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Abstract—In this paper, we introduce the concept of a Free
Ternary Semigroup and explore several key properties. We
establish the essential conditions under which the direct product
of two infinite semigroups can be finitely generated and provide
an upper bound for its rank. Additionally, we determine the
necessary and sufficient criteria for the external direct product
of two free ternary semigroups to be finitely generated.

Index Terms—Free Ternary Semigroup, Ternary Generating
Set, Finitely Generated, Rank, Complete generating set.

I. INTRODUCTION

M.L. Santiago [1] and Sribala [2][3] developed the
theory of Ternary semigroup. Lehmer introduced

the theory of ternary Semigroup [4] in 1932. Robertson et.al.
(1998) [5] [6] examined the direct product of semigroups
and established the specific condition under which the direct
product of semigroups can be considered finitely generated.
Also, if both ternary semigroups are finite, then their direct
product is finitely generated. Here, the focus is on the direct
product of an infinite ternary semigroup. Free semigroup is
the important tool for presentation of semigroup which was
analogously introduced by J.M Howie [7].
It can be noted if Z+ = {1, 2, .....} is the additive ternary
semigroup with generators {1, 2}. But Z+ × Z+ is finitely
generated.
In this paper, we introduce the concept of a free ternary
semigroup and prove the homomorphism theorem, which
states that for any ternary semigroup, it is possible to find
a free ternary semigroup. We prove another homomorphism
theorem that gives the relationship between the quotient free
ternary semigroup and ternary semigroup and illustrate an
example for this theorem. We also establish the necessary
condition for the direct product of ternary semigroups to be
finitely generated and show that the converse may not be true.
Furthermore, we provide a bound for the rank of the direct
product of two ternary semigroups and prove the necessary
and sufficient criteria for the external direct product of two
free ternary semigroups to be finitely generated. Finally, we
introduce the idea of a complete generating set and establish
the necessary and sufficient condition for a generating set for
a ternary semigroup to be complete. We also prove this same
condition for the direct product of two ternary semigroups.
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II. PRELIMINARIES

Definition II.1. [2] A ternary semigroup is a set T that is
non empty and has a ternary operation (e, f, g) → [efg]
that satisfies the associative law of the first kind.
That is, the equation ([efg]hi) = (e[fgh]i) = (ef [ghi])
holds for all values of e, f , g, h, and i in the set T .

Example II.1.(i) T1 = {i,−i} under multiplication.
(ii) T2 = Z− under multiplication.

Definition II.2. [2] A non-empty set E can be termed as a
generating set for the ternary semigroup T if it is capable
of generating the entire T .

Definition II.3. A ternary semigroup is finitely generated if
its generating set is finite.

Definition II.4. Let T be a ternary semigroup. Then T 1

is either a ternary semigroup with the neutral element or
adjoining a neutral element to the T if and only if it is
derived from a binary semigroup [8]. An element u is said
to be a neutral element of T if [auu] = [uau] = [uua] = a
for all a ∈ T .

Definition II.5. [2] A non-empty subset A of T is said to
be a right ideal of T if [AT T ] ⊆ A

Definition II.6. {a} ∪ [aT T ] is called the right ideal
generated by a.

III. FREE TERNARY SEMIGROUP

Definition III.1. Consider a non-empty set E . Define TE
as the set of all non-empty finite words with odd length
e1, e2, ..., em for any m that are odd numbers, where ei
belongs to the alphabet E . A ternary operation is defined
as the combination of words

(e1, e2, ....em)(f1, f2, ....fm)(g1, g2, .....gm) =

e1....emf1....fmg1.....gm for all

(e1, e2, ....em), (f1, f2, ....fm), (g1, g2, .....gm) ∈ TE
The ternary semigroup TE is defined on the ternary opera-
tion of concatenation and is referred to as a Free ternary
semigroup. Here, E is referred to as a generating set for TE .
The rank of TE is the number of elements of E .

Example III.1.

Let E = {a, b} Then, TE = {a, b, aaa, bbb, aba, aab, ......}

Definition III.2. Let T1 and T2 be two ternary semigroups.
Homomorphism from T∞ to T∈ is the mapping ϕ from T1 to
T2 such that for all u, v, w ∈ T1
ϕ(uvw) = ϕ(u)ϕ(v)ϕ(w).

Theorem III.1. Let α and η be a homomorphism of a ternary
semigroup T upon ternary semigroup T1 and T2 respectively
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such that α ◦ α−1 ⊆ η ◦ η−1. Then, there is a unique
homomorphism θ of T1 upon T2 such that αθ = η.

T2

T T1

η

α

θ

Proof: Define α : T1 → T2 by (eα)θ = eη for all
e ∈ T .
Let f ∈ T1.Then, eα = f .
So, fθ = eη.
If gη = f , then (e, g) ∈ α ◦ α−1 ⊆ η ◦ η−1.
So, eη = gη.
Clearly, θ is well defined.

[(eα)(fα)(gα)]θ = [(efg)α]θ

= (efg)η

= (eη)(fη)(gη)

= (eη)θ(fη)θ(gη)θ

So, θ is a homomorphism.

Corollary III.1. If ρ1 and ρ2 are congruences on a ternary
semigroup T such that ρ1 ⊆ ρ2. Then, T /ρ2 is the homo-
morphic image of T /ρ1.

Proof: Let T1 = T /ρ1, T2 = T /ρ2.
Since, ρ1 = α ◦ α−1 and ρ2 = η ◦ η−1.
By the Theorem, there is a homomorphism from T /ρ1 to
T /ρ2.

Theorem III.2. Consider a nonempty set E and a ternary
semigroup T . If ζ : A → T is any mapping, then there exist
a unique homomorphism ν : TE → T that satisfies ζ = ν
and the following diagram commutes.

T

E TE

ζ ν

Proof:
Define

ν : TE → T by

ν(e1, e2, ...em) = ζ(e1)ζ(e2)....ζ(em)

= [ζ(e1)ζ(e2)ζ(e3)].......ζ(em).

Let e1e2.....em = f1f2.....fm

Then, ν(e1, e2, ...em) = [ζ(e1)ζ(e2)ζ(e3)]....ζ(em)

= [ζ(f1)ζ(f2)ζ(f3)].......ζ(fm)

= ν(f1, f2, ...fm)

So, mapping is well defined.

Let e1e2.....em, f1f2.....fn, g1, g2, ....gm ∈ TE .

Then,

ν(e1, e2, . . . , em.f1, f2, . . . , fn.g1, g2, . . . , go)

= ζ(e1)ζ(e2) . . . ζ(em)

ζ(f1)ζ(f2) . . . ζ(fn)

ζ(g1)ζ(g2) . . . ζ(go)

= ν(e1, e2, . . . , em)

ν(f1, f2, . . . , fn)

ν(g1, g2, . . . , go)

So, ν is an homomorphism.

Definition III.3. Consider TE , which is a free ternary
semigroup. Let ρ be an equivalence relation on TE . We can
define TE/ρ as the collection of equivalence classes of ρ on
TE .

To define a ternary operation on TE/ρ, we can do so in a
natural way by stating that

[(aρ)(bρ)(cρ)] = [abc]ρ∀a, b, c ∈ TE

Lemma III.1. Let TE be a free ternary semigroup. Let ρ
be an equivalence relation on TE . Then, TE/ρ defined as
the collection of equivalences classes of ρ on TE . Define a
ternary operation on TE/ρ in a natural way as

[(aρ)(bρ)(cρ)] = [abc]ρ∀a, b, c ∈ TE

Then, TE ρ is a ternary semigroup under the above ternary
operation.

Proof: Let TE be a free ternary semigroup.
Let ρ be an equivalence relation on TE . Clearly, the ternary
operation defined above is closed under TE/ρ.
Now, we have to prove the ternary operation is associative.
Let aρ, bρ, cρ, dρ, eρ ∈ TE/ρ .

[(aρ)(bρ)(cρ)](dρ)(eρ) = [abc]deρ

= a[bcd]eρ

= (aρ)[(bρ)(cρ)(dρ)](eρ)

= ab[cde]ρ

= (aρ)(bρ)[(cρ)(dρ)(eρ)]

So, Ternary operation on TE ρ is associative.
Therefore, TE ρ under the above ternary operation is a ternary
semigroup.

Definition III.4. Consider TE , a free ternary semigroup.
Let ρ be a congruence on TE . We can define TE/ρ as the
collection of congruence classes of ρ on TE .
To define a ternary operation on TE/ρ, we can do so in a
natural way by stating that

[(aρ)(bρ)(cρ)] = [abc]ρ∀a, b, c ∈ TE
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Theorem III.3. Let TE be the free ternary semigroup. Let ρ0
be any relation on TE and let ρ be the smallest congruence
containing ρ0. Let ρ# be the natural homomorphism from
TE to TE/ρ.
Let T be any ternary semigroup. Let α be a homomorphism
from TE to T such that uα = vα∀u, v ∈ ρ0. Then, there exist
a homomorphism β from TE/ρ to T such that ρ#β = α.

TE/ρ

TE T

ρ#

α

β

Proof: We first show that if w,w
′ ∈ TE such that wρw

′
,

then wα = w
′
α.

By hypothesis, (u, v) ∈ ρ =⇒ uα = vα.
So, ρ0 ⊆ α ◦ α−1.
Since, ρ is the smallest congruence on T containing ρ0 and
α ◦ α−1 is a congruence.
Therefore, ρ ⊆ α ◦ α−1.
So, (w,w

′
) ∈ ρ =⇒ wα = w

′
α.

Define a mapping β : TE/ρ → T by
(wρ#)β = wα∀w ∈ TE . Prove that mapping defined above
is well defined.
Let wρ#, w

′
ρ# ∈ TE/ρ.

Suppose wρ# = w
′
ρ#. That is, (w,w

′
) ∈ ρ =⇒ wα =

w
′
α.

So, it is well-defined.
It is evident that ρ#β = α.
So, we have to show that β is a homomorphism.
Let w,w

′
, w

′′ ∈ TE . Then,

β([(wρ#)(w
′
ρ#)(w

′′
ρ#)]) = β([ww

′
w

′′
]ρ#)

= α([ww
′
w

′′
])

= α(w)α(w
′
)α(w

′′
)

= β(wρ#)β(w
′
ρ#)β(w

′′
ρ#)

Therefore, β is a Homomorphism.

Example III.2. Tricyclic Semigroup C to be the ternary
semigroup generated by a 3 element set {x1, x2, x3}.
Let ρ0 be the relation [x1x2x3] = 1.
Let TE

′
be the free ternary semigroup with identity generated

by E = {x1, x2, x3}.
Take ρ as the smallest congruence on TE

′
generated by ρ0.

Then, C = TE
′
/ρ is generated by congruence class p =

x1ρ
#, q = x2ρ

#, r = x3ρ
# satisfying the relation [pqr] = 1

Theorem III.4. Let TE be a free ternary semigroup and let
R ≠ TE be a proper right ideal. If R is finitely generated
then it is not free.

Proof: Since R ̸= TE there exists a ∈ E such that
a /∈ R.
Suppose that ai ∈ R for all i ≥ 1 and i in odd numbers.
Let r ∈ R of minimal length.
Then rai, i ≥ 1 and i in odd numbers. since R is a right

ideal, but rai is not a product of three elements of R.
Therefore, each generating set of R contains all the words
rai, i ≥ 1 and i in odd numbers, and R is not finitely
generated, a contradiction.
Thus R contains some power of a. Let i be the minimal
such power; obviously i ≥ 1 and i in odd numbers. The
word ai+2 belongs to R since R is a right ideal, but ai+2

is not a product of three elements of R. since i ≥ 1; hence
each generating set for R contains both ai and ai+2.
Since ai and ai+2 satisfy the non-trivial relation aiai+2 =
ai+2ai, R cannot be free.

Example III.3. TE be a free ternary semigroup generated
by E = {a, b}.
R = {a} ∪ [aTETE ] be the right ideal generated by a.
The set {abibj : i, j ≥ 0, i, j is odd numbers} is the
minimal generating set for R
Therefore, R is free.

Definition III.5. An arbitrary ternary semigroup T is said
to be free if it is isomorphic to a free ternary semigroup TE .

Example III.4. Z+ under addition is free with free ternary
semigroup {a, b, aaa, aba, , .....}.

Definition III.6. Consider TE , a free ternary semigroup. A
set TE is said to be finitely generated if it either contains a
finite number of generators or if it has a finite generating
set.

Example III.5. Let E = {a, b}.
Then, TE = {a, b, aaa, aba, ....} is finitely generated.

Definition III.7. Let T1 and T2 be two ternary semigroups.
Let T1 × T2 = {(x, y) : x ∈ T1&y ∈ T2} and the ternary
operation is defined as
(x1, y1)(x2, y2)(x3, y3) = (x1x2x3, y1y2y3).
T1 ×T2 is a ternary semigroup under the above ternary op-
eration and is called the direct product of ternay semigroup.

Lemma III.2. Consider TE and TF as two free ternary
semigroups.Then, the direct product of TE and TF forms a
ternary semigroup.

Proof:
Let (v1, w1) and (v2, w2) ∈ TE × TF .

Then, (v1, w1)(v2, w2) = (v1v2, w1w2) ∈ TE × TF . Since,
v1v2 ∈ TE , w1w2 ∈ TF .
Let (v1, w1), (v2, w2), (v3, w3), (v4, w4) and (v5, w5)
∈ TE × TF

[(v1, w1)(v2, w2)(v3, w3)](v4, w4)(v5, w5) =

= [(v1v2v3, w1w2w3)](v4, v4)(v5, w5)

= (v1v2v3v4v5, w1w2w3w4w5)

Since, TE and TF are free ternary semigroup.

= (v1, w1)[(v2v3v4, w2w3w4)](v5, w5)

= (v1, w1)(v2, w2)[(v3v4v5, w3w4w5)]

IV. DIRECT PRODUCT OF TERNARY SEMIGROUPS

Here, we provide the precise condition that is both nec-
essary and sufficient for the direct products of two ternary
semigroups to be finitely generated. Additionally, we have
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successfully demonstrated the necessary and sufficient con-
dition for the direct products of two free ternary semigroups
to be finitely generated.

Definition IV.1. Given a ternary semigroup T . Then, T is
decomposable if there exists an element t ∈ T such that
t can be expressed as the product of three elements t1, t2,
and t3, where t1, t2, t3 ∈ T . The set of all decomposable
elements in T is represented by T 3. In other words, T 3 is
the set {t1t2t3 : t1, t2, t3 ∈ T }.
The collection of ternary semigroups that cannot be decom-
posed is represented by T /T 3.

Example IV.1. Z under addition is a decomposible set.

Definition IV.2. Consider TE as a free ternary semigroup.
If there exists a word t ∈ TE that can be expressed as
the concatenation of three subwords t1, t2, and t3, where
t1t2t3 ∈ TE , Then TE is decomposable. The set of all
decomposable words in TE is represented by TE3. This set
is defined as the product of three copies of TE , denoted as
TETETE . In other words, TE3 consists of all words of the
form t1t2t3, where t1, t2, and t3 are elements of TE .

The collection of free ternary semigroup that is not de-
composible is denoted by TE/TE3

Example IV.2. Let E = {a, b} TE = {a, b, aaa, aba, ....}
only set that is not decomposible in TE are a,b.

Lemma IV.1. Consider two ternary semigroups denoted by
T1 and T2. Let κ : T1 × T2 → T1 denote the natural
projection. If E is a set that generates T1 × T2, then the
set κ(E) generates E . If the Cartesian product of T1 and T2
is finitely generated, then T1 is also finitely generated.

Proof: Define natural projection κ : T1 × T2 → T1 by

κ(t1, t2) = t1

Clearly, this mapping is an epimorphism. Let E be a gener-
ating set for T1 × T2.
So, let (s1, s2) ∈ E .
Then, s1 will be the element in generating set for T1 and
κ(E) becomes the generating set for T1.Since, κ is an onto
morphism.
It is evident that the direct product of T1 and T2, denoted as
T1 × T2, is finitely generated. Therefore, we may conclude
that T1 is also finitely generated.

Lemma IV.2. Consider a ternary semigroup T satisfying
the property T 3 = T . Let E = {ei : i ∈ Λ} be a set that
generates T . Then, there are elements ti and ri in T , where
i belongs to Λ. Further, there is a mapping η from Λ to Λ
such that ei = eη(i)tiri.

Proof: Given that T 3 = T , it can be concluded that
T does not possess any indecomposable elements. Each
element ei can be expressed as a product ei1ei2 ...eip of
generators, where p is greater than or equal to 3. Let η(i) be
defined as i1 and

ti =

p−1
2 +1∏
l=2

ail

ri =

p∏
m= p−1

2 +2

aim

Proposition IV.1. Consider two ternary semigroups denoted
as T1 and T2, where T1 satisfies the condition T 3

1 = T1
and T2 satisfies the condition T 3

2 = T2.Let E be the set of
elements ei for all i in Λ, and let F be the set of elements
bj for all j in Λ. These sets serve as generating sets for T1
and T2 respectively. Select elements ti, ri : i ∈ Λ from the
set T1, and elements si, ui : i ∈ Λ from the set T2. Also,
choose a mapping η : Λ → Λ such that ei = eη(i)tiri for all
i ∈ Λ. Additionally, select a mapping γ : Γ → Γ such that
fj = fγ(j)sjuj for all j ∈ Γ. Then the set T1 ∪ {tiri : i ∈
Λ} × T2 ∪ {sjuj : j ∈ Γ} generates T1 × T2.

Proof: Consider an arbitrary element t1 belonging to the
set T1. Assume that t1 may be expressed as a product of m
generators from T1. By iteratively substituting an arbitrary
generator ai with the product ei = eη(i)tiri, we observe that
for every n ≥ m, the element t1 may be represented as a
composition of n elements from the set T1 ∪ {tiri : i ∈ I}.
Let t2 be an arbitrary element of T2, and suppose that t2
can be expressed as a product of m generators from T2.
By iteratively substituting an arbitrary generator bj with the
product bj = aγ(j)sjuj , we observe that for every n ≥ m,
the element t2 can easily be represented as a product of
n items from the set T2 ∪ {sjuj : j ∈ J}.Let t1 belong
to T1 and t2 belong to T2, where t1 and t2 are arbitrary.
Let’s assume that t1 can be expressed as the multiplication
of n1 generators from E , and that t2 can be expressed as the
multiplication of n2 generators from F .
Let k be the maximum of n1 and n2. Then,

t1 = ρ1ρ2.....ρk

t2 = σ1σ2....σk

of k elements from T1 ∪ {tiri : i ∈ Λ} and T2 ∪ {sjuj : j ∈
Γ} respectively.
We may express (t1, t2) as a multiplication of elements from
T1 ∪ {tiri : i ∈ I} × T2 ∪ {sjuj : j ∈ J}. Therefore,

(t1, t2) = (ρ1, γ1)(ρ2, γ2).......(ρk, γk)

Corollary IV.1. Consider two infinite ternary semigroups
denoted as T1 and T2. It is given that T 3

1 = T1 and T 3
2 = T1.

Then
rank(T1 × T2) ≤ 9rank(T1)rank(T2).

Proof: If we choose the generating sets E and F for T1
and T2 to have cardinalities equal to the rank of T1 and the
rank of T2, respectively, then the generating set for T1 ×T2,
as established in Proposition 1, will have a cardinality that
is at most 9 times the product of the ranks of T1 and T2.

Theorem IV.1. Consider two infinite ternary semigroups
denoted by T1 and T2. If both T1 and T2 are finitely
generated, and T 3

1 = T1 & T 3
2 = T2, then The Cartesian

product of T1 and T2, denoted as T1×T2, is finitely generated.

Proof: This theorem is the immediate consequence of
the above Lemma IV.1, LemmaIV.2 and PropositionIV.1.
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a) Remark:: Converse may not be true.
For example, Z+ = {1, 2, .....} is the additive ternary
semigroup with generators 1, 2 and Z+3 ̸= Z+ . But Z+×Z+

is finitely generated.
b) Remark:: Let T1 and T2 be two infinite ternary

semigroups satisfying the conditions T 3
1 = T1 and T 3

2 = T1.
It follows that (T1 × T2)3 = T1 × T2, whereas the converse
is not universally true.
If each Ti (where 1 ≤ i ≤ p) is finitely generated and each
T 3
i = Ti (where 1 ≤ i ≤ p), then the direct product of

T1, T2, ....Tp is also finitely generated.

Theorem IV.2. Let TE and TF be two free ternary semi-
groups. Let T1 and T2 be two infinite ternary semigroups.
If α : T1 ∪ {tiri : i ∈ I} × T2 ∪ {sjuj : j ∈ J} → T1 × T2
is an arbitrary mapping. Then there exist a homomorphism
β : TE × TF → T1 × T2 such that α = β and the direct
product of TE and TF is finitely generated if and only if the
direct product of T1 and T2 is finitely generated.

Proof: Homomorphisms of TE ×TF and T1×T2 can be
proved from LemmaIV.1.
The necessary and sufficient conditions for the direct product
mentioned above are established by TheoremIV.1.

Definition IV.3. A generating set E of a ternary semigroup
T is said to be complete if E ⊆ E3. That is, every generator
of E can be expressed as a product of three generators of E .

Proposition IV.2. A ternary semigroup T has a complete
generating set E if and only if T 3 = T .

Proof: (Necessary Part) Assume E is a complete gener-
ating set.
Then, every element of E is decomposible.
So, T has no indecompossible elements. Therefore, T 3 = T .
(Sufficiency Part) Let T 3 = T .
Take E0 = {ei : i ∈ Λ}.
Each ei is decomposible, So

ei = eτ(i,1)eτ(i,2)......eτ(i,pi) (1)

where pi ≥ 3 and τ(i, j) ∈ Λ for all j (1 ≤ j ≤ pi). For all
i and j (i ∈ Λ, 1 ≤ j ≤ pi − 1) define

κi,j = eτ(i,j+1)......eτ(i, pi−1

2 )

βi,j = e
τ(i,

pi−1

2 +1)
......eτ(i,pi)

(2)

Then the below set is a generating set for T .

E = E0 ∪ {κi,j : i ∈ Λ, 1 ≤ j ≤ pi − 1

2
− 1}∪

{βi,j : i ∈ Λ,
pi − 1

2
≤ j ≤ pi − 1}

Combining (1) and (2), we get E is complete.

V. APPLICATIONS

Free Ternary semigroups, fundamental in mathematics and
computer science, find diverse applications across various
domains. In automata theory, they underpin the theory of
regular languages, aiding in the construction of finite au-
tomata and defining regular expressions. Moreover, in formal
language theory[9], free ternary semigroups serve as the
cornerstone, enabling the representation of strings over given
alphabets and defining operations like concatenation and

Kleene closure. Combinatorics on words benefits greatly
from free ternary semigroups, as they facilitate the study of
finite or infinite sequences of symbols, crucial for tasks like
word enumeration and pattern matching. In algorithm design
[10], particularly in string processing and text compression,
free semigroups play a pivotal role, enabling the develop-
ment of efficient algorithms for tasks such as searching and
indexing. Furthermore, in coding theory, they provide a math-
ematical framework for analyzing error-correcting codes and
designing encoding and decoding algorithms. In semigroup
actions, symbolic dynamics, and semigroup presentations,
free ternary semigroups offer insights into the structure and
behavior of discrete systems, adding depth to the study of
these areas.
The direct product of semigroups serves as a powerful tool
in various mathematical contexts and practical applications.
In algebraic structures, such as group theory, the direct
product of semigroups provides a way to combine multiple
semigroups into a single structure, preserving their individual
properties. This concept finds application in the study of sys-
tems with parallel or independent components, where the be-
havior of each component can be analyzed separately before
considering their combined effect. In computer science and
engineering [11], the direct product of semigroups is used
in modeling and analyzing concurrent systems, distributed
computing, and communication protocols. By representing
each component of a system as a semigroup, their direct
product allows for the systematic study of interactions and
dependencies among these components. Moreover, in cryp-
tography [12] and coding theory [13], the direct product
of semigroups can be utilized to construct error-correcting
codes and cryptographic protocols with enhanced security
and reliability.

VI. CONCLUSION

We have provided a clear definition of the concept of a free
ternary semigroup and have also proven the mapping theorem
of homomorphisms for this type of semigroup.We proved
another homomorphism theorem that gives the relationship
between the quotient free ternary semigroup and ternary
semigroup and illustrated an example for this theorem. We
have proven the essential requirements for the direct product
of two infinite ternary semigroups to be finitely generated.
In addition, we determined an upper limit for the rank of the
direct product of two infinite semigroups. The necessary and
sufficient condition for the direct product of two free ternary
semigroups has been conclusively proven.
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