n+ 1 i = n, n is even
3n+ 2 i = n, n is odd

w(xi2) =



2n+ 2 i = 1

4n+ 2 + i i is odd, 3 ≤ i ≤ n− 1

6n+ 3− i i is even, 2 ≤ i ≤ n− 1

3n+ 2 i = n, n is even
3n+ 1 i = n, n is odd

As the vertex weights are are all distinct, so G is distance
antimagic.

The algorithm to prove vertex weights are distinct is given
below and is verified using Python.

Algorithm 3 An algorithm to check vertex weights are
distinct.

Input: n
Output: Weight Matrix W

Matrix of vertices VPn
→ [1, 2, ..., n] and VK2 → [1, 2]

VPn⊠K2
= [ ]

for j in range (1, 3) do
for i in range (1, len(vertex_list_a) + 1) do

if (i%2 == 1) and (j == 1) then:
VPn⊠K2

.append(i)
else if (i%2 == 0) and (j == 1) then:

VPn⊠K2
.append(2 ∗ n+ 1− i)

else if (i%2 == 0) and (j == 2) then:
VPn⊠K2

.append(i)
else if (i%2 == 1) and (j == 2) then:

VPn⊠K2
.append(2 ∗ n+ 1− i)

Generate Weight Matrix W
deffind_weight_ab1() :
W = []
for j in range (1, 3) do

for i in range (1, n+ 1) do
if (i == 1) and (j == 1) then:

W.append(4 ∗ n+ 1)
else if (i == 1) and (j == 2) then:

W.append(2 ∗ n+ 2)
else if ((i%2 == 1), (j == 1)) and

((i ≥ 3), (i ≤ (n− 1)) then:
W.append(6 ∗ n+ 3− i)

else if ((i%2 == 1), (j == 2)) and
((i ≥ 3), (i ≤ (n− 1)) then:

W.append(4 ∗ n+ 2 + i)
else if ((i%2 == 0), (j == 1)) and

((i ≥ 2), (i ≤ (n− 1)) then:
W.append(4 ∗ n+ 2 + i)

else if ((i%2 == 0), (j == 2)) and
((i ≥ 2), (i ≤ (n− 1)) then:

W.append(6 ∗ n+ 3− i)
else if (i == n) and (j == 1) and (n%2 == 0)

then:
W.append(3 ∗ n+ 1)

else if (i == n) and (j == 2) and (n%2 == 0)
then:

W.append(3 ∗ n+ 2)
else if (i == n) and (j == 1) and (n%2 == 1)

then:
W.append(3 ∗ n+ 2) =0
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else if (i == n) and (j == 2) and (n%2 == 1)
then:

W.append(3 ∗ n+ 1)

return W
if (len(W ) == len(set(W ))) then:

Distinct Elements

Fig. 4: Distance antimagic labeling of G = P7 ⊠K2.

V. DISTANCE ANTIMAGIC LABELING OF
LEXICOGRAPHIC PRODUCT OF GRAPHS

(a, 1)-distance antimagic labeling of lexicographic product
of complete graphs and cycle is covered in this section.
Further, distance antimagic labeling of lexicographic product
of star K1,n and bistar Bn,n with K2 is explored.

Theorem 1. The graph G = Kn ◦ Kn is (a, 1)-distance
antimagic.

Proof: Let G = Kn ◦ Kn. Let V (Kn) =
{v1, v2, . . . , vn}. We denote the vertex (vi, vj) in Kn ◦Kn

by xij . Define g : V (G) → {1, 2, . . . , n2} by g(xij) =
(j − 1)n+ i for 1 ≤ i, j ≤ n.
So, we get weights of vertices of graph G as

w(xij) =

{
n3(t+ 1)− n2t+ n(1− j)− i if n = 2t+ 1, t ≥ 1

n3t+ n2 − nt+ n(1− j)− i if n = 2t, t > 1

(4)

We will show that the weight of vertices form an arithmetic
progression with common difference d = 1 using (3) as
follows
Case 1. n = 2t+ 1, t ≥ 1
Consider w(x(i−1)j)−w(xij) for 2 ≤ i ≤ n and 1 ≤ j ≤ n.

w(x(i−1)j)−w(xij) = n3(t+1)−n2t+n(1−j)−(i−1)−
n3(t+ 1) + n2t− n(1− j) + i = −(i− 1) + i = 1

Consider w(xn(j−1))− w(x1j) for 2 ≤ j ≤ n.

w(xn(j−1))−w(x1j) = n3(t+1)−n2t+n(1−j+1)−n

− n3(t+ 1) + n2t− n(1− j) + 1 = n− n+ 1 = 1

Case 2. n = 2t, t > 1
Consider w(x(i−1)j)−w(xij) for 2 ≤ i ≤ n and 1 ≤ j ≤ n.

w(x(i−1)j)−w(xij) = n3t+n2−nt+n(1− j)− (i− 1)

− n3t− n2 + nt− n(1− j) + i = −(i− 1) + i = 1

Consider w(xn(j−1))− w(x1j) for 2 ≤ j ≤ n.

w(xn(j−1))−w(x1j) = n3t+n2 −nt+n(1− j+1)−n

− n3t− n2 + nt− n(1− j) + 1 = n− n+ 1 = 1

We observe that weights of the vertices form an arithmetic
progression with first term a = (n2−1)n2

2 and common
difference d = 1 in the following sequence:
w(xnn), w(x(n−1)n),. . . , w(x1n), w(xn(n−1)),
w(x(n−1)(n−1)),. . . ,w(x1(n−1)),. . . , w(xn1),
w(x(n−1)1),. . . , w(x11). So, G is (a, 1)-distance antimagic.

Theorem 2. The graph G = Kn ◦ C3 is (a, 1)-distance
antimagic for any odd integer n = 2t+ 1.

Proof: Let G = Kn ◦ C3 where n = 2t + 1. Let
V (Kn) = {u1, u2, . . . , un} and V (C3) = {v1, v2, v3}.
We denote the vertex (ui, vj) in Kn ◦ C3 by xij . Define
g : V (G) → {1, 2, . . . , 3n} by g(xij) = (j − 1)n + i for
1 ≤ i ≤ n and 1 ≤ j ≤ 3. Then for 1 ≤ i ≤ n, we have

w(xij) =


3n(1 + 3t) + (n− i) if j = 3

3n(1 + 3t) + n+ (n− i) if j = 2

3n(1 + 3t) + 2n+ (n− i) if j = 1

(5)

Using (4), we shall demonstrate that the weight of vertices
forms an arithmetic progression with common difference d =
1 as follows
Consider w(x(i−1)j)−w(xij) for 2 ≤ i ≤ n and 1 ≤ j ≤ 3.

w(x(i−1)j)− w(xij) = −(i− 1) + i = 1

Also,

w(xn2)−w(x13) = 3n(1+3t)+n+(n−n)−3n(1+3t)

− (n− 1) = 1

w(xn1)−w(x12) = 3n(1+3t)+2n+(n−n)−3n(1+3t)

− n− (n− 1) = 1

We note that in the following sequence: w(xn3),
w(x(n−1)3),. . . , w(x13), w(xn2), w(x(n−1)2),. . . ,w(x12),
w(xn1), w(x(n−1)1),. . . , w(x11), the weights of the vertices
form an arithmetic progression with initial term a = 3n(n+
t) and common difference d = 1
Therefore, g is (a, 1)-distance antimagic labeling for G.

Theorem 3. The graph G = K1,n◦K2 is distance antimagic.

Proof: Let V (K1,n) = {u1, u2, . . . , un+2} where u1 is
the central vertex and V (K2) = {v1, v2}. We denote the
vertex (ui, vj) in G = K1,n ◦K2 by xij .
Define g : V (G) → {1, 2, ..., 2(n+ 2)} as

g(xij) =


j if i = 1, j = 1, 2

2i− 1 if j = 1 and 2 ≤ i ≤ (n+ 2)

2i if j = 2 and 2 ≤ i ≤ (n+ 2)
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It is evident that g is a bijection and vertex weights are
computed as

w(xij) =


(n+ 2)(2n+ 5)− j if i = 1, j = 1, 2

2i+ 3 if j = 1, 2 ≤ i ≤ (n+ 2)

2i+ 2 if j = 2, 2 ≤ i ≤ (n+ 2)

Clearly, vertex weight are all distinct. Therefore, G is
distance antimagic graph.

Theorem 4. The graph G = Bn,n◦K2 is distance antimagic.

Proof: Let V (Bn,n) =
{u, r, u1, u2, . . . , un, r1, r2, . . . , rn} where u and r are
the central vertices and V (K2) = {v1, v2}. We denote the
vertex in G = K1,n ◦ K2 by (ui, vj) where ui ∈ V (Bn,n)
and vj ∈ V (K2) .
Define g : V (G) → {1, 2, ..., 2(2n+ 2)} as

g(u, vj) = j if 1 ≤ j ≤ 2

g(r, vj) = j + 2 if 1 ≤ j ≤ 2

g(ui, v1) = 2i+ 3 if 1 ≤ i ≤ n

g(ui, v2) = 2i+ 4 if 1 ≤ i ≤ n

g(ri, v1) = 2(n+ i) + 3 if 1 ≤ i ≤ n

g(ri, v2) = 2(n+ i) + 4 if 1 ≤ i ≤ n

It is evident that g is a bijection and vertex weights are
computed as

w(u, vj) = 2n2 + 9n+ 10− j if 1 ≤ j ≤ 2

g(r, vj) = 6n2 + 9n+ 8− j if 1 ≤ j ≤ 2

g(ui, v1) = 2i+ 7 if 1 ≤ i ≤ n

g(ui, v2) = 2i+ 6 if 1 ≤ i ≤ n

g(ri, v1) = 2(n+ i) + 11 if 1 ≤ i ≤ n

g(ri, v2) = 2(n+ i) + 10 if 1 ≤ i ≤ n

Clearly, vertex weight are all distinct. Therefore, G is
distance antimagic graph.

VI. CONCLUSION

Research on graph products enables comprehension of
the combinatorial and algebraic aspects of graph theory
and improves many academic and practical domains. Graph
products are important to graph theory and are used in
numerous other areas. In network design, graph products
are used to build intricate topologies with certain traits and
connections. There are multiple applications for labeling
graph products in engineering disciplines. This work presents
the results of distance antimagic labeling of the cartesian
product, tensor product, strong product and lexicographic
product for complete graphs, cycles, paths, star, bistar and
graphs connected to cycles. Further research is needed to
address the issue of distance antimagic labeling for different
additional graph products.
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