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Abstract—In this paper, we study the numerical approxima-
tion of the extended Fisher-Kolmogorov (EFK) equation. First
of all, a novel scheme is obtained by introducing the scalar
auxiliary variables (SAV) method, which is to treat the nonlinear
term, then we only need to solve an independent linear equation.
The presented scheme is highly efficient and easy-to-implement.
In addition, the energy stability is proved rigorously. Under the
corresponding regularity assumption, we prove that the error
estimate for Φ in the L2-norm is able to achieve first-order
convergence rate in time and the O(hr)(r ≥ 1) in space. The
non-local variable r also achieve the same convergence rate.
In the last, the accuracy and energy stability of the proposed
scheme are verified by numerical simulations.

Index Terms—SAV method, Error estimate, First-order
scheme, EFK equation.

I. Introduction

THE EFK model has been widely used in the study
of physical, material, and biological systems [3], [8],

[16], [17], such as the propagation of magnetic region walls
in liquid crystals [17] and the growth of certain types of
primary brain tumors [3]. Two-dimensional extensions of the
Fisher-Kolmogorov equation have also appeared in various
applications, such as the formation of bistable systems,
traveling waves in reactivity diffusion systems [1], [2] and
mesoscale models of phase transitions in binary systems
near Lipschitz points [8]. In particular, in phase transitions
near critical points (Lipschitz points), the fourth derivative
becomes important. In recent years, people began to pay
attention to the steady-state equation of (2) in [14]. Consider
the following free energy (Lyapunov) functional

E[Φ] =
∫
Ω

(
Y
2
|∆Φ|2 + 1

2
|∇Φ|2 + F(Φ)

)
dx, (1)

where the spatial domain is Ω = (0, L)2 ⊂ R2, the parameter
γ > 0 is a positive constant, and F(Φ) = 1

4

(
1 − Φ2

)2
is the

bistable type admitting two local minima. Mathematically,
the governing system of the EFK model could be derived
via an L2 gradient flow associated with the energy functional
E[Φ], that is,
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 ∂tΦ = −
δE
δΦ
= ∆Φ − γ∆2Φ − f (Φ),

Φ(x, 0) := Φ0(x),
(2)

subjected to periodic boundary conditions , and the nonlinear
bulk f (v) = (v)3 −v. An inherent property of the EFK model
is the law of energy dissipation,

dE
dt
=

(
δE
δΦ

, ∂tΦ

)
= − ∥∂tΦ∥2L2 ≤ 0, (3)

in which ( f , g) :=
∫
Ω

f gdx. The associated L2 norm ∥ f ∥L2 =√
( f , f ) for all f , g ∈ L2(Ω), where T = (0, tend) is a finite time

interval and Ω ∈ R2 is a polygonally bounded domain with
boundary ∂Ω subdivided into Dirichlet ∂ΩD and Neumann
∂ΩN parts.

In fact, in recent years, there has been a lot of research
on EFK in terms of computational research. For example,
Pani and Danumjaya [5] first adopted the one-dimensional
solution of OCSC formula to solve equation (2). Next,
Danumjaya and Pani [6] used finite element method to
consider the uniqueness and existence. Arora and Mittal [13]
proposed a five-dollar B-spline allocation method to solve
EFK equation. Ismail et al. [11] proposed the three-stage
linearized difference method to solve equation (2). Later,
Ismail et al. [10] proposed a third-order linearized high-
order precision difference scheme for simulation, and wavelet
collocation method [12] was used to solve two-dimensional
EFK equation, but theoretical derivation and analysis were
not carried out. It is worth noting that although there has been
a lot of research on EFK equations, solving EFK models is
still a challenge.

It is very challenging to construct efficient and easy-to-
solve numerical scheme. Inspired by [9], this paper uses
SAV method to deal with nonlinear term, and presents an
efficient and easy to solve numerical scheme. The implicit-
explicit Euler scheme is used for semi-discretization in time,
while the spatial finite element method is used for full
discretization, and the SAV method is used to linearize the
nonlinear term. We strictly prove that the scheme satisfies
the law of energy dissipation and error estimation.

This paper is organized as follows. In section II, we
propose the scheme to solve the EFK equation and we strictly
prove that the scheme satisfies the energy dissipation rate
and that it can achieve first-order convergence in time and
space. The numerical results in Section III demonstrate the
effectiveness of the scheme for solving two-dimensional EFK
equation. Some conclusions and future research are drawn in
Section IV.

II. Numerical scheme
In this section, we give the equivalent system and a fully

discrete scheme for the EFK model (2). We can define the
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nonlocal variable r(t),

r(t) =

√∫
Ω

F(Φ)dx +C0 :=
√

E1(Φ), (4)

where C0 is a positive constant such that the radicand is
positive. Then, we can define

H(Φ) =
f (Φ)
r(t)

. (5)

Using the above nonlocal variables, we have a new but
equivalent system as follows:

∂Φt = ∆Φ − γ∆2Φ − H(Φ)r(t),

∂rt =
1
2

∫
Ω

H(Φ)∂tΦdx,
(6)

with the initial conditions as Φ(x, 0) := Φ0(x).

A. Fully-discrete scheme

In this section, we give a fully discrete scheme for the
EFK model. Assuming that the polygonal/polyhedral domain
Ω is discretized by a conforming and shape regular triangu-
lation/tetrahedron mesh Th that is composed by open disjoint
elements K such that Ω̄ =

∪
K∈Th

K̄. We use Pr to denote the
space of polynomials of total degree at most r and d = 2, 3.
For r ≥ 1, we introduce several conforming finite element
spaces as follows:

Ψh =
{
ψ ∈ C(Ω) : ψ|K ∈ Pr(K),∀K ∈ Th

}
. (7)

Let N > 0 denote the total number of time steps, we define
the uniform time step size as τ =

[
T
N

]
and set tn = n∆t,

n = 1, . . . ,N. The L2 inner product of any two functions
ϕ(x) and ψ(x) is denoted by (ϕ(x), ψ(x)) =

∫
Ω
ϕ(x)ψ(x)dx,

and the L2 norm of ϕ(x) is denoted by ∥ϕ∥2 = (ϕ, ϕ). Let ψn

be the numerical approximation to the function ψ(·, t)|t=tn .
Then, the semi-discrete numerical scheme for (2) reads as:

Φn − Φn−1

∆t
= ∆Φn − γ∆2Φn − rnH

(
Φn−1

)
,

rn − rn−1 =
1
2

∫
Ω

H
(
Φn−1

) (
Φn − Φn−1

)
dx.

(8)

Then, the fully discrete numerical scheme for (2) reads as:
find Φn

h ∈ Ψh and rn
h ∈ Rd such that

Φn
h − Φn−1

h

∆t
, ψh

 = − (
∇Φn

h,∇ψh

)
− γ

(
∆Φn

h,∆ψh

)
−

(
rnH

(
Φn−1

h

)
, ψh

)
,

rn
h − rn−1

h =
1
2

∫
Ω

H
(
Φn−1

h

) (
Φn

h − Φn−1
h

)
dx.

(9)

In this paper, we assume that the solution of the EFK
equation exists and satisfies the regularities.
Assumption 2.1. We assume the following regularity holds:

Φ ∈H2
(
0,T ; L2(Ω)

)
∩ H1

(
0,T ; Hr+1(Ω)

)
∩C

(
0,T ; W2,4(Ω)

) (10)

and

∂ttϕ ∈ L2
(
0,T ; H1(Ω)

)
, ∂tΦ ∈ L2

(
0,T ; Hr+1(Ω)

)
.
(11)

Assumption 2.2. Let Φn+1
h ∈ Ψh be the unique solution of

(9). The following estimates hold for all τ, h > 0,

max
1≤n≤N

∥∥∥Φn
h

∥∥∥
H1 ≤ C, (12)(∆t)

N∑
n=1

∥∥∥∥(∆t)−1
(
Φn

h − Φn−1
h

)∥∥∥∥
L2


1
2

≤ C, (13)

where C is a positive constant independent of ∆t and h.
Let Rh : H1(Ω)→ Ψh be a classic Ritz projection defined by
[15],

(∇ (ψ − RhΨ) ,∇φh) = 0, (14)

for all φh ∈ Ψh with
∫
Ω

(ψ − Rhψ) dx = 0.

Lemma 2.1: [4] Following finite element theory, it holds
that

∥ψ − Rhψ∥L2 + h ∥ψ − Rhψ∥H1 ≤ Chr∥ψ∥Hr ,
(15)∥∥∥∥(∆t)−1

(
(ψn − Rhψ

n) −
(
ψn−1 − Rhψ

n−1
))∥∥∥∥

≤ Chr
∥∥∥∥(∆t)−1

(
ψn − ψn−1

)∥∥∥∥
Hr+1

,
(16)

where r ≥ 1.
Lemma 2.2: The regularity hypothesis (10), then we have

the following estimate∥∥∥∥H (Φn) − H
(
Φn−1

h

)∥∥∥∥2
≤ C∆t2. (17)

Proof. By direct calculation, we deduce

∥∥∥∥H
(
Φn+1

)
− H

(
Φ∗h

)∥∥∥∥ =
∥∥∥∥∥∥∥∥∥

f (Φn)
√

E1 (Φn)
−

f
(
Φn−1

h

)
√

E1

(
Φn−1

h

)
∥∥∥∥∥∥∥∥∥

≤
∥∥∥∥ f

(
Φn−1

h

)∥∥∥∥
∣∣∣∣E1

(
Φn−1

h

)
− E1 (Φn)

∣∣∣∣√
E1 (Φn) E1

(
Φn−1

h

) (
E1 (Φn) + E1

(
Φn−1

h

))
+

∥∥∥∥ f (Φn) − f
(
Φn−1

h

)∥∥∥∥
√

E1 (Φn)
6 C∆t,

(18)
where together with (11), we get the desired result.

Lemma 2.3: ∂tt

(
Φn

h

)
, satisfy the regularity hypothesis

(11), then we have the following estimate

∆t
∥∥∥En+1

r

∥∥∥2
L2 6 C(∆t)2. (19)

Proof. By using Taylor expansion, we have

rn−1 = rn − ∆t
∂rn

∂t
+

(∆t)2

2
∂2rn

∂t2 + o
(
(∆t)3

)
,∥∥∥En+

r

∥∥∥2
=

∥∥∥∥∥∥∂trn − rn − rn−1

∆t

∥∥∥∥∥∥2

6 C(∆t)2

∥∥∥∥∥∥∂2rn

∂t2

∥∥∥∥∥∥2

L2(tn−1,tn;H1(Ω))
≤ C(∆t)2.

(20)
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B. Energy dissipation law

Theorem 2.1: The system (8) satisfies the following dis-
crete energy dissipation law:

En − En−1 =
1
2
∥Φn∥2 − 1

2

∥∥∥Φn−1
∥∥∥2
+ 2∆t |rn|2 − 2∆t

∣∣∣rn−1
∣∣∣2

≤ −∆t
2
∥∇Φn∥2 − γ∆t

2
∥∆Φn∥2 ,

(21)
where ∥·∥ denotes the discrete L2 norm in domain Ω.

Proof. Taking the first equation of (8) and ∆tΦn by the
inner product of L2, we obtain

1
2
∥Φn∥2 − 1

2

∥∥∥Φn−1
∥∥∥2
+

1
2

∥∥∥∥(Φn − Φn−1
)∥∥∥∥2
+
∆t
2
∥∇Φn∥2

+
γ∆t
2
∥∆Φn∥2 + ∆t

(
H

(
Φn−1

)
rn,Φn + Φn−1

)
= 0.

(22)
Taking the second equation of (8) and rn by the inner product
of L2, we have

1
2
|rn|2 − 1

2

∣∣∣rn−1
∣∣∣2 + 1

2

∣∣∣rn − rn−1
∣∣∣2

=
1
2

(
H

(
Φn−1

)
rn,Φn − Φn−1

)
.

(23)

By combining (22) with (23) together, we derive
1
2
∥Φn∥2 − 1

2

∥∥∥Φn−1
∥∥∥2
+

1
2

∥∥∥∥(Φn − Φn−1
)∥∥∥∥2

+
∆t
2
∥∇Φn∥2 + γ∆t

2
∥∆Φn∥2 + ∆t |rn|2 − ∆t

∣∣∣rn−1
∣∣∣2

+ ∆t
∣∣∣rn − rn−1

∣∣∣2 = 0.

(24)

It is easy to get
1
2
∥Φn∥2 − 1

2

∥∥∥Φn−1
∥∥∥2
+
∆t
2
∥∇Φn∥2 + γ∆t

2
∥∆Φn∥2

+ 2∆t |rn|2 − 2∆t
∣∣∣rn−1

∣∣∣2
≤ 0.

(25)

Hence, we get the result of theorem 2.1.

C. Error analysis

To derive error estimates for the full-discrete formulation
(2.7), we introduce some notations:
Let us define

en
Φ = RhΦ

n − Φn
h, θn

Φ = RhΦ
n − Φn en

r = rn − rn
h,

Φn − Φn
h =

(
RhΦ

n − Φn
h

)
− (RhΦ

n − Φn) = en
Φ − θn

Φ.

We subtract (9) from (8) to get the following error equation
for en+1

Φ
,en
Φ
− en−1
Φ

∆t
, ψh

 − θn
Φ
− θn−1
Φ

∆t
, ψh

 + (
∇en
Φ,∇ψh

)
−

(
∇θn
Φ,∇ψh

)
+ γ

(
∆en
Φ,∆ψh

)
− γ

(
∆θn
Φ,∆ψh

)
+

(
rnH

(
Φn−1

)
− rn

hH
(
Φn−1

h

)
, ψh

)
= 0,

(26)

en
r − en−1

r =
1
2

(
H (Φn) − H

(
Φn−1

h

)
,Φn − Φn−1

)
− 1

2

(
H

(
Φn−1

h

)
, θn
Φ − θn−1

Φ

)
+

1
2

(
H

(
Φn−1

h

)
, en
Φ − en−1

Φ

)
+ ∆tEn

r ,

(27)

where En+1
r = rn−rn−1

∆t − ∂trn.

Theorem 2.2: Assume that the system (1) has a unique
solution Φ satisfying (6). The fully discrete system (9)
yields a unique solution Φn+1

h . It satisfies the following error
estimates:∥∥∥en

Φ

∥∥∥2 −
∥∥∥e0
Φ

∥∥∥2
+ ∆t

∣∣∣en
r

∣∣∣2 − ∆t
∣∣∣e0

r

∣∣∣2 6 Cε

(
h2r + (∆t)2

)
,

(28)
where Cε is independent of n, τ and h, but dependent on ε,
and ε is a sufficiently small constant.
Proof. By multiplying both sides of the second equation of

equation (27) by 2∆t
(
en

r
)
, we can deduce

∆t
∣∣∣en

r

∣∣∣2 − ∆t
∣∣∣en−1

r

∣∣∣2 + ∆t
∣∣∣en

r − en−1
r

∣∣∣2
= ∆ten

r

(
H (Φn) − H

(
Φn−1

h

)
,Φn − Φn−1

)
− ∆ten

r

(
H

(
Φn−1

h

)
, θn
Φ − θn−1

Φ

)
+ ∆ten

r

(
H

(
Φn−1

h

)
, en
Φ − en−1

Φ

)
+ ∆ten

r∆tEn
r .

(29)

Taking ψh = ∆t
(
en
Φ
− en−1
Φ

)
and the Triangle inequality, we

have∥∥∥en
Φ

∥∥∥2 −
∥∥∥en−1
Φ

∥∥∥2
+
∆t
2

∥∥∥∇en
Φ

∥∥∥2 − ∆t
2

∥∥∥∇en−1
Φ

∥∥∥2

+
∆t
2

∥∥∥∥∇ (
en
Φ − en−1

Φ

)∥∥∥∥2
+
γ∆t
2

∥∥∥∆en
Φ

∥∥∥2

− γ∆t
2

∥∥∥∆en−1
ϕ

∥∥∥2
+
γ∆t
2

∥∥∥∥∆ (
en
Φ − en−1

Φ

)∥∥∥∥2

+ ∆t
(
rn

(
H

(
Φn−1

)
− H

(
Φn−1

h

))
, en
Φ − en−1

Φ

)
+ ∆ten

r

(
H

(
Φn−1

h

)
, en
Φ − en−1

Φ

)
6

(
θn
Φ − θn−1

Φ ,
(
θn
Φ − en−1

Φ

))
+ ∆t

(
∇θn
Φ,∇

(
en
Φ − en−1

Φ

))
+ ∆tγ

(
∆θn
Φ,∆

(
en
Φ − en−1

Φ

))
.

(30)

By combining (29) with (30) and (14), we can get∥∥∥en
Φ

∥∥∥2 −
∥∥∥en−1
Φ

∥∥∥2
+
∆t
2

∥∥∥∇en
Φ

∥∥∥2 − ∆t
2

∥∥∥∇en−1
Φ

∥∥∥2

+
∆t
2

∥∥∥∥∇ (
en
Φ − en−1

Φ

)∥∥∥∥2
+
γ∆t
2

∥∥∥∆en
Φ

∥∥∥2

− γ∆t
2

∥∥∥∆en−1
ϕ

∥∥∥2
+
γ∆t
2

∥∥∥∥∆ (
en
Φ − en−1

Φ

)∥∥∥∥2

+ ∆t
∣∣∣en

r

∣∣∣2 − ∆t
∣∣∣en−1

r

∣∣∣2
6

(
θn
Φ − θn−1

Φ ,
(
en
Φ − en−1

Φ

))
− ∆t

(
rn

(
H

(
Φn−1

)
− H

(
Φn−1

h

))
, en
Φ − en−1

Φ

)
+ ∆ten

r

(
H (Φn) − H

(
Φn−1

h

)
,Φn − Φn−1

)
− ∆ten

r

(
H

(
Φn−1

h

)
, θn
Φ − θn−1

Φ

)
+ 2(∆t)2en

r En
r =

5∑
i=1

In
i .

(31)

We estimate each term on the right hand side of equation
(31) in turn. Thus each term of (31) can be estimated as
follows:

In+1
1 = ∆t

(
(∆t)−1

(
θn
Φ − θn−1

Φ

)
, en
Φ + en−1

Φ

)
6 C∆t

∥∥∥∥(∆t)−1
(
θn
Φ − θn−1

Φ

)∥∥∥∥
H−1

∥∥∥en
Φ − en−1

Φ

∥∥∥
H1

6 Cε−1∆th2r + ε∆t
∥∥∥∥∇ (

en
Φ − en−1

Φ

)∥∥∥∥2
,

(32)
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where we have used lemma 2.1, Young inequality, Cauchy-
Schwarz inequality and regularity hypothesis (3.3).

In+1
2 6 C∆t|rn|

∥∥∥∥H
(
Φn−1

)
− H

(
Φn−1

h

)∥∥∥∥ ∥∥∥en
Φ − en−1

Φ

∥∥∥
6 Cε−1(∆t)3 + ε∆t

∥∥∥en
Φ − en−1

Φ

∥∥∥2
,

(33)

where we have used lemma 2.2, Young inequality, Cauchy-
Schwarz inequality.

In+1
3 6 C∆t|en

r |
∥∥∥Φn − Φn−1

∥∥∥
L∞

∥∥∥∥H
(
Φn−1

)
− H

(
Φn−1

h

)∥∥∥∥
6 Cε−1(∆t)3 + ε∆t|en

r |2,
(34)

similarly, where we have used lemma 2.2, Young inequality,
Cauchy-Schwarz inequality.

In+1
4 6 C∆t|en

r |
∥∥∥∥H

(
Φn−1

h

)∥∥∥∥
L∞

∥∥∥θn
Φ − θn−1

Φ

∥∥∥
6 Cε−1(∆t)3 + ε∆t|en

r |2.
(35)

It is obviously easy to see

In+1
5 = 2∆ten+1

r En+1
r ≤ Cε∆t|en

r |2 +Cε−1(∆t)3. (36)

Finally, summing the time from t1 to tN for (31)-(33) and
adding three inequalities, we obtain∥∥∥en

Φ

∥∥∥2 −
∥∥∥e0
Φ

∥∥∥2
+
∆t
2

∥∥∥∇en
Φ

∥∥∥2 − ∆t
2

∥∥∥∇e0
Φ

∥∥∥2

+

n∑
i=1

∆t
2

∥∥∥∥∇ (
en
Φ − en−1

Φ

)∥∥∥∥2
+
γ∆t
2

∥∥∥∆en
Φ

∥∥∥2

− γ∆t
2

∥∥∥∆e0
ϕ

∥∥∥2
+

n∑
i=1

γ∆t
2

∥∥∥∥∆ (
en
Φ − en−1

Φ

)∥∥∥∥2

+ ∆t
∣∣∣en

r

∣∣∣2 − ∆t
∣∣∣e0

r

∣∣∣2 + n∑
i=1

∆t
∣∣∣en

r − en−1
r

∣∣∣2
6 Cε−1∆t

(
h2r + (∆t)2

)
,

(37)

where ε is small enough and C is independent of n, ∆t and
h.

III. Numerical experiments

The efficiency of the proposed algorithm is shown in this
section. The software FreeFem ++ developed by Hecht et al.
[7] is used in our experiments. We verify the convergence of
fully discrete scheme. In this section, we get some numerical
results to certify the proposed method. We consider the
following EFK equation with initial and boundary value
problem (2) in a square domain Ω =

{
(x1, x2) ∈ [0, π]×[0, π]

}
with Neumann boundary in x2 = 0, 1. The exact solution is
given as follows:

Φ(x1, x2, 0) = sin(x1) sin(x2), (x1, x2) ∈ Ω. (38)

Φ = 0, ∆Φ = 0, (x1, x2, t) ∈ ∂Ω × (0,T ]. (39)

Φt + γ∆
2Φ − ∆Φ − Φ + Φ3 = F(x1, x2, t),

in Ω × (0,T ],
(40)

where
F(x1, x2, t) = 4γ sin(x1) sin(x2) exp(−t)

+
∣∣∣sin(x1) sin(x2) exp(−t)

∣∣∣3 .

The exact solution of this example is

Φ(x1, x2, 0) = exp(−t) sin(x1) sin(x2). (41)

In the numerical experiment, we compute the solution up
to the final time T = 1 and taking γ = 0.01. P1 finite element
is used for Φ. To demonstrate the convergence order of our
scheme, we first set refine the spatial grid size with h = 1

256 .
The errors of the variable between the numerical solution
and the exact solution at T = 1 with different time step size
∆t = 3−i, i = 1, 2, 3, 4, 5, 6 in Table I. We observe that our
scheme presents first order accuracy in L2 norm for Φ.

Table I. Errors and rates of convergence for the phase-field Φ.

τ L2-error order CPU time (s)

1
3 0.0285893 - 4.548

1
6 0.0118704 1.27 15.487

1
12 0.00551655 1.11 40.041

1
24 0.00279187 0.98 90.131

1
48 0.00142317 0.97 192.656

1
96 0.000721306 0.98 413.13
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Fig. 1. Unconditional energy stability with T=3.

The change of total energy over time is shown in Figure
1, where C0 = 1, γ = 0.1 and T = 3. It shows that the energy
is monotonically decreasing, which proves the unconditional
energy stability of the proposed scheme.

IV. Conclusion and outlook

In this paper, we present the SAV method for the EFK
equation. We focus on the numerical approximation of the
EFK equation. A scalar auxiliary variable (SAV) method
is introduced to deal with nonlinear term. We construct a
new efficient and easy-to-implement numerical scheme. In
addition, the energy stability is proved rigorously. Under the
corresponding regularity assumption, we prove that the error
estimate for Φ in the L2-norm is able to achieve first-order
convergence rates in time and the O(hr)(r ≥ 1) in space. The
non-local variable r also achieve the same convergence rate.
The accuracy, energy stability of the proposed scheme are
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verified by numerical examples. In the last, we will consider
using the SAV method to solve more complex coupling
models.
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