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Abstract—In this research, two distinct categories of med-
ications for treating cardiovascular conditions, specifically fi-
brates and calcium channel blockers were analyzed. QSPR
analysis of curvilinear regression models was used to establish
a relationship between these degree-based indices and the
physicochemical properties of some novel drugs used in the
treatment of heart disease. The results show that quadratic
regression outperformed linear regression for both drug classes.
Additionally, comparing multigraph and simple graph modeling
revealed that multigraph modeling provides a more detailed
understanding of drug structures, enhancing the accuracy
of estimating physicochemical properties. Specifically, eight
Revan indices showed a strong correlation (R=1) in quadratic
regression for fibrate drugs with the first Revan index (R1)
serving as the most accurate estimator for molar refractivity
and polarizability. Meanwhile, the Geometric-Arithmetic Revan
index (GAR) emerged as the best estimator for polar surface
area in quadratic regression equations for calcium channel
blockers. These studies highlight the potential of topological
indices in estimating physicochemical properties of drugs, which
could be useful in the development of new drugs and therapies.

Index Terms—Fibrates, calcium channel blockers, Revan
topological indices, molecular multigraph, QSPR modeling,
physicochemical properties.

I. INTRODUCTION

Topological indices are valuable molecular descriptors
for QSPR (Quantitative Structure-Property Relationship)
modeling in chemistry, nanotechnology, and pharmacology,
as they concisely capture structural and electronic properties
of molecules.

Pharmacology has witnessed significant advancements,
leading to the annual discovery of groundbreaking drugs.
However, precise drug testing requires access to suitable
equipment, a robust research network, and ample resources.
The correlation between a drug’s physical/chemical
properties and molecular arrangement is well-established,
making topological indices (TI’s) a valuable tool for
researchers in pharmacology and medicine to study
molecular properties and their impact on experimental
results [1],[2],[3],[4] and [5]. TI’s can estimate the
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physicochemical properties of molecules, providing a cost-
effective alternative to expensive laboratory experiments for
developing nations.

In this study, we aim to explore the distinct characteristics
of fibrates drugs and calcium channel blocking cardiac drugs.
Fibrates are known for their ability to lower triglycerides,
modestly affect LDL cholesterol levels, and raise HDL
cholesterol levels, some common fibrate medications include
Fenofibrate, Ciprofibrate, Bezafibrate and Clofibrate [6]
and [7]. On the other side, calcium channel blockers are
primarily used to treat hypertension, angina and abnormal
heart rhythms by relaxing the heart’s vessels and lowering
blood pressure, some important calcium channel-blocking
cardiac drugs include Nifedipine, Amlodipine, Diltiazem,
Verapamil and ranolazine [8].

Chemical graph theory is an interdisciplinary field that
combines mathematical modeling techniques with graph
theory to understand chemical phenomena. [9], [10] and [11].
Topological indices (TI’s) are important in this field, as they
can be used to estimate molecular structural properties in
QSAR/QSPR models. The Wiener index [12] introduced in
1947, was a pioneering TI that helped determine the physical
properties of paraffin, marking a significant milestone in
employing TI’s for estimating and comprehending molecular
characteristics. A fundamental understanding of molecular
structure is crucial in the design of drugs as it aids in
evaluating a compound’s potential therapeutic benefits
and overall efficacy. This knowledge enables researchers
to make informed decisions, leading to improved drug
design and enhanced therapeutic outcomes. The wealth
of information encoded in molecular structure indices
significantly contributes to understanding and predicting
various characteristics and behaviors of chemical compounds
[13], [14], [15] and [16]. The articles [17], [18], [19] and
[20] provide valuable insights into the chemical, biological,
and physical properties of diverse drugs/compounds through
topological indices (TI’s), enhancing the comprehensive
QSAR/QSPR analysis of these substances.

This article focuses on the application of Revan indices in
QSPR analysis, particularly in the context of drug discovery
and design. Revan indices, initially introduced by V.R. Kulli
[21], offer a robust framework for exploring the quantitative
structure-property relationships of compounds, revealing
non-linear patterns. The Revan vertex degree encompasses
various indices, such as first and second Revan indices,
modified first and second Revan indices, first and second
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hyper Revan indices, product connectivity Revan index,
sum connectivity Revan index, harmonic Revan index,
atom-bond connectivity Revan index, geometric-arithmetic
Revan index, F-Revan index, and symmetric division Revan
index [21],[22][23],[24],[25],[26] and [27]. In recent times,
numerous researchers have been investigating various
Topological Indices (TI’s) across different drug classes
like antiviral, anticancer, COVID-19, anti-tuberculosis,
and asthma medications [28] [29] and [30]. Their aim is
to develop Quantitative Structure-Property Relationship
(QSPR) models using linear, quadratic, and cubic regression
analyses to establish relationships between drug properties
and their corresponding TI’s. A recent study by Havare
[31], utilized curvilinear regression models in a QSPR
analysis focused on COVID-19 drugs. The study revealed
that cubic regression models provide the most accurate
estimation of properties for antiviral medications used in
treating COVID-19 patients. Additionally, a limited number
of studies, have explored the use of topological indices for
analyzing specific drugs within the fibrates and calcium
channel blockers drugs family [32], [33] and [34]. The
Revan indices, along with their mathematical expressions,
are detailed in Table I.

A multigraph is a graph theory concept that extends the
idea of a simple graph allowing multiple edges between any
pair of vertices [35]. In the book ”Medicinal Chemistry: A
Series of Monographs,” Kier et al. [36] discuss Randic’s
argument that representing double bonds as double bonds
provides a nuanced depiction of chemical structures.
They compared a class of diene molecules as multigraphs
and simple graphs concerning the boiling point property,
finding that multigraphs slightly outperformed simple graph
representations.

In this study, multigraph modeling is employed as a graph-
based machine learning method to estimate drug physic-
ochemical properties by representing drug structures as
multigraphs, allowing for comprehensive capture of various
chemical bonds and functional groups. Here, we employ
curvilinear regression models to analyze the activity of fibrate
and calcium channel blocker drugs based on their properties
and topological indices (TI’s). By integrating non-linear
connections between variables, our objective is to enhance
the accuracy and estimating capability of QSPR models in
the analysis of these two distinct class of cardiac drugs.
We focus on exploring the significance and applicability of
various Revan topological indices as descriptors for chemical
structures. The study is structured as follows: section 2 de-
tails the materials and methods employed, section 3 focuses
on the main results, section 4 depicts model implementation
and experimental results, section 5 shows further analysis
to find the optimal estimators and section 6 summarizes the
findings and their implications.

A. Motivation:

Our research, inspired by prior studies highlighting
double bonds could improve correlation results in molecular
modeling. Inspired by previous research such as that by
Kier et al.’s [36] observation in ”Medicinal Chemistry: A

Series of Monographs” about double-edge counts providing
a more accurate representation of double bonds. Recent
work by Simon et al. also indicated improved correlations
for molecules with weighted Wiener indices compared to
traditional Wiener indices for simple graphs, while Zakharov
et al. proposed a novel approach using multigraphs for
enhanced statistical QSAR model building [37] and [38].

Inspired by these insights, we conducted a comparative
analysis between simple and complex models to investigate
the impact of double bonds on property estimation accuracy.
Notably, no previous literature directly compares multigraph
and simple graph efficacy in this context, making this study’s
contribution novel and original.

B. Notation:

Consider a connected graph G, characterized by its vertex
set V (G) and edge set E(G). The degree of a vertex ’x’
in G, denoted as dG(x), indicates the number of neighboring
vertices connected to ’x’. The maximum degree of G is repre-
sented as ∆max(G), while the minimum degree is denoted as
δmin(G). In the context of Revan vertex degree, for a vertex
’x’ belonging to G, rG(x) = ∆max(G) + δmin(G) − dG(x).
Furthermore, the Revan edge ’xy’ signifies the connection
between the Revan vertices ’x’ and ’y’.

TABLE I: Various Revan TI’s: Mathematical Formulations

Vertex Degree Based Revan TI’s Mathematical Expression

First Revan index (R1(G))
∑

xy∈E(G)[rG(x) + rG(y)]

Second Revan index (R2(G))
∑

xy∈E(G)[rG(x)× rG(y)]

First hyper Revan index (HR1(G))
∑

xy∈E(G)[rG(x) + rG(y)]
2

Second hyper Revan index (HR2(G))
∑

xy∈E(G)[rG(x)× rG(y)]
2

1st modified Revan index (mR1(G))
∑

xy∈E(G)
1

rG(x)+rG(y)

2nd modified Revan index (mR2(G))
∑

xy∈E(G)
1

rG(x)×rG(y)

Sum connectivity Revan index (SR(G))
∑

xy∈E(G)
1√

rG(x)+rG(y)

Product connectivity Revan index (PR(G))
∑

xy∈E(G)
1√

rG(x)×rG(y)

F-Revan index (FR(G))
∑

xy∈E(G)[rG(x)
2 + rG(y)

2]

Atom-bond connectivity index (ABC(G))
∑

xy∈E(G)

√
rG(x)+rG(y)−2

rG(x)×rG(y)

Geometric-arithmetic Revan index (GAR(G))
∑

xy∈E(G) 2

√
rG(x)×rG(y)−2

rG(x)+rG(y)

Harmonic Revan index (HR(G))
∑

xy∈E(G)
2

rG(x)+rG(y)

Symmetric division Revan index (SDR(G))
∑

xy∈E(G)

(
rG(x)

rG(y)
+

rG(y)

rG(x)

)

II. MATERIAL AND METHOD

This study investigates the physicochemical properties
of fibrates and calcium channel blocker drugs, specifically
Fenofibrate, Clofibrate, Bezafibrate, Ciprofibrate, Nifedipine,
Amlodipine, Ailtiazem, Verapamil, and Ranolazine to gain
insights into their structure-property relationships. Thirteen
Revan TI’s were used to model the chemical structures and
SPSS statistical software version 25 was used to analyze the
data. The study focused on four physicochemical properties
for fibrates (polarizability(P), heat capacity(CV), octanol-
water partition coefficients(XLogP3) and complexity(C))
and six properties for calcium channel blockers
(boiling point(BP), enthalpy of vaporization(E), molar
refractivity(MR), polar surface area(PSA), polarizability(P)
and molar volume(MV)).
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Linear equation :

D = a+ bI; n, F,R,R2, S.E, F − sig (1)

Quadratic equation :

D = a+ b1I + b2I
2; n, F,R,R2, S.E, F − sig (2)

In this particular context, the variable that reflects the re-
sponse or dependence is identified as D, while the constant
of the regression model is represented by the symbol ”a.”
The individual descriptors’ coefficients are symbolized as
bi (where i = 1, 2, 3), whereas the independent variable is
represented as I. The regression equation is constructed using
n samples. In the linear and quadratic regression analysis,
statistical parameters with the highest correlation coefficient
(R2) value, minimal standard error (S.E), maximum (R)
value, maximum F-value and F-sig with a p-value less than
0.05 were considered as indicators of the goodness of fit.
These factors determine the quality of the regression models.
The chemical structures of fibrates and calcium channel
blocker drugs are depicted in Figure 1, which were drawn
using ChemSketch software. Table II and Table XXXV (since
this Table is large, it is placed before reference section)
present the experimental values associated with these drugs
and these values are taken from [32, 34].

Fig. 1: Chemical Structures of Fibrates and Calcium Channel
Blocker Drugs (a) Fenofibrate (b) Ciprofibrate (c) Bezafibrate
(d) Clofibrate (e) Nifedipine (f) Amlodipine (g) Diltiazem (h)
Verapamil (i) Ranolazine.

TABLE II: Physicochemical Characteristics of Investigated
Fibrate Drugs

Fibrate Drugs P CV XLogP3 C

Fenofibrate(F) 164.27567 66.502 5.2 458

Ciprofibrate (C) 244.49533 92.538 3.4 333

Bezafibrate (B) 232.43367 91.009 3.8 452

Clofibrate (CL) 144.46 61.172 3.3 232

This research involves performing linear and quadratic
regression models to estimate ten physicochemical properties
using thirteen Revan TI’s of nine cardiac drugs. Tables
XXXVI (since this Table is large, it is placed before ref-
erence section), IV, and V display the Revan TI values and
correlation coefficients from linear regression and correlation
coefficients from quadratic regression, respectively of fibrate
drugs. The regression model with the highest correlation
coefficient is considered the most optimal estimator. The
results from both linear and quadratic regression models for
the physicochemical properties of fibrate drugs are presented
in Tables VI, VII, VIII, IX, and X. Additionally, Figures
4 and 5 visually represent the optimal estimates of the
linear and quadratic regression equations for the most precise
physicochemical properties estimated by the Revan degree-
based TI’s.

III. MAIN RESULTS

A. Evaluation of Fibrate Class of Cardiac Drugs: Multi-
graph Modeling versus Simple Graph Modeling

In this subsection, the computational analysis of the fibrate
drugs involves studying its molecular structure through multi-
graph representation. The molecular multigraph of Fenofi-
brate is depicted in Figure 2. By using the Revan edge
partition method, various Revan indices for Fenofibrate are
calculated. Table III shows the Revan edge partitioning of
Fenofibrate.

Fig. 2: Molecular Multigraph of Fenofibrate Drug

Theorem 1. Let F be the molecular multigraph of
Fenofibrate. Then we have,

1) R1(F) = 126
2) R2(F) = 106
3) HR1(F) = 500
4) HR2(F) = 422
5) mR1(F) = 9.8833
6) mR2(F) = 14
7) SR(F) = 18.1549
8) PR(F) = 21.1421
9) FR(F) = 288
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10) ABCR(F) = 23.1628
11) GAR(F) = 31.6413
12) HR(F) = 19.7667
13) SDR(F) = 91.25

Proof: By using the mathematical equations of Revan
indices as outlined in Table I, we have computed these
indices as follows which provides a detailed account of the
calculated indices and their significance in our analysis. Now
by using Table III and by using Table I we get the following:

TABLE III: Revan Edge Partitioning for the Molecular
Multigraph of Fenofibrate

rG(x), rG(y)/xy ∈ E(G) Edge Count

(4, 2) 2

(4, 1) 3

(3, 2) 1

(3, 1) 7

(2, 2) 6

(2, 1) 12

(1, 1) 3

R1(F) =
∑

xy∈E(F)

[rF (x) + rF (y)]

= 2(4 + 2) + 3(4 + 1) + (3 + 2) + 7(3 + 1)

+ 6(2 + 2) + 12(2 + 1) + 3(1 + 1)

= 126.

R2(F) =
∑

xy∈E(F)

[rF (x)× rF (y)]

= 2(4× 2) + 3(4× 1) + (3× 2) + 7(3× 1)

+ 6(2× 2) + 12(2× 1) + 3(1× 1)

= 106.

HR1(F) =
∑

xy∈E(F)

[rF (x) + rF (y)]
2

= 2(4 + 2)2 + 3(4 + 1)2 + (3 + 2)2 + 7(3 + 1)2

+ 6(2 + 2)2 + 12(2 + 1)2 + 3(1 + 1)2

= 500.

HR2(F) =
∑

xy∈E(F)

[rF (x)× rF (y)]
2

= 2(4× 2)2 + 3(4× 1)2 + (3× 2)2 + 7(3× 1)2

+ 6(2× 2)2 + 12(2× 1)2 + 3(1× 1)2

= 422.

mR1(F) =
∑

xy∈E(F)

1/[rF (x) + rF (y)]

= 2(1/6) + 3(1/5) + (1/5) + 7(1/4) + 6(1/4)

+ 12(1/3) + 3(1/2)

= 9.8833

mR2(F) =
∑

xy∈E(F)

1/[rF (x)× rF (y)]

= 2(1/8) + 3(1/4) + (1/6) + 7(1/3)

+ 6(1/4) + 12(1/2) + 3(1/1)

= 14

SR(F) =
∑

xy∈E(F)

1/
√

rF (x) + rF (y)

= 2(1/
√
6) + 3(1/

√
5) + (1/

√
5) + 7(1/

√
4)

+ 6(1/
√
4) + 12(1/

√
3) + 3(1/

√
2)

= 18.1549

PR(F) =
∑

xy∈E(F)

1/
√
rF (x)× rF (y)

= 2(1/
√
8) + 3(1/

√
4) + (1/

√
6) + 7(1/

√
3)

+ 6(1/
√
4) + 12(1/

√
2) + 3(1/

√
1)

= 21.1421

FR(F) =
∑

xy∈E(F)

[rF (x)
2 + rF (y)

2]

= 2(16 + 4) + 3(16 + 1) + (9 + 4) + 7(9 + 1)

+ 6(4 + 4) + 12(4 + 1) + 3(1 + 1)

= 288.

ABC(F) =
∑

xy∈E(F)

√
rF (x) + rF (y)− 2

rF (x)× rF (y)

= 2
√
4/8 + 3

√
3/4 +

√
3/6 + 7

√
2/3

+ 6
√
2/4 + 12

√
1/2 + 3

√
0/1

= 23.1628

HR(F) =
∑

xy∈E(F)

2/[rF (x) + rF (y)]

= 2(2/6) + 3(2/5) + (2/5) + 7(2/4) + 6(2/4)

+ 12(2/3) + 3(2/2)

= 19.7667.

SDR(F) =
∑

xy∈E(F)

rF (x)

rF (y)
+

rF (y)

rF (x)

= 2(4/2 + 2/4) + 3(4/1 + 1/4) + (3/2 + 2/3)

+ 7(3/1 + 1/3) + 6(2/2 + 2/2)

+ 12(2/1 + 1/2) + 3(1/1 + 1/1)

= 91.25.

Following the same methodology as Theorem 1, the Revan
indices for other drugs are also calculated and presented in
Table XXXVI.

For simplicity, we have used the abbreviations F , C, B,
and CL to represent Fenofibrate, Ciprofibrate, Bezafibrate,
and Clofibrate, respectively.
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To illustrate the relationship between these properties
and fibrate drugs modeled as simple graph, linear and
quadratic regression analysis was performed using SPSS
statistics 25. The simple graph representation of these
fibrate drugs showed a linear regression correlation of P
with r = 0.575, CV with r = 0.558 and XLogP3 with r =
0.744. However, when modeled as molecular multigraphs of
fibrates using linear regression, the correlation coefficients
were significantly higher, as shown in Table IV. Similarly,
for quadratic regression, the correlation coefficients were
even higher as shown in Table V compared to to the simple
graph modeling with P having an ’r’ value of 0.995, CV
with r = 0.987, XLogP3 with r = 0.986, and C with a
perfect correlation coefficient of 1.

From Figure 3 we observe that the high correlation
coefficients ’r’ values for physicochemical properties like
polarizability (P), heat capacity (CV), octanol-water partition
(XLogP3) and complexity (C) are higher in molecular multi-
graphs compared to simple graph representations of fibrate
drugs. These findings demonstrate the potential of using
molecular multigraphs which can provide a more detailed
and nuanced representation of the chemical structure.

TABLE IV: Linear Regression: Correlation Coefficients (R)
between Revan TI’s and Physicochemical Properties for
Molecular Multigraphs of Fibrates.

Revan TI P CV XLogP3

R1 0.121 0.142 0.736
R2 0.149 0.115 0.689
HR1 0.012 0.017 0.707
HR2 0.642 0.593 0.273
mR1 0.198 0.209 0.777
mR2 0.226 0.233 0.785
SR 0.195 0.208 0.765
PR 0.226 0.237 0.765
FR 0.1 0.125 0.709

ABCR 0.274 0.29 0.696
GAR 0.146 0.162 0.764
HR 0.198 0.209 0.777
SDR 0.174 0.193 0.725

TABLE V: Quadratic Regression: Correlation Coefficients
(R) between Revan TI’s and Physicochemical Properties for
Molecular Multigraphs of Fibrates

Revan TI P CV XLogP3 C

R1 0.496 0.445 0.795 0.996
R2 0.916 0.889 0.697 0.985
HR1 0.996 0.988 0.742 0.954
HR2 0.645 0.599 0.996 0.794
mR1 0.923 0.895 0.816 1
mR2 0.945 0.921 0.85 1
SR 0.882 0.849 0.784 1
PR 0.892 0.861 0.798 1
FR 0.353 0.416 0.990 0.943

ABCR 0.613 0.57 0.708 1
GAR 0.875 0.841 0.773 1
HR 0.923 0.895 0.816 1
SDR 0.576 0.528 0.755 1

1) Remark: Correlation coefficients between the physic-
ochemical properties and Revan topological Indices (TI’s)
were found to have identical correlation coefficients, it
suggests that the strength and direction of their linear re-
lationship are the same. Consequently, the same correlation
coefficient values are are underlined and listed for these
properties in both Tables IV and V.

MULTIGRAPH

SIMPLEGRAPH

MULTIGRAPH

SIMPLEGRAPH

Fig. 3: Comparison Chart of ’r’ values for Multigraph vs.
Simple Graph using Linear and Quadratic Regression

Table VI highlights the optimal Revan TI values for
estimating physicochemical properties of fibrate chemical
structures using linear regression models. The table features
bolded values that correspond to the highest coefficient of
determination (R2) for both multigraph and simple graph
representations. These values signify the maximum level of
accuracy achieved by the models and are accompanied by
statistical parameters that evaluate the model’s quality.

Figure 4 presents a visual representation of the information
depicted in the above mentioned tables.

The highest coefficient of determination (R2) for
multigraph is greater than that for the simple graph,
indicating that the multigraph models have a stronger fit. An
F-value is used in ANOVA to assess overall model fit, with
an F-value greater than 1 indicating significance. A higher
F-value suggests a stronger fit, showing that independent
variables collectively influence the dependent variable. All
multigraph models have F-values above 1 compared to
simple graph models.

However, some linear regression models in the simple
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graph representations, such as for polarizability (P) and heat
capacity, have F-values below 1, indicating that the models
are not significant.

Additionally, lower standard errors in multigraph models
indicate more precise and reliable regression models,
demonstrating a better fit between observed and estimated
data compared to simple graph models.

When comparing linear and quadratic regression models
on multigraphs and simple graphs, quadratic models
outperform in meeting statistical criteria. Statistical
evaluation reveals that quadratic regression models on
multigraph modeling show better adherence to criteria
compared to those on simple graph modeling.

Tables VII, VIII, IX and X highlight the highest coefficient
of determination (R2) for both multigraph and simple graph
models, with the quadratic models on multigraphs consis-
tently exhibiting higher R2 values.

TABLE VI: Optimal Linear Regression Models for the
Physicochemical Properties

Linear Regression Model of Multigraph R2 F-Value Sig S.E

P = 320.646− 0.318(HR2) 0.413 1.406 0.358 46.429

CV = 115.548− 0.097(HR2) 0.351 1.084 0.407 16.065

XLogP3 = 1.907+ 0.189(mR2) 0.616 3.204 0.215 0.666

Linear Regression Model for Simple graph R2 F-Value Sig S.E

P = 47.530+ 35.644(mR2) 0.330 0.986 0.425 49.585

CV = 30.199+ 11.397(mR2) 0.311 0.904 0.442 16.553

XLogP3 = 1.029+ 0.298(SR) 0.554 2.486 0.256 0.717

TABLE VII: Optimal Quadratic Regression Models for the
Physicochemical Property Polarizability (P)

Quadratic Regression Model of Multigraph R2 F-Value Sig S.E

P = 6506.743− 29.829(HR1) + 0.034(HR2
1) 0.992 61.769 0.090 7.678

P = −607.689 + 167.76(mR2)− 7.923(mR2
2) 0.893 4.190 0.327 27.975

P = −1023.669 + 341.028(mR1)− 22.126(mR2
1) 0.852 2.878 0.385 32.963

P = −1023.696 + 170.517(HR)− 5.523(HR2) 0.852 2.878 0.385 32.963

P = 2663.442− 56.260(R2) + 0.311(R2
2) 0.838 2.594 0.402 34.447

Quadratic Regression Model of Simple graph R2 F-Value Sig S.E

P = 1328.804− 2.656(HR2) + 0.001(HR2
2) 0.990 47.356 0.102 8.758

P = −2438.439 + 1395.488(mR2)− 178.199(mR2
2) 0.931 6.753 0.263 22.497

P = 4312.062− 65.173(R2) + 0.243(R2
2) 0.858 3.034 0.376 32.231

TABLE VIII: Optimal Quadratic Regression Models for the
Physicochemical Property Heat Capacity (CV)

Quadratic Regression Model of Multigraph R2 F-Value Sig S.E

CV = 2137.139− 9.741(HR1) + 0.011(HR2
1) 0.977 21.351 0.151 4.267

CV = −179.893 + 53.533(mR2)− 2.533(mR2
2) 0.848 2.797 0.389 10.985

Quadratic Regression Model of Simple graph R2 F-Value Sig S.E

CV = 446.751− 0.868(HR2) + 0.000(HR2
2) 0.974 19.060 0.160 4.510

CV = 1461.153− 21.919(R2) + 0.082(R2
2) 0.900 4.493 0.316 8.927

CV = −774.661 + 451.662(mR2)− 57.694(mR2
2) 0.892 4.148 0.328 9.252

TABLE IX: Optimal Quadratic Regression Models for
the Physicochemical Property Octanol-Water Partition
(XLogP3)

Quadratic Regression Model of Multigraph R2 F-Value Sig S.E

XLogP3 = −32.775+ 0.230(HR2) + 0.000(HR2
2) 0.992 64.689 0.088 0.133

XLogP3 = −142.121 + 1.170(FR)− 0.002(FR2) 0.980 25.049 0.140 0.213

Quadratic Regression Model of Simple graph R2 F-Value Sig S.E

XLogP3 = −86.308+ 0.319(HR1) + 0.000(HR2
1) 0.972 17.460 0.167 0.253

XLogP3 = 43.141− 22.318(mR2) + 3.013(mR2
2) 0.922 5.945 0.297 0.423

TABLE X: Optimal Quadratic Regression Models for the
Physicochemical Property Complexity (C)

Quadratic Regression Model of Multigraph R2 F-Value Sig S.E

C = −476.921 + 186.387(mR1)− 9.311(mR2
1) 1 1420.465 0.019 3.503

C = −179.537+ 79.376(mR2)− 2.412(mR2
2) 1 6972.923 0.008 1.581

C = −719.951 + 132.450(SR)− 3.731(SR2) 1 822.218 0.025 4.604

C = −382.850 + 73.788(PR)− 1.613(PR2) 1 2489.249 0.014 2.646

C = −876.252 + 110.178(ABCR)− 2.278(ABCR2) 1 437.402 0.034 6.310

C = −1655.480 + 150.778(GAR)− 2.659(GAR2) 1 392.304 0.036 6.663

C = −476.958 + 93.199(HR)− 2.328(HR2) 1 1419.802 0.019 3.504

C = −1593.616 + 50.346(SDR)− 0.305(SDR2) 1 410.794 0.035 6.511

Quadratic Regression Model of Simple graph R2 F-Value Sig S.E

C = −2274.171 + 45.690(R1)− 0.189(R2
1) 1 1606.513 0.018 3.294

C = −81.844 + 91.202(mR1) + 2.564(mR2
1) 1 2377.267 0.015 2.708

C = −407.954 + 115.219(SR)− 3.499(SR2) 1 4354.921 0.011 2.001

C = 164.602− 18.085(PR) + 4.172(PR2) 1 615.877 0.028 3.027

C = −447.574 + 75.680(ABCR)− 1.460(ABCR2) 1 1902.898 0.016 3.027

C = −487.158 + 67.853(GAR)− 1.206(GAR2) 1 839.448 0.024 4.556

C = −81.784 + 45.586(HR) + 0.642(HR2) 1 2369.316 0.015 2.713

C = 310.080− 9.746(SDR) + 0.193(SDR2) 1 24307.296 0.005 0.847
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Fig. 4: Plots of Linear Regression Equation for the Good
Estimates of the Selected Physicochemical Properties

Figure 5 shows the plots of quadratic regression equation
for the good estimates in the above mentioned tables.

Notably, the physicochemical property ”complexity (C)”
shows identical R2 values of 1 for quadratic models of
multigraph and simple graph modeling.

Overall, quadratic regression models on multigraphs
demonstrate superior performance in modeling various
physicochemical properties compared to simple graph mod-
els. Fig. 5: Plots of Quadratic Regression Equation for the Good

Estimates of the Selected Physicochemical Properties
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B. Evaluation of Calcium Channel Blocker Class of Cardiac
Drugs: Multigraph Modeling versus Simple graph Modeling

In this subsection, the computational analysis of med-
ications that block calcium channels such as Nifedipine,
Amlodipine, Diltiazem, Verapamil and Ranolazine which
are used to treat heart conditions, this involves studying its
molecular structure through multigraph representation. The
molecular multigraph of Nifedipine is depicted in Figure
6. We analyzed the drugs’ molecular structures and uti-
lized computational methods to calculate Revan topological
indices, by edge partitioning method. Table XI shows the
Revan edge partitioning of Nifedipine. We analyzed the
QSPR analysis of calculated indices and computed using
linear and quadratic regression models with SPSS software.

Fig. 6: Molecular Multigraph of Nifedipine Drug

Theorem 2. Let N be the molecular multigraph of Nifedip-
ine . Then,

1) R1(N ) = 122
2) R2(N ) = 104
3) HR1(N ) = 492
4) HR2(N ) = 526
5) mR1(N ) = 10.7190
6) mR2(N ) = 16.75
7) SR(N ) = 18.7959
8) PR(N ) = 22.8006
9) FR(N ) = 284

10) ABCR(N ) = 19.8322
11) GAR(N ) = 31.6394
12) HR(N ) = 21.4381
13) SDR(N ) = 91.75

Proof: The initial molecule we are discussing is Nifedip-
ine, following the same proof methodology as Theorem
1, we calculated for other drugs as well. For simplicity,
we have used the abbreviations N , A, D, V and R to
represent Nifedipine, Amlodipine, Diltiazem, Verapamil and
Ranolazine respectively. The multigraph representation of
Nifedipine is shown in Figure 6, it has 25 vertices and
34 edges. Now, we will obtain the following by Revan
topological index values using Table I and edge partition
Table XI.

TABLE XI: Revan Edge Partitioning for the Molecular
Multigraph of Nifedipine.

rG(x), rG(y)/xy ∈ E(G) Edge Count

(4, 3) 2

(4, 1) 3

(3, 1) 10

(2, 2) 4

(2, 1) 7

(1, 1) 8

The obtained values for topological indices of the Nifedip-
ine and other drugs are shown in Table XXXVII (since this
Table is large, it is placed before reference section).

DISCUSSION:

The physicochemical characteristics of calcium channel
blocker medications used in heart disease treatment are
detailed in Table XXXV as mentioned. Additionally, Table
XII illustrates the correlation coefficient (R) between the
Revan topological indices and the drugs’ physicochemical
properties using linear regression equations. The highest
R value highlighted in bold, signifies the significance of
all features with a p-value below 0.05. Furthermore, Table
XIII showcases the optimal linear regression equations for
estimating the physical and chemical attributes of these
drugs, emphasizing the maximum R and R-squared value,
minimum SE value and maximum F value.

Table XIV displays the correlation coefficient (R) derived
from quadratic regression equations, with the highest value
marked in bold. In Table XV, quadratic regression equations
are presented to best approximate the physical and chemical
features of the drugs under investigation. The R1 and GAR
indices exhibit the strongest correlation coefficient (R) with
the MR, P and PSA characteristics, with a coefficient of 1
in quadratic equations. Based on criteria such as max(R),
min(SE) and max(F), R1 and GAR indices emerge as the
most accurate estimators for MR, P and PSA in the quadratic
models.

In comparison to Hasani and Ghods’ research cited in
[34], our research shows superior regression models (both
linear and quadratic) for estimating specific physicochemical
properties of the drugs being analyzed. However, when
considering linear regression models, the drugs represented
as multigraphs demonstrate slightly lower correlation co-
efficients (R) for certain properties like BP, E, PSA and
MV, with a difference of around 5-10% compared to Hasani
and Ghods’ simpler graph representation of the drugs. For
quadratic regression models, our multigraph modeling shows
better correlation results compared to Hasani and Ghods’
simple graph modeling of the drugs under study. Notably,
the physicochemical characteristics MR and P exhibits cor-
relation coefficient R = 1 compared to the simple graph
modeling with the coefficient of R = 0.989 and also for
other physicochemical characteristics our models performed
slightly better than Hasani and Ghods’.
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TABLE XII: The Correlation Coefficient (R) of Multigraph
Modeling Calculated by Linear Regression Models

BP E MR PSA P MV

R1 0.352 0.326 0.788 0.805 0.787 0.913
R2 0.262 0.228 0.723 0.74 0.722 0.876

HR1 0.255 0.222 0.718 0.736 0.717 0.873

HR2 0.187 0.152 0.666 0.686 0.665 0.838

mR1 0.165 0.125 0.65 0.668 0.649 0.821

mR2 0.356 0.327 0.792 0.81 0.792 0.897

SR 0.124 0.179 0.388 0.407 0.386 0.633

PR 0.186 0.146 0.665 0.683 0.664 0.834

FR 0.248 0.217 0.713 0.732 0.712 0.869

ABCR 0.789 0.806 0.861 0.867 0.862 0.67

GAR 0.837 0.853 0.99 0.994 0.989 0.902

HR 0.165 0.125 0.65 0.668 0.649 0.821

SDR 0.78 0.874 0.882 0.919 0.882 0.703

TABLE XIII: The Most Optimal Estimators for Certain
Physicochemical Properties using Linear Regression Equa-
tions

Regression Equations: Our Results using Multigraph Modeling

Equation R R2 F SE p-value

MR = -75.916 + 5.232(GAR) 0.99 0.979 142.518 2.788 0.001

P = -30.293 + 2.080(GAR) 0.989 0.979 139.979 1.118 0.001

Regression Equations: Hasani and Ghods’ [34]

MR = -73.026 + 2.640(SDD) 0.987 0.974 112.506 3.13 0.001

P = -29.128 + 1.049(SDD) 0.987 0.973 109.115 1.263 0.001

TABLE XIV: The Correlation Coefficient (R) of Multigraph
Modeling Calculated by Quadratic Regression Models

BP E MR PSA P MV

R1 0.989 0.962 1 0.984 1 0.984

R2 0.991 0.919 0.985 0.952 0.985 0.998

HR1 0.988 0.926 0.985 0.955 0.985 0.998

HR2 0.863 0.677 0.878 0.822 0.878 0.979

mR1 0.317 0.145 0.662 0.669 0.662 0.823

mR2 0.911 0.888 0.965 0.959 0.966 0.932

SR 0.866 0.979 0.958 0.994 0.958 0.934

PR 0.822 0.526 0.852 0.78 0.853 0.932

FR 0.984 0.933 0.984 0.957 0.984 0.998

ABCR 0.968 0.928 0.955 0.929 0.956 0.826

GAR 0.976 0.899 0.99 1 0.99 0.922

HR 0.318 0.145 0.662 0.669 0.662 0.823

SDR 0.78 0.874 0.882 0.919 0.882 0.703

As we notice that in Table XIV, the physicochemical
characteristic MV has three different optimal estimators (R1,
HR1 and FR) with the same coefficient R = 0.998 which
means that when the same correlation coefficient is obtained
with different estimators in estimating a physicochemical
property, it implies that the estimators have similar accuracy
in estimating the property. However, this does not necessarily
mean that the estimators are equally good. The choice of

the best estimator may depend on other factors such as
coefficient of determination (R-squared) or the root mean to
evaluate the performance of the estimators. For MV, based
on R-squared and other statistical measures R1 index stands
as the optimal estimator.

Tables XVI and XVII demonstrate a close match between
the estimated values of the optimal estimators’ physico-
chemical features of drugs, confirming the accuracy of these
descriptors. The R1 and GAR indices is identified as the
most accurate estimators for MR, P and PSA attributes in
quadratic regression equations, with a correlation coefficient
of R = 1.

TABLE XV: The Most Optimal Estimators for Certain
Physicochemical Properties using Quadratic Regression
Equations

Regression Equations: Our Results using Multigraph Modeling

Equation R R2 F SE p-value

BP = 160.651 + 3.531(R2) - 0.005(R2
2) 0.991 0.981 52.06 10.964 0.019

E = 994.323 - 105.773(SR) + 3.025(SR2) 0.979 0.958 22.704 2.57 0.042

MR = -82.613 + 1.849(R1) - 0.004(R2
1) 1 0.999 1748.041 0.569 <0.001

PSA = -96.839 + 16.486(GAR) - 0.315(GAR2) 1 1 3229.734 0.466 <0.001

P = -33.069 + 0.736(R1) - 0.001(R2
1) 1 0.999 1444.355 0.249 <0.001

MV = 89.657 + 1.996(R2) - 0.002(R2
2) 0.998 0.997 289.83 4.767 0.003

Regression Equations: Hasani and Ghods’ [34]

BP = -5526.995 + 168.715(SDD) - 1.159(SDD2) 0.974 0.949 18.573 18.052 0.051

E = -894.503 + 5.089(F) - 0.007(F 2) 0.931 0.866 6.473 4.577 0.134

MR = -282.958 + 8.707(SDD) - 0.044(SDD2) 0.989 0.979 45.824 3.476 0.021

PSA = 116.929 + 2.185(SDD) - 0.037(SDD2) 1 1 4128.059 0.412 <0.001

P = -116.047 + 3.561(SDD) - 0.018(SDD2) 0.989 0.978 44.973 1.395 0.022

MV = 692.932 - 195.766(mM2) + 21.355(mM2
2 ) 0.998 0.996 246.814 5.164 0.004

TABLE XVI: Comparing Actual and Estimated Values using
a Quadratic Regression Model for R1 Index

Drugs MR R1 P R1

Nifedipine 87.9 ± 0.3 83.429 34.8 ± 0.5 41.839
Amlodipine 105.4 ± 0.3 99.289 41.8 ± 0.5 51.279

Diltiazen 115.2 ± 0.4 107.269 45.7 ± 0.5 56.559
Verapamil 131.9 ± 0.3 100.873 52.3 ± 0.5 99.855
Ranolazine 122.1 ± 0.3 114.097 48.4 ± 0.5 61.551

TABLE XVII: Comparing Actual and Estimated Values using
a Quadratic Regression Model for GAR Index

Drugs PSA (act.) GAR (est.)

Nifedipine 110 109.4369
Amlodipine 100 99.72664

Diltiazen 84 82.88412
Verapamil 64 63.21052
Ranolazine 74 73.6657

Figures 7, 8 and 9 illustrates the correlation of the R1

index with MR, P and GAR index with PSA.
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Fig. 7: Correlation R1 Index with MR

Fig. 8: Correlation R1 Index with P

Fig. 9: Correlation GAR Index with PSA

IV. MODEL IMPLEMENTATION AND EXPERIMENTAL
RESULTS

From Tables II,III,V and XIV we implement a linear
and quadratic regression model using equations 1 and 2
to estimate the physicochemical properties of heart disease
drugs. Tables XVIII - XXIV display the experimental results
implemented from linear and quadratic regression model of
fibrate drugs modeled as multigraphs and simple graphs.

Tables XXV - XXXII display the experimental results im-
plemented from linear and quadratic regression model of
calcium channel blocker drugs modeled as multigraphs and
simple graphs. These tables includes the predicted values
from linear and quadratic regression models with their re-
spective physicochemical property.

A. Evaluation of Model Performance

To evaluate the efficacy of the experimental results, we
examine the performance metrics of linear and quadratic
regression model as shown in Table XVIII to Table XXXII
using root-mean-square deviation (RMSE). RMSE is the
standard deviation of the residuals (prediction errors) in a
regression model. It provides a measure of how concentrated
the data points are around the regression line, with lower
RMSE values indicating a better fit. The effectiveness of
a model is determined by its ability to demonstrate lower
RMSE values for each physicochemical property. The statis-
tics was calculated by the following equation:

RMSE =

√√√√ 1

N

N∑
1

(Iobs,k − Ipred,k)2 (3)

where N is the number of the sample size and Iobs,k
and Ipred,k are the observed and predicted physicochemical
properties for each sample i, respectively.

TABLE XVIII: Observed, Predicted and RMSE value of Fi-
brate Drugs for the Physicochemical Property Polarizability

Linear Regression Model of Multigraph

Fibrate Drugs P (Obs.) HR2(Pred.) RMSE

Fenofibrate 164.2757 186.45

11.0872Ciprofibrate 244.4953 243.69
Benzafibrate 232.4337 179.454
Clofibrate 144.46 176.274

Linear Regression Model of Simple graph
Fibrate Drugs P (Obs.) mR2(Pred.) RMSE

Fenofibrate 164.2757 216.3435

26.0339Ciprofibrate 244.4953 203.9680
Benzafibrate 232.4337 210.8971
Clofibrate 144.46 154.462

TABLE XIX: Observed, Predicted and RMSE value of Fi-
brate Drugs for the Physicochemical Property Heat Capacity

Linear Regression Model of Multigraph

Fibrate drugs CV (Obs.) HR2(Pred.) RMSE

Fenofibrate 66.502 74.614

4.056Ciprofibrate 92.538 92.074
Benzafibrate 91.009 72.48
Clofibrate 61.172 71.51

Linear Regression Model of Simple graph
Fibrate drugs CV (Obs.) mR2(Pred.) RMSE

Fenofibrate 66.502 84.1763

8.8372Ciprofibrate 92.538 80.2193
Benzafibrate 91.009 82.4349
Clofibrate 61.172 64.39
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TABLE XX: Observed, Predicted and RMSE value of Fibrate
Drugs for the Physicochemical Property Octanol- Water
Partition

Linear Regression Model of Multigraph
Fibrate drugs XLogP3(Obs.) mR2(Pred.) RMSE
Fenofibrate 5.2 4.553

0.3235Ciprofibrate 3.4 3.5765
Benzafibrate 3.8 4.4375
Clofibrate 3.3 3.1250

Linear Regression Model of Simple graph
Fibrate drugs XLogP3(Obs.) SR (Pred.) RMSE
Fenofibrate 5.2 4.4754892

0.3623Ciprofibrate 3.4 3.6394204
Benzafibrate 3.8 4.4481328
Clofibrate 3.3 3.1371414

TABLE XXI: Observed, Predicted and RMSE value of Fi-
brate Drugs for the Physicochemical Property Polarizability

Quadratic Regression Model of Multigraph
Fibrate drugs P (Obs.) HR1(Pred.) RMSE
Fenofibrate 164.2757 92.243

36.0163Ciprofibrate 244.4953 208.021
Benzafibrate 232.4337 147.191
Clofibrate 144.46 97.823

Quadratic Regression Model of Simple graph
Fibrate drugs P (Obs.) HR2(Pred.) RMSE
Fenofibrate 164.2757 -390.259

277.2673Ciprofibrate 244.4953 77.876
Benzafibrate 232.4337 -418.139
Clofibrate 144.46 -130.076

TABLE XXII: Observed, Predicted and RMSE value of Fi-
brate Drugs for the Physicochemical Property Heat Capacity

Quadratic Regression Model of Multigraph
Fibrate drugs CV (Obs.) HR1(Pred.) RMSE
Fenofibrate 66.502 16.639

24.9315Ciprofibrate 92.538 67.301
Benzafibrate 91.009 33.331
Clofibrate 61.172 29.659

Quadratic Regression Model of Simple graph
Fibrate drugs CV (Obs.) HR2(Pred.) RMSE
Fenofibrate 66.502 -522.805

294.6535Ciprofibrate 92.538 -84.465
Benzafibrate 91.009 -593.981
Clofibrate 61.172 -226.817

TABLE XXIII: Observed, Predicted and RMSE value of
Fibrate Drugs for the Physicochemical Property Octanol-
Water Partition

Quadratic Regression Model of Multigraph
Fibrate drugs XLogP3(Obs.) HR2(Pred.) RMSE
Fenofibrate 5.2 64.285

29.5425Ciprofibrate 3.4 22.885
Benzafibrate 3.8 69.345
Clofibrate 3.3 71.645

Quadratic Regression Model of Simple graph
Fibrate drugs XLogP3(Obs.) HR1(Pred.) RMSE
Fenofibrate 5.2 138.906

66.853Ciprofibrate 3.4 60.432
Benzafibrate 3.8 145.286
Clofibrate 3.3 58.518

TABLE XXIV: Observed, Predicted and RMSE value of
Fibrate Drugs for the Physicochemical Property Complexity

Quadratic Regression Model of Multigraph

Fibrate drugs C (Obs.) mR2(Pred.) RMSE

Fenofibrate 458 458.975

0.4875
Ciprofibrate 333 333.4134
Benzafibrate 452 450.8388
Clofibrate 232 231.8226

Quadratic Regression Model of Simple graph
Fibrate drugs C (Obs.) SDR (Pred.) RMSE

Fenofibrate 458 457.2636

0.3682
Ciprofibrate 333 332.1301
Benzafibrate 452 450.0902
Clofibrate 232 231.4462

TABLE XXV: Observed, Predicted and RMSE value of
Fibrate Drugs for the Physicochemical Property Molar Re-
fractivity

Linear Regression Model of Multigraph

Calcium
blocker drugs

MR (Obs.) GAR (Pred.) RMSE

Nifedipine 87.9 89.6213

0.7698
Amlodipine 105.4 101.7789

Diltiazen 115.2 116.9146
Verapamil 131.9 130.5413
Ranolazine 122.1 123.6696

Linear Regression Model of Simple graph
Calcium

blocker drugs
MR (Obs.) SDD (Pred.) RMSE

Nifedipine 87.9 90.654

2.4244 [34]
Amlodipine 105.4 101.214

Diltiazen 115.2 115.2762
Verapamil 131.9 131.3538
Ranolazine 122.1 124.0938

TABLE XXVI: Observed, Predicted and RMSE value of Fi-
brate Drugs for the Physicochemical Property Polarizability

Linear Regression Model of Multigraph

Calcium
blocker drugs

P (Obs.) GAR (Pred.) RMSE

Nifedipine 34.8 35.5170

0.3206
Amlodipine 41.8 40.3502

Diltiazen 45.7 46.3675
Verapamil 52.3 51.7848
Ranolazine 48.4 49.0530

Linear Regression Model of Simple graph
Calcium

blocker drugs
P (Obs.) SDD (Pred.) RMSE

Nifedipine 34.8 35.91

0.9782 [34]
Amlodipine 41.8 40.106

Diltiazen 45.7 45.6936
Verapamil 52.3 52.0820
Ranolazine 48.4 49.1973
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TABLE XXVII: Observed, Predicted and RMSE value of
Fibrate Drugs for the Physicochemical Property Boiling
Point

Quadratic Regression Model of Multigraph

Calcium
blocker drugs

BP (Obs.) R2(Pred.) RMSE

Nifedipine 475.3 473.795

0.6731
Amlodipine 572.2 565.435

Diltiazen 594.4 571.663
Verapamil 586.2 411.677
Ranolazine 624.1 618.247

Quadratic Regression Model of Simple graph
Calcium

blocker drugs
BP (Obs.) SDD (Pred.) RMSE

Nifedipine 475.3 478.139

9.2089 [34]
Amlodipine 572.2 559.591

Diltiazen 594.4 610.4785
Verapamil 586.2 588.0773
Ranolazine 624.1 608.8382

TABLE XXVIII: Observed, Predicted and RMSE value of
Fibrate Drugs for the Physicochemical Property Enthalpy

Quadratic Regression Model of Multigraph

Calcium
blocker drugs

E (Obs.) SR (Pred.) RMSE

Nifedipine 73.9 74.9140

0.4535
Amlodipine 80.2 78.1308

Diltiazen 88.6 90.8744
Verapamil 87.5 87.4361
Ranolazine 97.2 95.5332

Quadratic Regression Model of Simple graph
Calcium

blocker drugs
E (Obs.) F (Pred.) RMSE

Nifedipine 73.9 24.331

2.8949 [34]
Amlodipine 80.2 28.279

Diltiazen 88.6 28.517
Verapamil 87.5 16.561
Ranolazine 97.2 24.331

TABLE XXIX: Observed, Predicted and RMSE value of
Fibrate Drugs for the Physicochemical Property Molar Re-
fractivity

Quadratic Regression Model of Multigraph

Calcium
blocker drugs

MR (Obs.) R1(Pred.) RMSE

Nifedipine 87.9 83.429

1.9995
Amlodipine 105.4 99.289

Diltiazen 115.2 107.269
Verapamil 131.9 100.873
Ranolazine 122.1 114.097

Quadratic Regression Model of Simple graph
Calcium

blocker drugs
MR (Obs.) SDD (Pred.) RMSE

Nifedipine 87.9 87.74

2.1982 [34]
Amlodipine 105.4 100.04

Diltiazen 115.2 114.2334
Verapamil 131.9 127.4018
Ranolazine 122.1 121.8596

TABLE XXX: Observed, Predicted and RMSE value of Fi-
brate Drugs for the Physicochemical Property Polar Surface
Area

Quadratic Regression Model of Multigraph

Calcium
blocker drugs

PSA (Obs.) GAR (Pred.) RMSE

Nifedipine 110 109.4369

0.2518
Amlodipine 100 99.7266

Diltiazen 84 82.8841
Verapamil 64 63.2105
Ranolazine 74 73.6657

Quadratic Regression Model of Simple graph
Calcium

blocker drugs
PSA (Obs.) SDD (Pred.) RMSE

Nifedipine 110 110.171

0.2607 [34]
Amlodipine 100 99.967

Diltiazen 84 84.5407
Verapamil 64 64.3311
Ranolazine 74 73.7968

TABLE XXXI: Observed, Predicted and RMSE value of Fi-
brate Drugs for the Physicochemical Property Polarizability

Quadratic Regression Model of Multigraph

Calcium
blocker drugs

P (Obs.) R1(Pred.) RMSE

Nifedipine 34.8 41.839

3.1479
Amlodipine 41.8 51.279

Diltiazen 45.7 56.559
Verapamil 52.3 99.855
Ranolazine 48.4 61.551

Quadratic Regression Model of Simple graph
Calcium

blocker drugs
P (Obs.) SDD (Pred.) RMSE

Nifedipine 34.8 35.543

0.882 [34]
Amlodipine 41.8 40.571

Diltiazen 45.7 46.3723
Verapamil 52.3 51.7536
Ranolazine 48.4 49.4889

TABLE XXXII: Observed, Predicted and RMSE value of Fi-
brate Drugs for the Physicochemical Property Molar Volume

Quadratic Regression Model of Multigraph

Calcium
blocker drugs

MV (Obs.) R2(Pred.) RMSE

Nifedipine 272.3 275.609

1.4798
Amlodipine 333 335.609

Diltiazen 327.6 339.851
Verapamil 429.4 555.401
Ranolazine 364 372.491

Quadratic Regression Model of Simple graph
Calcium

blocker drugs
MV (Obs.) mM2(Pred.) RMSE

Nifedipine 272.3 270.0209

3.2659 [34]
Amlodipine 333 330.0664

Diltiazen 327.6 318.4768
Verapamil 429.4 421.983
Ranolazine 364 364.065

Our aim is to obtain a prediction using multigraph model
that will perform better than the classical simple graph model
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and also establish a relationship between the independent
variable and dependent variable. We proceed to analyze the
performance measurements of our models across multiple
tables.

In Table XVIII, which represents a QSPR linear regres-
sion model of the HR2, mR2 and polarizability of fibrate
drugs, the multigraph model exhibited lower RMSE values,
indicating its superior performance over simple graph model.
Similarly, in Table XIX, multigraph model achieved lower
RMSE values. This suggests that multigraph outperformed
simple graph in the QSPR linear regression model for HR2,
mR2 indices and heat capacity of fibrate drugs.

Moving on to Table XX, multigraph model outperformed
simple graph model in the QSPR linear regression model
between mR2, SR indices and octanol-water partition,
exhibited lower RMSE values of 0.3235(multigraph) and
0.3623(simplegraph).

From Tables XXI, XXII, XXIII and XXIV, multigraph
model with lower RMSE values consistently outperformed
simple graph model in the QSPR quadratic regression for
polarizability, heat capacity and octanol-water partition ex-
cept for complexity, the simple graph model achieved lower
RMSE value of 0.3682.

For the QSPR linear regression model of the indices
GAR and SDD, Tables XXVI and XXVII indicates that our
multigraph model with lower RMSE values outperformed
Hasani and Ghods’ [34] simple graph model with higher
RMSE values in predicting the physicochemical properties
molar refractivity and polarizability.

Lastly, from Tables XXVIII - XXXII demonstrates the
superiority of our multigraph modeling over simple graph
modeling of Hasani and Ghod’s [34] in the QSPR quadratic
regression model for the indices R2, SDD, SR, F, R1, GAR
and the physicochemical properties boiling point, enthalpy,
molar refractivity, polar surface area, polarizability and molar
volume of calcium channel blocker cardiac drugs. Multigraph
modeling obtained lower RMSE values for all physicochem-
ical properties except polarizability.

The impact of lower RMSE suggests that the model’s
predictions are more accurate and the model’s predicted
values are on average closer to the actual values of the
physicochemical properties, indicating that the model is bet-
ter at estimating the relationship between the Revan indices
and the corresponding physicochemical properties of cardiac
drugs.

From Tables XXI - XXXV, there is a total of 30 linear and
quadratic regression metric of physicochemical properties
recorded for both the multigraph and simple graph modeling
which is divided across 11 optimal Revan indices. The
multigraph modeling obtained the lower RMSE values
in 26 of the linear and quadratic regression metric of
physicochemical properties recorded across the 11 optimal
Revan indices while the simple graph modeling obtained
lower RMSE value in only 4 of the linear and quadratic
regression metric of physicochemical properties across 11
optimal Revan indices. From this, we confirm that the
multigraph modeling is a better prediction model in QSPR
analysis of the physicochemical properties of two novel
class of cardiac drugs.

B. Graphical Performance Measure for Multigraph versus
Simple graph

In this subsection, we present the comparative model plots
for the best Revan estimators (TI’s). The plot compares the
QSPR linear and quadratic regression models with RMSE
values between different Revan TI’s of the multigraph and
simple graph models for the physicochemical properties of
two novel class of cardiac drugs. By comparing the RMSE
value of simple graph and multigraph modeling 3D- clustered
column chart, one can observe the differences in their RMSE
values across the different physicochemical properties.

If the RMSE value of multigraph modeling’s column
height consistently stays below the simple graph model-
ing column height, it indicates that the multigraph model
generally outperforms the simple graph model in terms
of accuracy and predictive power for the physicochemical
property. Conversely, if the simple graph modeling column
height consistently stays below the multigraph modeling
column height, it suggests that the simple graph modeling
performed better. The following are plots (Figs. 10 - 13) that
show the comparison between the RMSE of multigraph and
simple graph models across best Revan estimators.

0

XLogP3 (simple), 

PHYSICOCHEMICAL PROPERTIES

P (Multi) P(simple) CV(Multi) CV(simple) XLogP3 (Multi) XLogP3 (simple)

Fig. 10: RMSE Comparison in Linear Regression of Fibrate
Drugs: Multigraph Vs. Simplegraph for P, CV and XLogP3

0

XLogP3 (simple), 

C (simple),

0.3682

PHYSICOCHEMICAL PROPERTIES

P (Multi) P(simple) CV(Multi) CV(simple)

XLogP3 (Multi) XLogP3 (simple) C (Multi) C (simple)

Fig. 11: RMSE Comparison in Quadratic Regression of Fi-
brate Drugs: Multigraph Vs. Simplegraph for P, CV, XLogP3

and C
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0

PHYSICOCHEMICAL PROPERTIES

MR (Multi) MR (simple) P (Multi) P (simple)

Fig. 12: RMSE Comparison in Linear Regression of Calcium
Channel Blocker Drugs: Multigraph Vs. Simplegraph for MR
and P

0

MV (simple), 

3.2659

PHYSICOCHEMICAL PROPERTIES

BP (Multi) BP (simple) E (Multi) E (simple) MR (Multi) MR (simple)

PSA (Multi) PSA (simple) P (Multi) P (simple) MV (Multi) MV (simple)

Fig. 13: RMSE Comparison in Quadratic Regression of Cal-
cium Channel Blocker Drugs: Multigraph Vs. Simplegraph
for BP, E, MR, PSA, P and MV

From the plots it is evident that the physicochemical
properties where the optimal Revan TI’s of multigraph mod-
eling obtained a general superiority with its lower RMSE
values, one can observe the major difference in Figures 11,
followed by 12, 10 and 13. From the previous literature
(see [34]), that the RMSE values obtained by simple graph
modeling exhibited higher RMSE values and also exhibited
lower correlations compared to our multigraph modeling in
the QSPR analysis. However, the use of this approach has
made it possible to achieve improvement in this regard, this
is shown in the lower RMSE values recorded for all best
estimators of Revan TI’s except Table XXIV and XXIX in
the multigraph model.

V. FURTHER ANALYSIS ON THE ESTIMATORS:

In this section, we have performed further analysis on
the results of our previous section. Biplot confirmed the
optimal estimators from quadratic regression of fibrates and
calcium channel blockers. Principal Component Analysis
(PCA) is a dimensionality reduction technique used to
transform high-dimensional data into a lower-dimensional
space, capturing the most significant variance in the data. It
is often accompanied by a scree plot, which helps determine
the number of principal components to retain and a biplot,
which visually represents both the observations and variables

in the reduced space for easier interpretation and analysis
of relationships. From Table XXXIII and Figure 14, shows
the eigenvalues associated with each principal component.

The data of this study underwent reduction employing
the Kaiser criterion, resulting in two principal components
chosen based on eigenvalues exceeding 1. These three com-
ponents collectively account for 98.48 % of the system’s
variability.

TABLE XXXIII: Eigenvalues, Percent of Variance and Cu-
mulative Derived from PCA

No. of PC’s Eigenvalues Variance explained % Cumulative

1 7.2383 55.68% 55.68%

2 5.5646 42.80% 98.48%

Fig. 14: Scree Plot of Eigenvalues of the PC’s

Fig. 15: Biplot of Eigenvalues of the PC’s

Table XXXIV and Figure 15, shows the extracted
eigen vectors representing estimators can help identify
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TABLE XXXIV: Eigen Vectors Derived from PCA

Extracted Eigen Vectors

PC1 PC2

55.68% 42.80%

0.33096 -0.19262 R1

0.28754 -0.26689 R2

0.28601 -0.26974 HR1

0.25653 -0.29735 HR2

0.18804 0.36471 mR1

0.05329 0.41694 mR2

0.29807 0.25312 SR

0.18013 0.37034 PR

0.28427 -0.27154 FR

0.34853 0.03786 ABCR

0.36918 0.04725 GAR

0.18803 0.36478 HR

which drugs with its physicochemical properties are most
influential in predicting the drug’s performance.

From biplot, we see that these drugs Ciprofibrate,
Clofibrate and Verapamil are distant from others might have
unique properties or different mechanisms of action but
other drugs that are close to each other in the biplot share
similar physicochemical properties. Now the projection
of a drug onto a vector (estimators) shows how strongly
that drug is associated with its physicochemical properties.
Longer vectors indicate that the estimator has a stronger
influence on the variability among the drugs. For example,
we see from Table XXXIV the bolded values representing
the longest eigen vectors form PC1 and PC2.

From these findings we see that this aligns with our
quadratic regression results’ optimal estimators of both class
of cardiac drugs.

VI. CONCLUSION

In this study, we examined thirteen topological descriptors
based on Revan edge partitioning using maximum degree,
minimum degree and degree of that vertex for two novel
class of distinct cardiac drugs named as fibrates and calcium
channel blockers for treating heart disease: Fenofibrate,
Ciprofibrate, Bezafibrate and Clofibrate, Nifedipine,
Amlodipine, Diltiazem, Verapamil and Ranolazine. These
drug structures are modeled as multigraphs to estimate the
physicochemical properties of these drugs under study.

QSPR modeling has shown that the most effective
topological descriptors for estimating the physical and
chemical features for fibrate drugs are the HR2 index
for (P) and (CV), the mR2 index for XLogP3 in linear
regression models.

Furthermore, in quadratic equations, the best estimators
for physicochemical features are HR1 index for (P) and
(CV), HR2 index for XLogP3, for the physicochemical
attribute complexity (C), eight estimators(topological
descriptors) exhibits strong correlation value (R = 1)
but among them we validated the best estimator with
the statistical measures like coefficient of determination
(R-squared), F-value, SE etc. which is mR2 index.

Through extensive data analysis and experimentation,
it has been demonstrated that multigraph model with
lower RMSE values outperformed simple graph model in
estimating the physicochemical properties of two novel
class of cardiac drugs.

Additionally, among all the QSPR analyses conducted
using Revan topological indices, molar volume (MV) in
quadratic regression of calcium channel blocker drugs
emerged as the physical property that achieved the lowest
RMSE values for both the multigraph and simple graph
models. Following polarizability, octanol-water partition and
enthalpy also demonstrated relatively low RMSE values in
the analyses.

From this, we conclude that the multigraph model
is a better estimation model in QSPR analysis of the
physicochemical properties of two novel class of cardiac
drugs.

Similarly, the QSPR modeling for calcium channel
blocking cardiac drugs in linear regression equations, the
GAR index is the optimal estimator in estimating the
physicochemical features (MR) and (P). For quadratic
regression equations, the R1 index for (MR) and (P), R2

index for (BP) and (MV), SR index for (E) and GAR
index for (PSA). Notably, two estimators R1 and GAR
shows strong correlation coefficient (R=1) and GAR index
demonstrate a close match between the estimated values of
the features and the real values, confirming the accuracy of
these descriptors. The GAR index is identified as the most
accurate estimator for (PSA).

The biplot analysis highlights that drugs such as
Ciprofibrate, Clofibrate, and Verapamil exhibit distinct
properties, while others cluster together, indicating
similar characteristics. The strong influence of certain
physicochemical properties, as evidenced by the prominent
eigenvectors, aligns our quadratic regression findings,
validating the key estimators for predicting drug
performance.

This study highlights the importance of considering
multigraphs as graph models, offering a novel perspective
on drug connectivity analysis.

By diverging from conventional approaches focused
on simple graphs, the research has provided insights into
optimizing the drug selection process and researchers can
advance our understanding of drug behavior and improve
strategies for enhancing drug effectiveness.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2159-2175

 
______________________________________________________________________________________ 



TABLE XXXV: Physicochemical Characteristics of Investigated Calcium Channel Blocker Drugs

Calcium Channel Blocker Drugs BP(◦C) E(kJ/mol) MR(cm3) PSA(A2) P(10−24cm3) MV(cm3)

Nifedipine (N ) 475.3 ± 45 73.9 ± 3 87.9 ± 0.3 110 34.8 ± 0.5 272.3 ± 3

Amlodipine (A) 572.2 ± 50 80.2 ± 3 105.4 ± 0.3 100 41.8 ± 0.5 333 ± 3

Diltiazen (D) 594.4 ± 50 88.6 ± 3 115.2 ± 0.4 84 45.7 ± 0.5 327.6 ± 5

Verapamil (V) 586.2 ± 50 87.5 ± 3 131.9 ± 0.3 64 52.3 ± 0.5 429.4 ± 3

Ranolazine (R) 624.1 ± 55 97.2 ± 3 122.1 ± 0.3 74 48.4 ± 0.5 364 ± 3

TABLE XXXVI: Values of Various Revan TI’s Modeled as Molecular Multigraphs for Fibrate Drugs

Fibrate drugs R1 R2 HR1 HR2 mR1 mR2 SR PR FR ABCR GAR HR SDR

Fenofibrate 126 106 500 422 9.8833 14 18.1549 21.1421 288 23.1628 31.6413 19.7667 91.25

Ciprofibrate 88 70 354 242 6.3667 8.8333 12.0092 13.9519 214 16.8979 20.8524 12.7333 60.0833

Bezafibrate 128 108 512 444 9.6333 13.3889 17.9478 20.7708 296 24.0573 31.4419 19.2667 93.6667

Clofibrate 84 82 376 454 5.1095 6.4444 10.0142 10.961 212 14.2473 18.6621 10.219 53.8333

TABLE XXXVII: Values of Various Revan TI’s Modeled as Molecular Multigraphs for Calcium Channel Blocker Drugs

Calcium channel blocker drugs R1 R2 HR1 HR2 mR1 mR2 SR PR FR ABCR GAR HR SDR

Nifedipine 122 104 492 526 10.719 16.75 18.7959 22.8006 284 19.8322 31.6394 21.4381 91.75

Amlodipine 142 144 640 968 10.5786 15.6944 19.1525 22.3453 352 21.4619 33.9631 21.1571 92.25

Diltiazen 154 147 652 761 10.5595 13.6944 20.1288 22.4031 358 27.6927 36.856 21.119 98.3333

Verapamil 318 626 2608 12014 5.6228 3.8728 15.0618 11.9255 1356 26.7116 39.4605 11.2455 98.4333

Ranolazine 166 171 748 987 10.7262 14.2083 20.4054 22.4852 406 25.6494 38.1471 21.4524 98.25

REFERENCES

[1] Estrada, E. and Uriarte, E., ”Recent advances on the role
of topological indices in drug discovery research”, Current
Medicinal Chemistry, vol. 8, no. 13, pp. 1573-1588, 2001.

[2] Gao, W., Farahani, M.R. and Shi, L., ”Forgotten topological
index of some drug structures”, Acta Medica Mediterranea,
vol. 32, no. 1, pp. 579-585, 2016.

[3] Gao, W., Wang, W. and Farahani, M.R., ”Topological indices
study of molecular structure in anticancer drugs”, Journal of
Chemistry, vol. 2016, no. 1, pp. 1-8, 2016.

[4] Gao, W., Wang, Y., Basavanagoud, B. and Jamil, M.K.,
”Characteristics studies of molecular structures in drugs”,
Saudi Pharmaceutical Journal, vol. 25, no. 4, pp. 580-586,
2017.

[5] Gonzalez-Diaz, H., Vilar, S., Santana, L. and Uriarte, E.,
”Medicinal chemistry and bioinformatics-current trends in
drugs discovery with networks topological indices”, Current
Topics in Medicinal Chemistry, vol. 7, no. 10, pp. 1015-1029,
2007.

[6] Jun, M., Foote, C., Lv, J., Neal, B., Patel, A., Nicholls,
S.J., Grobbee, D.E., Cass, A., Chalmers, J. and Perkovic, V.,
”Effects of fibrates on cardiovascular outcomes: a systematic
review and meta-analysis”, The Lancet, vol. 375, no. 9729,
pp. 1875-1884, 2010.

[7] Staels, B., Dallongeville, J., Auwerx, J., Schoonjans, K.,
Leitersdorf, E. and Fruchart, J.C., ”Mechanism of action of
fibrates on lipid and lipoprotein metabolism”, Circulation
Journal, vol. 98, no. 19, pp. 2088-2093, 1998.

[8] Kelley, D., ”Heart disease: Causes, prevention, and current
research”, JCCC Honors Journal, vol. 5, no. 2, pp. 1-15, 2014.

[9] Gutman, I., ”Degree-based topological indices”, Croatica
Chemica Acta, vol. 86, no. 4, pp. 351-361, 2013.

[10] Hosoya, H., ”Topological index. A newly proposed quantity
characterizing the topological nature of structural isomers of
saturated hydrocarbons”, Bulletin of the Chemical Society of
Japan, vol. 44, no. 9, pp. 2332-2339, 1971.

[11] Gutman, I., ”A property of the simple topological index”,
MATCH Communications in Mathematical and in Computer
Chemistry, vol. 25, pp. 131-140, 1990.

[12] Wiener, H., ”Structural determination of paraffin boiling
points”, Journal of the American Chemical Society, vol. 69
no. 1, pp. 17-20, 1947.

[13] Samsonov, G.V., ”Handbook of the Physicochemical Proper-
ties of the Elements”, Springer Science & Business Media,
2012.

[14] Estrada, E., ”Characterization of 3D molecular structure”,
Chemical Physics Letters, vol. 319, no. 5-6, pp. 713-718,
2000.
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