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Abstract—This paper considers an M/M/1 queueing inventory
system with (s, S) policy. The server may break down during
the working vacation and each customer takes one product
away after being served. When there is no product in the system,
the system starts a working vacation, and the service continues
at a lower rate at that time. The server may breakdown
only during a working vacation period. When a vacation
breakdown occurs, the system immediately stops service and
starts repairing. Firstly, we utilize Markov process theory to
construct a three-dimensional Markov chain to analyze the
stationary process of the system. Using Gaussian iteration and
matrix geometry solution method, the steady-state performance
measures about queueing and inventory are obtained. Then,
through numerical experiments, we analyze the system param-
eters’ influence on performance indexes. Finally, we define a cost
function and use the genetic algorithm to obtain the optimal
inventory level and the lowest cost at a certain set of parameters.

Index Terms—queueing inventory, working vacation, vacation
breakdown, (s, S) policy.

I. INTRODUCTION

QUeueing inventory system is widely used in production
practices, which consists of queueing system and in-

ventory system. In a queueing inventory system, the customer
takes away a product when they are served. Therefore, the
system should consider not only service operation but also
the number of products in stock to ensure the quality of
service. For most enterprises, reasonable inventory manage-
ment is related to the enterprise’s profitability. Therefore, the
queuing inventory system even its optimal inventory control
strategy has been widely concerned by scholars in many
fields.

The early literature concerning queuing inventory sys-
tems was primarily centered on the realm of manufacturing
service. Sigman and Simchi-Levi [1] initially amalgamated
queuing service with inventory management theory. They
probed into the M/G/1 queue-based inventory system with
finite inventory and verified its performance metrics by
resorting to approximation techniques. Schwarz et al [2]
explored the M/M/1 queueing inventory system for lost sales
under various inventory management policies. In the case of
the infinite waiting room, they derived that the stationary
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distribution of the queue length was identical to the classical
M/M/1/∞ system. Krishnamoorthy et al [3] deliberated on
two models with (s,Q) and (s, S) replenishment policies,
and the item provided with probability to a customer. They
derived the stationary probability distribution of the joint
queue length and inventory level under two control policies
and optimized the model to obtain the optimal pairs. Yue
et al [4] contemplated two models featuring partially and
completely lost sales and acquired the product of the steady-
state probability through the quasi-birth and death process.
Liu et al [5] investigated perishable items queuing inventory
systems with two types of customers. They delineated the
service level and established the corresponding optimization
model subject to the limitation of the service level. The
sensitivity of system parameters and the optimal inventory
management policy were explored via numerical experi-
ments. Qin and Yue [6] examined the (s, S) production
inventory strategy by taking into account online shopping
service time and return-ability. They attained the steady-
state joint distribution of queue length and inventory level
by means of the product form and employed numerical
examinations to scrutinize the parameter influence on the
stationary performance measures. Liu [7] studied the M/M/1
production service inventory system with multiple working
vacation strategies. They derived a four-dimensional Markov
chain based on the (s, S) inventory policy and delineated
the cost function. They scrutinized the parameter influence
on the performance measures and probed into the optimal
inventory policy with different working vacations. Zhang [8]
developed several queuing inventory models encompassing
working vacations, inventory strategies, and perishable items.
He solved the equilibrium equation through the utilization
of the quasi-birth and death process and derived the system
steady-state probability by means of the recursive method.
Subsequently, he demonstrated that the steady-state proba-
bility distribution assumes a product form and defined the
cost function. Ultimately, he employed a genetic algorithm
to acquire the optimal inventory strategy and cost. Levy and
Yechiali [9] initially investigated vacation queuing inven-
tory systems and introduced the terms related to vacation
and vacation strategies. Selvaraju [10] examined impatient
customers in an M/M/1 queue encompassing two distinct
working vacations and compared two models to comprehend
the influence of parameters on its performance indices.
Zhou et al [11] developed the single working vacation and
vacation interruption G-queue encompassing setup times.
They utilized the quasi-birth-and-death process and matrix
geometry to derive the steady-state distribution and stationary
queue length. The average waiting time of the working busy
period was acquired by solving the distribution function. Yan
and Yang [12] conducted an in-depth investigation into two
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distinct customers in the M/M/1 system characterized by two
vacation policies. By means of the matrix geometric solution,
they deduced the stationary condition and queue length. The
model was verified through numerical simulation. Daniel
and Ramanarayanan [13] integrated the working vacation
into the inventory system. When there is no product, the
service initiates a vacation and the customers do not enter
the system. They exploited update theory and convolution
theory to acquire the steady-state probability. Shan and Yue
[14] explored an M/M/1/N queuing inventory system with
impatient customers and multiple vacations. They utilized the
matrix geometric solution to obtain the probability distribu-
tion and performance indicators when there are no products
or customers in the system. Fu et al [15], discussed two
types of failures with a standby service station and start-up
time based on the M/M/1 queuing system. The steady-state
equilibrium condition and the steady-state probability vector
of the system were derived through the matrix geometry so-
lution method, and the steady-state queuing length of the sys-
tem was determined. Finally, Matlab was used for numerical
analysis of their conclusions. Yang et al [16] employed the
quasi-birth-and-death (QBD) process and matrix geometry
solution method to investigate an M/M/1 repairable queuing
system with two types of server breakdowns and negative
customers. They provided stationary conditions, acquired
steady-state probability vectors, and calculated some steady-
state queueing as well as reliable measures. The server was
regarded as stable and reliable in a considerable amount
of related literature. Nevertheless, in actual practice, the
server might malfunction and require repair. Kalidass and
Kasturi [17] investigated a queuing model that could fail at
any moment and offer services at a slower pace during a
working breakdown. They utilized the probability-generating
function to solve the condition of steady-state existence and
the probability distribution. They also presented certain per-
formance indicators and numerical examples. Lakshmi et al
[18] studied the inventory queuing system with two types of
server interruptions, where one interruption occurred during
normal working and another interruption occurred during the
working breakdown. They employed the matrix geometric
solution to obtain the steady-state probability vector in a
finite-capacity inventory. In practice, the rationalization of
the server’s working rate can effectively save costs based on
the quantity of products. During working vacations, scenarios
such as the departure of the waiter and failure to return
promptly or server breakdowns may occur, which constitutes
a vacation breakdown. It is particularly essential to optimize
the inventory policy by taking into account the cost of
repair and customer loss. Hence, this paper considers that
the server enters a working vacation when the inventory is
depleted. During the working vacation, the server provides
services at a lower service rate. Once the working vacation
concludes, the server commences operation if the inventory is
not depleted. Otherwise, it initiates a new working vacation.
It is assumed that server breakdowns only occur during the
working vacation. When the server malfunctions, it halts
service and enters the repair state immediately. During the
vacation breakdown state, newly arriving customers do not
enter the system.

II. MODEL DESCRIPTION

We present the M/M/1 queuing system featuring the
(s, S) policy, working vacation, and vacation breakdown.
The model is delineated as follows:

1) Within the system, there exists merely one server. The
arrival pattern of customers adheres to the Poisson process
at a rate of λ, and a queue is formed when the number
of customers exceeds one within the system. The service
principle is first-come-first-served (FCFS), and the service
time complies with an exponential distribution characterized
by parameter µb. After being served, each customer takes
one product away, thereby reducing the inventory level of the
products by one unit upon the completion of each service.

2)When the inventory becomes depleted, the server initi-
ates a working vacation, and the vacation duration adheres
to an exponential distribution with parameter θ. During the
working vacation, the service time follows an exponential
distribution with parameter µv (µv < µb). After the working
vacation period, if there is at least one product within
the system, the server commences a regular busy period.
Otherwise, the server initiates another working vacation.

3) Breakdown Procedure: The server is prone to mal-
function exclusively during the vacation period. The server
lifetime follows an exponential distribution with parameter α
during the working vacation time. Once the server malfunc-
tions, it halts the service and initiates the repair promptly.
The repair time adheres to an exponential distribution with
parameter β. Upon the completion of the repair, the server
commences a regular busy period whenever the inventory
is not empty. Otherwise, it commences another working
vacation.

4) The ordering law for products follows the (s, S) policy.
When the stock level reaches the safety stock level s, the
system promptly sends an order demand. The inventory level
will attain S (where s < S) after a replenishment time that
follows an exponential distribution with parameter η (η > 0).

5) The system is a loss system. During a working vacation,
provided that the inventory is not empty, arriving customers
will access the system and depart after being served. Oth-
erwise, if the system inventory is empty, new arrivals will
not access the system. Conversely, in the case of a failure,
new arrivals will be precluded from accessing the system,
and customers experiencing service interruptions as well as
those already in the queue will remain within the system
until service is resumed.

6) It is postulated that the customer arrival time, service
time, working vacation time, replenishment time, vacation
breakdown time, and repair time are mutually independent.

Let J (t) be the state of the server at the moment t:

J(t) =


0, time t in the working vacation period,
1, time t in the busy period,
2, time t in the vacation breakdown period,

Figure 2-1 shows how the server state changes with the
amount of inventory in this model. Let N (t) be the
number of customers in the queueing system at mo-
ment t, and I (t) be the inventory level at moment t.
Then is a Markov process whose state space is Ω =

{(n, 0, 0) , (n, 0, 2) , (n, 1, 0) , · · · , (n, S, 2) ;n ≥ 0} .
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inventory = 0
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Figure 2-1. Server status change diagram.

Figure 2-2 shows the state transition diagram of the three-
dimensional Markov process.

Let the system state be ordered lexicographical. Then the
infinitesimal generator Q is the following matrix:

Q =


A0 C
B A C

B A C
. . . . . . . . .

 ,

where

A0 =



a0 h0

a1 h1

a1 h1

. . .
...

a1 h1

a2
. . .

a2


,

A =



a0 h0

a3 h1

a3 h1

. . .
...

a3 h1

a4
. . .

a4


,

B =



0 0 0 0 0
0 0 0 0 0
µv

µb

0
µv

µb

. . .
...

...
...

...
µv

µb

0
µv

µb

. . .
µv

µb 0 0 0 0
0 0 0 0



,

C =



0
0

λ
λ

0
λ

. . .
λ

λ
0


,

a0 =

(
− (α+ η) α

β − (β + η)

)
,

a1 =

− (α+ θ + η + λ) θ α
− (η + α)

β − (β + η)

 ,

a2 =

− (α+ θ + λ) θ α
−λ
β −β

 ,

a3 =

− (µv + α+ θ + η + λ) θ α
− (µb + η + λ)

β − (β + η)

 ,

a4 =

− (µv + α+ θ + λ) θ α
− (µb + λ)

β −β

 ,

h0 =

(
η 0 0
0 0 η

)
, h1 =

η
η

η

.

A0, A,B,C are all (3S + 2)×(3S + 2) order matrices. The matrix
Q shows that {N (t) , I (t) , J (t)} is a QBD process.

III. STEADY-STATE CONDITIONS

The system state process {N (t) , I (t) , J (t)} is a quasi birth
and death process, which is obtained by making the matrix
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Figure 2-2. State transfer diagram.

H = B +A+ C =

H =



u0 h0

b0 u1 h1

b1 u1 h1

b1
. . .

...
. . . u1 h1

b1 u2

b1 u2

b1
. . .
. . . u2

b1



,

u0 =

(
− (α+ η) α

β − (β + η)

)
,

u1 =

− (µv + α+ θ + η) θ α
− (µb + η)

β − (β + η)

 ,

u2 =

− (µv + α+ θ) θ α
−µb

β −β

 ,

b0 =

µv 0
µb 0
0 0

 , b1 =

µv

µb

0

 .

Let φ = (φ0,0, φ0,2, ..., φS,2) denote the steady-state probability
vector of H , substituting φ and H into the normalization condition
yields the following results:{

φH = 0,

φe = 1,
(1)

where e is a column vector of appropriate dimension with elements
all 1.

Substituting φ, e and H into the Eq. (1) obtain:

(α+ η)φ0,0 + βφ0,2 + µvφ1,0 + µbφ1,1 = 0, (2)

αφi,0 − (β + η)φi,2 = 0, (0 ≤ i ≤ s), (3)

(µv + α+ θ + η)φi,0 + µvφi+1,0 = 0, (1 ≤ i ≤ s) , (4)

θφi,0+βφi,2− (µb + η)φi,1+µbφi+1,1 = 0, (1 ≤ i ≤ s) , (5)

− (µv + α+ θ)φi,0+µvφi+1,0 = 0, (s+ 1 ≤ i ≤ S − 1) , (6)

αφi,0 − βφi,2 = 0, (s+ 1 ≤ i ≤ S − 1) , (7)

θφi,0 + βφi,2 − µbφi,1 + µbφi+1,1 = 0, (s+ 1 ≤ i ≤ S − 1) ,
(8)

− (µv + α+ θ)φS,0 + η

S∑
i=0

φi,0 = 0, (9)
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αφS,0 − βφS,2 + η

S∑
i=0

φi,2 = 0, (10)

θφS,0 + βφS,2 − µbφS,1 + η

S∑
i=1

φi,1 = 0, (11)

φ0,0 + φ0,2 +

S∑
i=1

(φi,0 + φi,2 + φi,1) = 1. (12)

From Eq. (2) to Eq. (12), we obtained:

φ0,0 =
µv + α+ θ

η
φS,0 −

S∑
i=1

φi,0, (13)

φi,0 =

(
µv

µv + α+ θ + η

)s−i+1(
µv

µv + α+ θ

)
S−s−1φS,0,

(1 ≤ i ≤ s) ,
(14)

φi,0 =

(
µv

µv + α+ θ

)S−i

φS,0, (s+ 1 ≤ i ≤ S − 1) , (15)

φ1,1 =
α+ η

µb
φ0,0 −

β

µb
φ0,2 −

µv

µb
φ1,0, (16)

φi,1 = − θ

µb
φi,0 −

β

µb
φi,2 +

µb + η

µb
φi−1,1, (2 ≤ i ≤ s+ 1) ,

(17)

φi,1 = − θ

µb
φi,0 −

β

µb
φi,2 + φi−1,1, (s+ 2 ≤ i ≤ S) , (18)

φ0,2 =
α

β + η
φ0,0, (19)

φi,2 =
α

β + η

(
µv

µv + α+ θ + η

)s−i−1(
µv

µv + α+ θ

)
S−s−1φS,0,

(1 ≤ i ≤ s) ,
(20)

φi,2 =
α

β

(
µv

µv + α+ θ

)S−i

φS,0, (s+ 1 ≤ i ≤ S − 1) , (21)

φS,1 =
θ

µb
φS,0 +

β

µb
φS,2 +

η

µb

S∑
i=1

φi,1, (22)

φS,2 =
α

β
φS,0 +

η

β
φ0,2 +

η

β

S∑
i=1

φi,2. (23)

It can be seen that φ0,0, φ0,2, φ1,0, · · · , φS,2 can all be expressed
as φS,0 by iterating between equations. From φe = 1 it is possible
to solve for φS,0, which in turn gives the value of each probability.

From the matrix geometric solution, the sufficient necessary
condition for the normal return of the system state process is
φCe < φBe. It is obtained from matrix B and matrix C:

φCe=λ
S∑

i=1

(φi,0+φi,1),

φBe=µv

S∑
i=1

φi,0 + µb

S∑
i=1

φi,1.

Therefore, the steady-state equilibrium condition of the system
is:

λ
S∑

i=1
(φi,0+φi,1)

µv

S∑
i=1

φi,0 + µb

S∑
i=1

φi,1

< 1.

Define the steady-state probability vector of the matrix Q as:

πn,i,j = lim
t→∞

π {N (t) = n, I (t) = i, J (t) = j} , (n, i, j) ∈ Ω.

To accommodate the structure of the transfer rate matrix Q, the
steady state probability vector π is chunked as follows:

π = (π0, π1, π2, · · ·) ,

πn = (πn,0,0, πn,0,2, πn,1,0, · · · , πn,S,2) , n ≥ 0.

The steady-state probability vector π satisfies the equilibrium
equation: {

πQ = 0,

πe = 1,

where e is a column vector of appropriate dimension with elements
all 1.

The system steady-state probability vector has the form of a
matrix geometric solution as follows:

πn = π0R
n, n > 0,

where π0 satisfies the system of equations:{
π0 (A0 +RB) = 0,

π0 (I −R)−1 e = 1.

Obtain the minimum non-negative solution R of equation
R2B +RA+ C = 0. Then, the specific steady-state probability
vector is obtained. The steps of the algorithm are as follows:
Step 1: Set R0 = 0 ;
Step 2: Execute Rn = −[Rn−1

2B + C]A−1, n = 1, 2, ...;
Step 3: If ∥Rn −Rn−1∥ = max

i,j
|aij (n)− aij (n− 1)| < ε, make

R = Rn, otherwise, loop step 2, where aij (n) denotes the
element of row i and column j of matrix Rn.

IV. SYSTEM PERFORMANCE MEASURES
(1) Expected level of customers in the queue:

EL =

∞∑
n=0

S∑
i=0

n(πn,i,0 + πn,i,1 + πn,i,2)

= π0R(I −R)−2δ1,

where δ1 is (3S + 2)-dimensional unit-column vector.

(2) Expected stock level:

Einv =

∞∑
n=0

S∑
i=0

i(πn.i.0 + πn.i.1 + πn.i.2)

= π0(I −R)−1δ2,

where δ2 = (0, 0, 1, 1, 1, 2, 2, 2, 3, ...)T 1×(3S+2).

(3) Expected reorder rate:

Erep = η

∞∑
n=0

S∑
i=0

(πn,i,0 + πn,i,1 + πn,i,2)

=ηπ0(I −R)−1δ3,

where δ3 = (1, 1, 1..., 1, 0, 0, ..., 0)T 1×(3S+2).

(4) Expected reorder quantity:

EP =

∞∑
n=0

S∑
i=0

(S − i) (πn,i,0 + πn,i,1 + πn,i,2)

= π0(I −R)−1δ4,

where δ4 = (S, S, S − 1, ..., S − s, 0, .., 0)T 1×(3S+2).
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(5) Expected loss rate of customers:

Eloss = λ

∞∑
n=0

πn,0,0 + λ

∞∑
n=0

S∑
i=0

πn,i,2

= λπ0(I −R)−1δ5 + λπ0(I −R)−1δ6,

where δ5 = (1, 0, 0, ..., 0)T 1×(3S+2), and δ6 is defined
as δ6 = (0, 1, 0, 0, 1, ..., )T 1×(3S+2).

(6) Service interruption rate:

Ei =

∞∑
n=0

S∑
i=0

απn,i,0 = απ0(I −R)−1δ7,

where δ7 = (1, 0, 1, 0, 0, ...)T 1×(3S+2).

(7) Server repair rate:

Er =

∞∑
n=0

S∑
i=0

βπn,i,2 = βπ0(I −R)−1δ6.

V. SENSITIVITY ANALYSIS
In this section, we conduct numerical experiments to investigate

the sensitivity of the system’s performance measures to variations
in its parameters.

The figures from 5-1 to 5-4 illustrate the impact of parameter
α, θ, λ, η, µv, β on the average inventory level, Einv .

Figure 5-1 reveals that the average inventory level ascends with
the augmentation of α and descends with the escalation of θ. This
is attributed to the circumstance that a larger α gives rise to a
shorter the average service lifespan, inducing a higher likelihood
of service failure and slower inventory depletion, thereby causing a
higher inventory level. Conversely, a greater θ brings about shorter
average vacation time, longer busy periods within the system, higher
service rates during busy periods, faster service velocities, and more
rapid inventory consumption, ultimately resulting in a lower average
inventory level.

Figure 5-2 depicts that the average inventory level rises along
with an augmentation in η and drops with an increase in λ. This
is attributed to the fact that a greater η leads to a shorter average
replenishment time, giving rise to the timely arrival of replenish-
ment and subsequently elevating the average inventory level. On
the contrary, a larger λ is equivalent to a higher customer arrival
rate, causing greater inventory consumption and consequently lower
average inventory levels.

Figure 5-3 demonstrates that the average inventory level de-
creases as µv increases. This is because a larger value of µv leads
to a higher service rate, accelerating inventory consumption and
thereby reducing the average inventory level.

Figure 5-4 illustrates that the average inventory level decreases
as β increases. This is due to the fact that a larger value of β
results in shorter repair times, reducing the duration of system faults
and leading to decreased inventory levels once normal operations
resume.

Figures 5-5 through 5-8 demonstrate the impact of parameters
α, θ, λ, η, µv, β on the interruption rate Ei.

As depicted in Figure 5-5, the service interruption rate rises with
increasing parameter α and declines with increasing parameter θ.
This can be attributed to the fact that higher values of α lead to
shorter average service lifespans and increased failure probabilities,
resulting in higher service interruption rates. Conversely, larger
values of θ correspond to shorter average vacation times and greater
probabilities for system activity during busy periods without service
desk failures, thereby reducing service interruption rates.

As depicted in Figure 5-6, the service interruption rate decreases
as the parameter η increases and increases with the parameter λ
rise. A larger value of η results in a shorter average replenishment
time, timely arrival of replenishment, prolonged busy periods at the

Figure 5-1. Effect of parameters α and θ on the expected stock level.
((s, S, λ, µv , µb, η, β) = (5, 10, 11, 12, 19, 1, 0.8)).

Figure 5-2. Effect of parameters η and λ on the expected stock level.
((s, S, µv , µb, θ, α, β) = (5, 10, 12, 19, 6, 7, 0.8)).

Figure 5-3. Effect of parameters θ and µv on the expected stock level.
((s, S, λ, µb, η, α, β) = (5, 10, 11, 19, 1, 7, 0.8)).
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Figure 5-4. Effect of parameters β and α on the expected stock level.
((s, S, λ, µv , µb, η, θ) = (5, 10, 11, 12, 19, 1, 6)).

service, reduced likelihood of entering a work vacation state, lower
susceptibility to malfunctioning, and decreased service interruption
rate. Conversely, a higher value of λ leads to an increased customer
arrival rate, greater inventory depletion by customers, and faster
consumption of inventory leading to lower average inventory levels.
This makes it easier for the system to enter a work vacation state
and increases the probability of breakdowns, resulting in a higher
service interruption rate.

Figure 5-7 illustrates that the service interruption rate decreases
with an increase in the parameter µv . This is due to larger values
of µv resulting in reduced failure probability and subsequently
lowering the service interruption rate.

As shown in Figure 5-8, the service interruption rate increases
with parameter β increase. This is because larger values of β lead to
shorter repair times and consequently reduce fault period duration.
As a result, systems return to normal operation more quickly but
are also more likely to fail again; thus increasing the overall service
interruption rate.

Figure 5-5. Effect of parameters α and θ on the service interruption rate.
((s, S, λ, µv , µb, η, β) = (5, 10, 11, 12, 19, 1, 0.8)).

The parameters α, β, θ, λ, η, µv in figures 5-9 to 5-12 correspond
to the average replenishment rate Erep.

As depicted in Figure 5-9, the impact of parameter θ on the
average replenishment rate is associated with the attendants’ average
service life. When α is small, an increase in θ decreases the
average replenishment rate. This can be attributed to the relatively
large safety inventory level (s = 5) and maximum inventory

Figure 5-6. Effect of parameters η and λ on the service interruption rate.
((s, S, µv , µb, θ, α, β) = (5, 10, 12, 19, 6, 7, 0.8)).

Figure 5-7. Effect of parameters θ and µv on the service interruption rate.
((s, S, λ, µb, η, α, β) = (5, 10, 11, 19, 1, 7, 0.8)).

Figure 5-8. Effect of parameters β and α on the service interruption rate.
((s, S, λ, µv , µb, η, θ) = (5, 10, 11, 12, 19, 1, 6)).
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level (S = 10) selected by the system, resulting in a relatively
large average replenishment amount and decreasing the overall
replenishment rate. Conversely, when α is larger, an increase in θ
results in an increase in the average replenishment rate. A larger θ
corresponds to shorter average vacation times for attendants, leading
to longer busy periods for the system and faster drops in inventory
levels, thereby increasing the replenishment rate.

As is evident from Figure 5-10, the average replenishment rate
escalates with η and λ. This is because the greater the η, the shorter
the average replenishment time, the more timely the replenishment
arrives, the longer the service is occupied, the higher the customer’s
demand for products, and thus the average replenishment rate rises;
The larger the λ, the higher the arrival rate and the stronger
the demand for inventory, leading to an increase in the average
replenishment rate.

Figure 5-11 indicates that the average replenishment rate declines
as the parameter µv increases. This is because the higher the
service rate µv , the greater the increase in demand for inventory, the
faster the inventory depletion. If the replenishment fails to arrive
in time, the system enters the state of empty inventory. At this
point, new customers in the system do not enter, and the system is
in a stagnant state waiting for replenishment, thereby reducing the
average replenishment rate.

As is evident from Figure 5-12, the average replenishment rate
Erep declines with the augmentation of parameter α and ascends
with the escalation of parameter β.This is because the greater the
α, the shorter the average lifespan of the service, the higher the
probability of failure, the slower the depletion of the inventory level,
thereby reducing the average replenishment rate and increasing the
average replenishment time. The larger the β, the shorter the repair
duration, the shorter the time the system is in the fault period, the
quicker the system reverts to the normal working state, and the
inventory consumption also rises, thus increasing the replenishment
rate.

Figure 5-9. Effect of parameters α and θ on the expected reorder rate.
((s, S, λ, µv , µb, η, β) = (5, 10, 11, 12, 19, 1, 0.8)).

Figure 5-13 to Figure 5-16 demonstrate the influence of the
parameters α, β, θ, λ, η, µv on the average customer loss rate Eloss.

It can be observed from Figure 5-13 that the impact of parameter
θ on the average customer loss rate is associated with the average
service life α. When α is small, the average customer loss rate
decreases as θ decreases. This is because when α is smaller, the
average service lifespan is longer. When θ is smaller, the average
vacation time is longer, and the system is less prone to failure,
thereby resulting in a decrease in Eloss. When α is larger, the
average customer loss rate increases as θ decreases. This is because
when α is larger, the average service lifespan is shorter. When θ is
smaller, the vacation time is longer, and the possibility of system
failure increases at this point, thus causing the average customer
loss rate to increase.

Figure 5-14 indicates that the average customer loss rate Eloss

Figure 5-10. Effect of parameters η and λ on the expected reorder rate.
((s, S, µv , µb, θ, α, β) = (5, 10, 12, 19, 6, 7, 0.8)).

Figure 5-11. Effect of parameters θ and µv on the expected reorder rate.
((s, S, λ, µb, η, α, β) = (5, 10, 11, 19, 1, 7, 0.8)).

Figure 5-12. Effect of parameters β and α on the expected reorder rate.
((s, S, λ, µv , µb, η, θ) = (5, 10, 11, 12, 19, 1, 6)).
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declines as η increases and rises with the escalation of λ. This is
due to the fact that the greater the η, the shorter the replenishment
time is. With the timely arrival of replenishment, the system is
less likely to enter the working vacation stage and less prone
to have empty inventory, thereby reducing Eloss. The larger the
λ, the higher the customer arrival rate becomes. The increased
consumption of inventory makes the system more prone to enter
the working vacation state, susceptible to failure or empty inventory.
At this point, newly arrived customers no longer enter the system,
resulting in an increase in the average customer loss rate.

As is evident from Figure 5-15, the average customer loss rate
escalates with the growth of parameter µv . The greater the µv , the
higher the service rate, the quicker the inventory consumption, and
the system is prone to enter the state of empty inventory, thereby
resulting in an increase in the average loss rate.

Figure 5-16 indicates that the average customer loss rate rises
along with the growth of parameter α and drops with the increase
of parameter β. This is because the greater the α, the shorter the
average service lifespan, and the more prone the system is to failure.
When a failure occurs, the system suspends its service, thereby
causing the average loss rate to increase. The larger the β, the
shorter the average repair time, the quicker the system is restored,
and the shorter the period during which the system is in a fault
state, thus reducing the average customer loss rate.

Figure 5-13. Effect of parameters α and θ on the expected loss rate.
((s, S, λ, µv , µb, η, β) = (5, 10, 11, 12, 19, 1, 0.8)).

Figure 5-14. Effect of parameters η and λ on the expected loss rate.
((s, S, µv , µb, θ, α, β) = (5, 10, 12, 19, 6, 7, 0.8)).

Figure 5-15. Effect of parameters θ and µv on the expected loss rate.
((s, S, λ, µb, η, α, β) = (5, 10, 11, 19, 1, 7, 0.8)).

Figure 5-16. Effect of parameters β and α on the expected loss rate.
((s, S, λ, µv , µb, η, θ) = (5, 10, 11, 12, 19, 1, 6)).

VI. COST ANALYSIS AND NUMERICAL RESULTS
Based on the system performance measures, define a cost func-

tion F (s, S) of the system and is given by

F (s, S) = C1EL + C2Einv + C3ErepEp

+ C4Erep + C5Er + C6Eloss + C7Ei

where C1 is the waiting cost per unit of time for customers; C2

is the inventory holding cost per item per unit of time; C3 is the
reordering cost per unit of product; C4 is the fixed order cost per
replenishment; C5 is the repair cost per unit of time; C6 is the cost
per unit of time per unit of new arrivals not being able to enter
the system; C7 is the cost per unit of time caused by the service
interruption.

Firstly, the value scopes of the safety inventory level s and
the maximum inventory level S are delineated, and numerical
experiments are executed by means of the genetic algorithm to
regulate the values of each parameter within the scopes, thereby
ensuring that the optimal inventory strategy corresponds to the
minimum cost. Based on this principle, the impact of parameter
variations on the system inventory strategy and cost is investigated.

Suppose the parameters of the given system are

C1 = 50, C2 = 0.8, C3 = 4, C4 = 3.5,

C5 = 18, C6 = 12, C7 = 16.
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Table 6-1 exhibits the effect of the customer arrival parameter
λ on the optimal inventory control strategy, while other parameters
are set as µv = 12, µb = 19, η = 1, α = 7, β = 0.8, θ =
6.As presented in Table 6-1, with the escalation of parameter λ, the
demand for inventory escalates, the system safety inventory level
s and the system maximum inventory level S gradually ascend,
and the cost gradually increases, and the impact on the optimal
inventory strategy and cost of the system is notable.

Table 6-1. Impact of parameter λ on optimal inventory strategy and cost.

λ 7 9 11 13 15

(s, S) (1,8) (2,12) (3,19) (6,28) (10,35)

F (s, S) 104.6218 131.3809 160.2865 193.8386 243.2806

Table 6-2 presents the impact of the service rate parameter µv on
the optimal inventory control strategy during system work vacations,
and other parameters are set as λ = 11, µb = 19, η = 1, α =
7, β = 0.8, θ = 6. As depicted in Table 6-2, with the escalation
of the parameter µv , the service rate of attendants during working
vacations rises, the system safety inventory level and the system
maximum inventory level both decline marginally, and the cost
gradually decreases, which has a negligible impact on the optimal
inventory strategy and cost of the system.

Table 6-2. Impact of parameter µv on optimal inventory strategy and cost.

µv 5 7 9 11 13

(s, S) (4,20) (4,19) (4,19) (3,19) (3,18)

F (s, S) 165.2437 163.4486 161.9897 160.7956 159.8261

Table 6-3 exhibits the influence of the service rate parameter µb

on the optimal inventory control policy during the regular operation
of the system. Other parameters are fixed at λ = 11, µv = 12, η =
1, α = 7, β = 0.8, θ = 6. As presented in Table 6-3, as the
parameter µb escalates, the service rate of the attendant in the
normal working period ascends, the system safety inventory level
s and the system maximum inventory level S both progressively
decline, and the cost gradually reduces, exerting a certain effect on
the optimal inventory strategy and cost of the system.

Table 6-3. Impact of parameter µb on optimal inventory strategy and cost.

µb 10 12 14 16 18

(s, S) (10,30) (6,27) (4,21) (3,16) (2,14)

F (s, S) 197.6323 170.7839 162.4953 158.6780 156.5284

Table 6-4 elucidates the influence of the replenishment parameter
η on the optimal inventory control strategy, while the other parame-
ters are set to λ = 11, µv = 12, µb = 19, α = 7, β = 0.8, θ =
6. As depicted in Table 6-4, with the escalation of parameter
η, the average replenishment time diminishes, the replenishment
arrives punctually, the system safety inventory level (s) increases
marginally but not conspicuously, the system maximum inventory
level (S) drops significantly, and the cost gradually declines, exert-
ing a certain degree of impact on the optimal inventory strategy and
cost of the system.

Table 6-4. Impact of parameter η on optimal inventory strategy and cost.

η 0.5 0.7 0.9 1.1 1.3

(s, S) (2,23) (3,21) (3,19) (3,18) (4,16)

F (s, S) 166.4190 163.2793 161.1324 159.5416 158.2559

Table 6-5 demonstrates the effect of the work leave parameter θ
on the optimal inventory control strategy, while other parameters are
fixed at λ = 11, µv = 12, µb = 19, η = 1, α = 7, β = 0.8. As

depicted in Table 6-5, as the parameter θ increases, the average
working vacation time of attendants declines, the system safety
inventory level s slightly reduces, the system maximum inventory
level S initially rises and then drops, and the cost gradually declines.
However, none of these changes are significant, and the effect on
the optimal (s, S) inventory strategy and cost of the system is
negligible.

Table 6-5. Impact of parameter θ on optimal inventory strategy and cost.

θ 3 5 7 9 11

(s, S) (4,18) (3,19) (3,19) (3,19) (3,18)

F (s, S) 162.2217 160.8182 159.8414 159.1421 158.6192

Table 6-6 presents the influence of the service life parameter α on
the optimal inventory control strategy. Other parameters are fixed at
λ = 11, µv = 12, µb = 19, η = 1, θ = 6, β = 0.8. As shown
in Table 6-6, as the parameter α increases, the average service life of
attendants decreases, the system becomes more prone to failure, the
system safety inventory level s and the system maximum inventory
level S both increase marginally and then tend to stabilize, and
the cost gradually rises, exerting a certain degree of impact on the
optimal inventory strategy and cost of the system.

Table 6-6. Impact of parameter α on optimal inventory strategy and cost.

α 0.5 2.0 3.5 5.0 6.5

(s, S) (2,16) (3,18) (3,19) (3,19) (3,19)

F (s, S) 151.1919 156.1145 158.1745 159.3417 160.0933

Table 6-7 exhibits the effect of the repair time parameter β on
the optimal inventory control strategy, while other parameters are
fixed at λ = 11, µv = 12, µb = 19, η = 1, θ = 6, α = 7. As
shown in Table 6-7, with the increase of parameter β, the average
maintenance duration of the system is curtailed, the time of the
system in the fault period is decreased, the system safety inventory
level s is gradually lowered, the system maximum inventory level
S is gradually raised, and the cost is gradually augmented, exerting
a certain extent of influence on the optimal inventory strategy and
cost of the system.

Table 6-7. Impact of parameter β on optimal inventory strategy and cost.

β 0.2 0.4 0.6 0.8 1.0

(s, S) (6,13) (5,15) (4,17) (3,19) (3,20)

F (s, S) 151.3208 154.4915 157.4570 160.2865 162.9874

It is conspicuously evident from the comprehensive comparison
presented in Figure 6-1 that parameters λ, µv , η, α, and β exert a
significant influence on the optimal cost. The optimal cost function
F (s, S) gradually ascends with the increase of parameter lambda
and α, β, while it descends with the augmentation of parameter µv ,
η. The influence of work leave time and service rate parameters on
the optimal cost function is regarded as insignificant. The most
influential parameters λ and β are analyzed as three-dimensional
space curves to illustrate their effects on safety stock s, maximum
stock S, and cost F (s, S), as shown in Figures 6-2 and 6-3.

VII. CONCLUSION
Based on the M/M/1 queuing inventory system with working

vacation, this paper presents the possibility of failure during
working vacation, investigates the queuing inventory model of the
(s, S) strategy that can fail during working vacation, constructs
the state transition matrix, and establishes the three-dimensional
Markov chain of the customer number, inventory level, and
service status. By using the matrix geometric solution to solve
the steady-state equilibrium condition and the steady-state
probability vector, the average queue length, average inventory
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Figure 6-1. The influence of each parameter on the cost F (s, S).

Figure 6-2. Impact of parameter λ on optimal inventory strategy
and cost.

Figure 6-3. Impact of parameter β on optimal inventory strategy
and cost.

level, replenishment rate, interruption rate, maintenance rate, and
other performance indicators related to queuing inventory were
calculated. Furthermore, the impact of the system parameter
λ, µv, η, α, βθ on the system performance index is explored
through numerical analysis. On this basis, the cost function
is constructed, and the influence of λ, µv, µb, η, α, β, θ on the
optimal cost function F (s, S) is further examined by the genetic
algorithm. The results indicate that the customer arrival parameter
λ, the service rate parameter µb during normal operation, the
replenishment rate parameter η, the service life α, and the
maintenance rate parameter β have significant influences on
the optimal cost. The optimal cost gradually increases with the
increase of the parameters η, α, β and decreases with the increase
of the parameters µb and η. The influences of θ and µv on the
optimal cost function are not significant.
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