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Abstract—Graphs serve as flexible representations for captur-
ing relationships between entities, while graph grammar offers a
rule-based framework for transforming and generating graphs.
In recent years, hyper-edge replacement graph grammar has
emerged as a significant tool for generating both graphs and
hypergraphs. George Paun introduced membrane computing,
also known as the P system, as a computational paradigm
that draws inspiration from biological systems. The intricate
processes observed at the cellular level initially inspired the
development of membrane computing. In this study, we leverage
the ability of the hyper-edge replacement graph rewriting P
system to generate new graphs using minimal-order hyper-edge
rules, resulting in a large collection of graphs. Our primary
objective is to produce cycle, tree, wheel, and broom graphs,
as well as graphs that demonstrate resemblances to cycle, tree,
and wheel graphs. This entails the generation of a multitude of
graph types, including pan, prism, sunlet, tadpole, web, binary,
ternary, k-ary trees, gear, helm, flower, and sunflower.

Index Terms—Hyper-edge, Hyper-edge replacement graph
grammar (HRG), Graph P system, Hyper-edge replacement
graph rewriting P system (HRGRPS).

I. INTRODUCTION

THE concept of graph grammars represents a natural
extension of formal grammars [10], originally devised

for string manipulation, to the realm of graph structures.
This extension furnishes a systematic framework for pre-
cisely modeling local transformations within graphs, thereby
enabling the formalization of graph rewriting processes.
While node replacement and edge replacement [2] constitute
fundamental primitives for graph transformation, hyper-edge
replacement [5] offers a more comprehensive and expres-
sive paradigm. Central to this approach are hyper-edges,
atomic entities characterized by ordered sets of inbound
and outbound connections to nodes, mediated by source
and target functions, respectively. The pioneering work of
Feder and Pavlidis in the early 1970s introduced hyper-
edge replacement graph grammar, a foundational technique
for rewriting both graphs and hypergraphs, which has since
been extensively explored by researchers. This grammar fa-
cilitates the substitution of hyper-edges bearing non-terminal
labels with graphs containing both terminal and non-terminal
hyper-edge labels, thereby generating a vast array of graph
structures. We denote the collective ensemble of graphs
producible by this grammar as the ”hyper-edge replacement
language” (HRL), while the set of all hyper-edge replacement
grammars is referred to as HRG.
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Membrane computing [7], introduced in 1998, is an
innovative computational paradigm inspired by biological
processes. Rooted in the study of cellular mechanisms,
this approach seeks to emulate various cellular activities,
including protein interactions, enzyme functions, membrane
dynamics, evolutionary processes, and molecular transport
across membranes. Professor George Paun of Romania spear-
headed the paradigm, commonly known as the P system.
The initial theoretical framework was established with the
first publication on the subject appearing in 2000. Membrane
computing operates within the domain of distributed parallel
computing devices [6], where activities within membranes
occur concurrently. Information transfer is facilitated through
a hierarchical structure, with messages conveying relevant
data as they move from the inner to the outer regions
of each membrane. The core components of membrane
computing include the membrane structure, multisets, and
rules. Multisets, which initially consist of enzymes, proteins,
or chromosomes, can evolve into various entities such as
strings, arrays, or graphs as they move across membranes.
These multisets undergo transformations over time, governed
by a set of rules as they transition between membranes,
enabling the modeling of complex biological processes.

The integration of hyper-edge replacement grammar and P
systems, known as hyper-edge replacement graph rewriting
P systems (HRGRPS) [8], facilitates computations in a
distributed and parallel manner. Hyper-edges represent con-
nections between different membranes, and rewriting rules
are applied to hyper-edges to enable the transformation and
evolution of the graph structure. This system facilitates the
modeling of complex interactions and parallel processing
inside a framework based on graphs. It is well-suited for
applications in bioinformatics, network modeling, and dis-
tributed computing.

This paper proposes the generation of an exhaustive
collection of cycle graphs and their associated variants,
encompassing pan, tadpole, prism, sunlet, and web graphs.
Additionally, it seeks to create a comprehensive array of
tree graphs, including binary, ternary, and k-ary trees, as
well as wheel graphs and their corresponding derivatives,
such as helm, gear, flower, sunflower, and broom graphs.
The generation of these graphs will be facilitated through
the utilization of the conventional hyper-edge replacement
graph rewriting P systems (HRGRPS) model, augmented
by minimal order rules. This endeavor aims to provide a
systematic and rigorous framework for the creation and
analysis of complex graph structures.

II. PRELIMINARIES

This section provides an overview of the fundamental
concepts and notations employed in this paper, serving as
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a foundation for further exploration. The graphs examined
in this study are characterized by their simplicity and
undirected nature, adhering to a standard representation
denoted by the tuple (V,E), where V and E signifies
the set of nodes and edges respectively. In this context,
each edge establishes a connection between exactly two
nodes, but hypergraphs extend this concept by introducing
hyper-edges, which can connect an arbitrary number of
nodes, thereby enabling the representation of complex
relationships. This is particularly pertinent in contemporary
real-world social networks, where hypergraphs play a
crucial role. Consequently, hyper-edges and hypergraphs
are integral components of hyper-edge replacement graph
grammar, which emerges as the most powerful grammar
among existing alternatives.

Definition 2.1: A hypergraph [4] H defined over a given, but
arbitrary, set of labels C comprises of a tuple (V,E, s, t, l),
where:

• V indicates the finite set of nodes.
• E indicates the finite set of hyper-edges.
• s is the source function, associating each hyper-edge

with its source nodes denoted by s(e).
• t is the target function, associating each hyper-edge with

its target nodes denoted by t(e).
• l denotes the labeling function, assigning each hyper-

edge a label.
Here, e ∈ E and the collection of all hypergraphs defined
over the label set C is symbolized by HC.

Definition 2.2: A hypergraph H belonging to the set HC

is labeled as a handle [4] if it satisifies the conditions:
EH = {e}, sH(e) = beginH , and tH(e) = endH . In this
context, beginH and endH are elements of V ∗, which
denotes the set of all finite sequences of nodes from V .
The pair of numbers (m,n) classifies the handle, where m
and n signifies the count of source nodes and target nodes
associated with e repestively.

Definition 2.3: A hyper-edge replacement grammar (HRG),
as described in [4] comprises four components (N,T, P, S),
where:

• N ⊆ C represents the set of non-terminal hyper-edge
labels.

• T ⊆ C represents the set of terminal hyper-edge labels.
• P denotes the set of production rules, which is finite

and consisting of ordered pairs (A,R), where A ∈ N
and R ∈ HC.

• S ∈ HC denotes axiom or the start graph with (1,1)
handle.

Definition 2.4: The attaching nodes [8] are defined by
a mapping att : E → V ∗, which assigns a sequence of
pairwise distinct attachment nodes att(e) to each e ∈ E.

Definition 2.5: For H ∈ HC , the set of nodes occurring
in the sequence extH = beginH .endH is called the set of
external nodes [4] of H and is denoted by EXTH .

Definition 2.6: If ∀ (A,R) belongs to P , |EXTR| ≤ r,
then a hyper-edge replacement grammar is said to be of

order [4] r for some r belongs to N.

Definition 2.7: The hypergraph language [4] L(HRG) gen-
erated by HRG consist of all terminal labeled hypergraphs
which can be derived from S by applying the production
rules in P .

L(HRG) = {H ∈ HT |S ⇒∗
P H}

In the early 1970s, researchers introduced hyper-edge
replacement, a straightforward approach for rewriting
hypergraphs and graphs. They further developed this
concept of hyper-edge replacement graph grammar into the
hyper-edge replacement graph P system, investigating the
generation of string graph languages through hyper-edge
replacement graph grammars and the non-deterministic
parallelism mode of rewriting within P systems.

Definition 2.8: A hyper-edge replacement graph
rewriting P system (HRGRPS) [9] is a construct
Π = (NH , VH , TH , µ,M1,M2, ..,Mn, R1, R2, .., Rn, (n, d),
i0) where:

• NH is a finite set of node labels.
• VH is a finite set of non-terminal and terminal hyper-

edge labels.
• TH is a finite set of terminal hyper-edge labels.
• µ is the membrane structure with n membranes.
• Mi is the finite set of (1,1) hyper-edges over VH initially

present in the region i, where i = 1, 2, .., n.
• d is the depth of the membranes, which are labeled

with numbers from the set {1, 2, .., n}, with the skin
membrane being labeled as 1.

• Ri is the hyper-edge replacement graph rule, denoted as
Ri = (A → B(tgt)), where A is replaced with graph
B with the help of attachment instructions.

• tgt ∈ {here, out} ∪ {inj |1 ≤ j ≤ n}.
• i0 is the output membrane.
This paper will proceed to elucidate the definitions and

present corresponding figures for the distinct categories of
graphs that will be produced and analyzed herein.
Definition 2.9: A cycle graph [3] Cn, also referred to as an
n− cycle, is a graph with n nodes that forms a single cycle
connecting all nodes.

C3 C4 C5

Fig. 1. Cycle graphs

Definition 2.10: The n-pan graph [1] is created by connect-
ing a cycle graph Cn to a singleton graph using an edge.

n = 3 n = 4 n = 5

Fig. 2. Pan graphs

Definition 2.11: A prism graph [1], also called a circular
ladder graph and denoted by CLn, is a graph corresponding
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to the skeleton of an n-prism.

n = 3 n = 4

Fig. 3. Prism graphs

A pendant vertex is a vertex with degree one, connected to
only one other vertex. A pendant edge is the edge connected
to this vertex, with one endpoint having degree one.

Definition 2.12: The n-sunlet graph [1] is a graph with 2n
vertices created by connecting n pendant edges to a cycle
graph Cn.

n = 3 n = 4

Fig. 4. Sunlet graphs

Definition 2.13: The (m,n)-tadpole graph [1], also known
as a dragon graph or kite graph, is formed by linking a cycle
graph Cm to a path graph Pn with an edge between them.

(3, 1) (3, 2) (3, 3)

(4, 1) (4, 2) (4, 3)

(5, 1) (5, 2) (5, 3)

Fig. 5. Tadpole graphs

Definition 2.14: The n-web graph [1] is used as a reference
to the stacked prism graph Y(m,n) = Cm�Pn, where Cm

represents a cycle graph, Pn represents a path graph, and �
denotes a graph Cartesian product.

n = 3 n = 4

i

Fig. 6. Web graphs

Definition 2.14: A binary tree [14] is an ordered tree where
each node has at most two children.

d = 2 d = 3d = 1

Fig. 7. Binary tree

Definition 2.15: A ternary tree [13] is an ordered tree where
each node has at most three children.

d = 2d = 1

Fig. 8. Ternary tree

Definition 2.16: In graph theory, a k-ary tree [11] is indeed
an ordered tree where each node has no more than k children.

Definition 2.17: The n-wheel graph [3] is a type of graph
where all the vertices in a cycle are linked to a central
universal vertex.

n = 3 n = 4 n = 5

Fig. 9. Wheel graphs

Definition 2.18: The n-gear graph [1], often referred to as a
bipartite wheel graph, is a wheel graph with one additional
graph vertex inserted between each pair of neighboring graph
vertices of the outer cycle.

n = 3 n = 4 n = 4

Fig. 10. Gear graphs

Definition 2.19: The helm graph [1] Hn is created by adding
a pendant edge to each node of a n-wheel graph.
Definition 2.20: The flower graph [1] Fln is created by
connecting each pendant vertex to the apex of the helm graph
Hn.
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n = 3 n = 4

Fig. 11. Helm graphs

n = 5

Fig. 12. Flower graph

Definition 2.21: The sunflower graph [1] Sfn is created by
adding n pendant edges to the apex of the flower graph Fln.

n = 5

Fig. 13. Sunflower graph

Definition 2.22: A Broom Graph [14] Bn,d is a graph
consisting of n vertices. It contains a path P comprising d
vertices and (n−d) pendant vertices. These pendant vertices
are adjacent to either the origin u or the terminus v of the
path P .

(B7,4)

Fig. 14. Broom graph of order (7,4)

III. GENERATIVE SYSTEM OF SPECIAL CLASSES OF
GRAPHS USING HRGRPS

This section aims to generate an extensive collection of
graphs associated with cycle, tree, and wheel structures
utilizing the hyper-edge replacement graph rewriting P
system (HRGRPS). The HRGRPS is instantiated in four
distinct systems: ΠC for cycle-related graphs, ΠT for tree-
related graphs, ΠB for classes of broom graphs, and ΠW

for wheel-related graphs. Although the cycle-related graphs
are generated using the same system ΠC , their disparate
structural properties necessitate unique initial production
rules. Consequently, cycle, pan, tadpole, and prism graphs
are generated using a shared initial production rule, whereas
sunlet and web graphs require a distinct initial production
rule to accommodate their distinct features. Similarly, the
tree-related graphs and broom graphs employ disparate
initial rules for generating binary, ternary, and k-ary trees
and classes of broom graphs, respectively. Analogously,
wheel and gear graphs share an initial production rule,
whereas helm, flower, and sunflower graphs require a distinct
initial production rule to capture their unique features.

GENERATING SYSTEM FOR CYCLE-RELATED
GRAPHS:

Theorem 3.1 The set of all cycle Cn, n-Pan, (m,n)-
tadpole, n-prism, n-sunlet, and n-web graphs can be
generated by hyper-edge replacement graph rewriting P
system using three membranes with minimal order rules.

Proof: The HRGRPS is a construct
ΠC = ({1, 2, 3, 4, 5, 6}, {S1, S2, S3, S4, a, b, c}, {a, b, c},
[1[2]2][3]3]1], R1, R2, R3, R4, R5, TS1 , TS2 , TS3 , TS4 , (3, 1), 1)

The System ΠC comprises of three membranes. Within the
first membrane, there exists a non-terminal rule, denoted as R1,
which contains two graphs. The initial graph encompasses the non-
terminals S1, S2 and S3 and the secondary graph involves non-
terminals S1,S2, S3 and S4. Moving to the second membrane, it
contains non-terminal rule R2 with non-terminal S1 and terminal
rules TS1 , TS3 and TS4 . In the third membrane, non-terminal rules
R3 with non-terminal S2, and R4, with non-terminal S4, and R5,
with non-terminal S4 are present along with terminal rule TS2 .

ORR1 : S →

1

3

S3

2

S1

S2

1

3

S3

2

S2

S4

4

S1

6

c

5

c

Fig. 15. Initial non-terminal production rule in the first membrane with
handle S.

Initiating from the first graph in rule R1 yields a set of graphs
comprising cycle graphs, n-Pan graphs, (m,n)-tadpole graphs, and
n-prism graphs. On the other hand, commencing with the second
graph in rule R1 results in the generation of n-sunlet graphs and
web graphs.
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The Attachment instructions for the given production rules
are as follows:

• R2 : ((3, 1− 1, 2), here) and TS1 : ((1, 1− 2, 2), out)

• R3 : ((2, 2− 1, 3), here) and TS2 : ((1, 3− 2, 2), in2)

• R4 : ((4, 1− 6, 2), here) and TS3 : ((1, 1− 2, 3), here)

• R5 : ((1, 1− 2, 2), here) and TS4 : ((3, 1− 2, 2), here)

R2 : S1 →

TS1 →

TS3
→

TS4 →

3

1

a

2S1

1 2a

1 2a

1 2b

Fig. 16. Non-terminal and terminal production rules in the second
membrane.

Generating procedure for the set of all cycle graphs:
To generate a cycle graph of order 3, the initial graph of rule

R1 is applied to the handle S within the first membrane. The
resultant graph produced, proceeds to the third membrane, where
it applies the terminal rule TS2 once, before transitioning to the
second membrane. In the second membrane, it applies the terminal
rules TS3 , TS1 once and comes out to the skin membrane.

For the generation of a cycle graph of order 4, the initial graph
of R1 is applied once. And it enters the third membrane, where
it employs the rule R3 once, before advancing to the second
membrane. Inside the second membrane, it utilizes the termimal
rules TS3 and TS1 once before it comes out.

In a general case, the cycle graph of order n is generated by
using the initial graph of R1 once. Subsequently, the non-terminal
rule R3 is apllied n-3 times within the third membrane, along with
the terminal rule TS2 once. Upon entering the second membrane,
the terminal rules TS3 and TS1 are each used once.

Generating procedure for the set of all pan graphs:
The initial graph from rule R1 is utilized on the handle S

in the first membrane to produce a pan graph of order 3. The
produced graph then transitions to the third membrane. Within this
third membrane, it employs the terminal rule TS2 , subsequently
advancing to the second membrane. In the second membrane, the
produced graph adheres to rule R2 and remains there, following
which it applies the terminal rules TS3 and TS1 and comes out.

In a general sense, the pan graph of order n is generated by
employing the initial graph of R1 once, resulting in a graph
featuring non-terminals S1, S2, and S3. Subsequently, it progresses
to the third membrane, where it utilizes R3 n− 3 times along with

R3 : S2 →

R4 : S3 →

R5 : S4 →

TS2
→

2

3

S2

1

a

1

3

a

2

a

S4

4

c
a

5

c

6

c

1

3

b

2

S4

4

c

1 2

b

Fig. 17. Non-terminal and terminal production rules in the third membrane.

TS2 once. Afterward, it transitions to the second membrane, where
it employs each of the rules R2, TS3 and TS1 once to generate the
desired nth order.

Generating procedure fornthe set of all tadpole graphs:
The (m,n) order tadpole graph is created by initiating the

process with the initial graph of R1 once. The resulting graph then
proceeds to the third membrane, where it undergoes R3 n-3 times
and utilizes TS2 once. Following this, it advances into the second
membrane, applying the R2 rule m times, TS3 and TS1 once.

Generating procedure for the set of all prism graphs:
The prism graph of order n is produced through the initial

application of the graph from R1. Subsequently, this resultant
graph traverses into membrane three, where it engages R4 once, as
well as employing R3 and R5 rules once each. Following this, it
makes use of TS2 before transitioning into the second membrane.
Once within the second membrane, it elegantly employs the
terminal rules TS3 , TS4 , and TS1 each once.

Generating procedure for the set of all sunlet graphs:
The sunlet graph of the nth order is produced by utilizing the

secondary graph of R1 on the handle S within the first membrane,
following which it transitions to the third membrane. There, it
applies rule R5 n-3 times and TS2 once before moving to the
second membrane. Within the second membrane, it proceeds to
employ all terminal rules TS3 , TS4 , and TS1 once.

Generating procedure for the set of all web graphs:
The web graph of order n is generated by employing the

secondary graph of R1 on the handle S in the first membrane.
It then progresses to the third membrane, where it applies rule
R4 once, R5 2n-6 times, and TS2 once before transitioning to
the second membrane. Within the second membrane, it proceeds
to utilize each terminal rule TS3 , TS4 , and TS1 once.
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GENERATING SYSTEM FOR TREE-RELATED
GRAPHS:

Theorem 3.2 The set of binary, ternary and k-ary
trees can be generated by hyper-edge replacement graph
rewriting P system using three membranes with minimal
order rules.

Proof: The HRGRPS is a construct
ΠT = ({1, 2}, {S1, a, b}, {a, b}, [1[2]2][3]3]1], R1, R2, TS1 ,
(2, 1), 1)

The System ΠT consist of two membranes. Within the first
membrane, there exists a non-terminal rule, denoted as R1 and
it contains three graphs. All the three graphs encompasses the
non-terminal S1. The second membrane consist of a non-terminal
rule R2 with non-terminal S1 and a terminal rule TS1 . In this case
R2 is made up of three graphs.

R1 : S → OR OR

1

2

S1

1

2

S1

2

S1

1

2

S1

2

S1

2

S1

Fig. 18. Initial non-terminal production rule in the first membrane with
handle S for generating the set of all binary and ternary trees.

Starting with r1 of R1 produces a set of binary graphs with a
single child, and starting with r2 of R1 produces a set of binary
graphs with two children. A set of ternary graphs is produced by
taking r3 of R1.

The Attachment instruction for the given production rule are as
follows:

R2 : ((1, 1− 1, 2), here) and TS1 : ((1, 1− 2, 2), out)

Generating procedure for the set of binary trees:
• Binary tree with one child:

To generate a binary tree with one child at a depth of 2,
apply the initial rule r1 of R1 within the first membrane.
Subsequently, it enters the second membrane and executes the
rule r4 once, residing within the second membrane due to the
existence of the target ‘here’. It employs the terminal rule TS1

and emerges out.
To generate a binary tree with a single child at a depth of n,

R2 : S1 → OR OR

TS1 →

1

1

a

1

2

S1

2

S1

1

2

S1

2

S1

2

S1

2

S1

1

a

1

a

1 2

b

Fig. 19. Non-terminal and terminal production rule in the second mem-
brane.

execute the first rule r1 from R1 in the first membrane. After-
wards, it passes through the second membrane and iteratively
applies the rule r4 n− 1 times, while employing the terminal
rule TS1 , until finally exiting.

• Binary tree with two children:
Applying the initial graph r2 of rule R1 to the handle S in
the first membrane yields a binary tree of depth 2. Once it
enters the second membrane, the generated resultant graph
applies the non-terminal rule r5 of R2 and terminal rule TS1

once.
The binary tree of depth n with two children can be obtained
by applying the rule r2 of R1 once and r5 of R2 n− 1 times
and TS2 once.

Generating procedure for the set of ternary trees:
• Ternary tree with one child:

The initial graph r3 of rule R1 is applied to the handle S in
the first membrane in order to create a ternary tree of depth
2. The resulting graph applies the non-terminal rule R2 when
it enters the second membrane. A ternary tree of depth two
with one child is produced if r4 of R2 is used twice. The
ternary tree of depth n with one child will be generated from
applying the previously stated rule n− 1 times.

• Ternary tree with two children:
To generate a ternary tree of depth 2 with two children if it
employs r5 of R2 and TS1 once. We shall obtain the ternary
tree of depth n with two children if we apply the non-terminal
rule r5 of R2 n− 1 times and TS1 once.

• Ternary tree with three children:
To generate a ternary tree of depth 2 with three children
if it employs r6 of R2 and TS1 once. We shall obtain the
ternary tree of depth n with three children if we apply the
non-terminal rule r6 of R2 n− 1 times and TS1 once.

Generating procedure for the set of k-ary trees:
For generating the set of k-ary trees, start with the generalized rule
of having k children as the initial graph. After entering the second
membrane it uses the non-terminal rule with k children and terminal
rule TS1 and emerges out.

GENERATING SYSTEM FOR WHEEL-RELATED
GRAPHS:

Theorem 3.3 The set of all n-wheel, n-gear, helm
Hn, flower Fln and sunflower Sfn graphs can be generated
by hyper-edge replacement graph rewriting P system using
three membranes with minimal order rules.

Proof: The HRGRPS is a construct
ΠW = ({1, 2, 3, 4, 5, 6}, {S1, S2, S3, a, b, c}, {a, b, c},
[1[2]2][3]3]1], R1, R2, R3, R4, R5, TS1 , TS2 , TS3 , (3, 1), 1)

The System ΠW consist of three membranes. Two non-terminal
rules, designated R1 with non-terminal S1 and R3 with non-
terminals S2 and S3, make up the system’s first membrane. R1

contains two graphs: the initial graph and the secondary graph. Both
graphs include the non-terminal S1 and the second membrane has
terminal rules TS1 and TS3 , as well as non-terminal rules R2 with
non-terminal S1, and R5 with non-terminal S3. In this case, R2

and R5 are made up of two graphs: the primary and the secondary
graphs. Moving on to the third membrane, it has a terminal rule
TS2 and a non-terminal rule R4 with non-terminals S2 and S3.

Beginning with the initial graph in R1, the set of all wheel graphs
is generated. Furthermore, commencing with the secondary graph
in R1 produces the complete set of gear graphs. Starting with the
rule R3, the set of helm, flower, and sun-flower graphs is generated.

The Attachment instruction for the given production rules are
as follows:
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R1 : S →
OR

2 4

bb

2 4

bb
3

1

a

a S1

3

1b b

a

a a

5 6

Fig. 20. Initial non-terminal production rule in the first membrane with
handle S for generating the set of all wheel and gear graphs.

R3 : S →

4 2

bb

3

5

S3

1

a

a S2

Fig. 21. Initial non-terminal production rule in the first membrane with
handle S for generating the set of all helm, flower and sunflower graphs.

• R2 : ((1, 1− 2, 4), here) and TS1 : ((1, 1− 2, 4), out)

• R4 : ((1, 1− 2, 4), here) and TS2 : ((1, 1− 2, 4− 4, 2), in2)

• R5 : ((1, 3− 2, 5− 3, 1), here) and TS3 : ((1, 3− 2, 5), out)

R2 : S1 →

R5 : S3 →

TS1 →

TS3 →

OR

OR

1

4

S1

2

a

1

4

S1

2

a

a
bb

3

2

3

a 1

S3

2

3

a

4

a

1

S3

1 2

a

1 2

c

Fig. 22. Non-terminal and terminal production rules in the second
membrane.

Generating procedure for the set of all wheel graphs:
In order to produce a wheel graph of order 3, the handle S in

the first membrane is subjected to the initial graph of rule R1.
After entering the second membrane and applying the primary
graph of non-terminal rule R2 once, the graph persists in that
region as the specified target is ’here’. Finally, it applies the

R4 : S2 →

TS2
→

1

4

S2

2

a

b

6

c

5

S3

1

4

a

2

a

b

6

S3

5

S3

Fig. 23. Non-terminal and terminal production rules in the third membrane.

terminal rule TS1 only once before exiting the output membrane.
To produce a wheel graph of order 4, the initial graph of R1 is

utilized only once. Additionally, it traverses the second membrane,
where it applies the primary graph of non-terminal rule R2 twice
and the terminal rule TS1 once.

The wheel graph of order n is produced by iterating the initial
graph of R1 once and applying the primary graph of non-terminal
rule R2 and terminal rule TS1 in the second membrane n-2 times
and once, respectively.

Generating procedure for the set of all gear graphs:
The gear graph of order n is generated by iterating the initial

graph of R1 once and applying the secondary graph of non-terminal
rule R2 and terminal rule TS1 in the second membrane n-2 times
and once, respectively.

Generating procedure for the set of all helm graphs:
Applying rule R3 to the handle S in the skin membrane

generates a helm graph of order 3. The graph produced passes
through the third membrane, applies the terminal rule TS2 once,
and proceeds to the second membrane. There, it applies the rule
TS3 thrice and then exits.

The helm graph of order n is produced by using the non-terminal
rules R3 once, R4 n-3 times and the terminal rules TS2 once and
TS3 n times.

Generating procedure for the set of all flower graphs:
The flower graph of order n is produced by using the non-

terminal rules R3 once, R4 n-3 times and initial graph of R5 n
times and the terminal rules TS2 once and TS3 n times.

Generating procedure for the set of all sunflower graphs:
The sunflower graph of order n is produced by using the

non-terminal rules R3 once, R4 n-3 times and secondary graph of
R5 n times and the terminal rules TS2 once and TS3 n times.

GENERATING SYSTEM FOR CLASSES OF BROOM
GRAPHS:

Theorem 3.4 The set of all broom graphs Bn,d can
be generated by hyper-edge replacement graph rewriting P
system using three membranes with minimal order rules.

Proof: The HRGRPS is a construct
ΠB= ({1, 2, 3, 4}, {S1, S2, a, b}, {a, b}, [1[2]2][3]3]1],
R1, R2, TS1

, TS2
, (3, 1), 1)

The system denoted as ΠB consists of three membranes.
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The initial membrane has a non-terminal rule R1 that in-
volves the non-terminals S1 and S2. The second membrane is
composed of terminal and non-terminal rules, denoted as TS1

and R2 accordingly, where S1 is the non-terminal symbol
associated with R2. The third membrane consists of terminal
and non-terminal rules TS2 and R3, respectively, with the
non-terminal S2.

R1 : S →
1 2S1

4

S2

Fig. 24. Initial non-terminal production rule R1 in the first membrane with
the handle S.

R2 : S1 →

TS1 →

1 2S1 3a

1 2a

Fig. 25. Non-terminal and terminal production rules R2 and TS1
in the

second membrane.

R3 : S2 →

TS2 →

3 4S2

1

b

3 4b

Fig. 26. Non-terminal and terminal production rules R3 and TS2
in the

third membrane.

The Attachment instruction for the given production rules
are as follows:

• R2 : ((2, 1− 3, 2), here) and TS1
: ((1, 1− 2, 2), in3)

• R3 : ((3, 3− 4, 1), here) and TS2 : ((3, 3− 4, 4), out)

Generating procedure for the broom graphs of order
Bn,2:

For generating a broom graph with an order of B3,2

employ the non-terminal production rule R1 on the handle
S placed in the initial membrane. After that, it passes
through the second membrane and employs the rule TS1

to
terminate the non-terminal S1. Subsequently, it proceeds to
the third membrane and employs the rule TS2 to terminate
the non-terminal S2.

The broom graph of order B4,2 is generated by applying

the rule R1 to the handle S. Following that, it uses the rule
TS1

once in the second membrane and applies the rules R3

and TS2
once in the third membrane.

To generate a broom graph of order B5,2 is generated
by applying the rule R1 to the handle S. Subsequently,
it applies the rule TS1 once in the second membrane and
employs the rule R3 twice, as well as TS2 once in the third
membrane.

The broom graph of order Bn,2 is generated by using
the rule R1 to the handle S. Next, it applies the rule TS1

once in the second membrane and uses the rule R3 n − 3
times and TS2 once in the third membrane.

Generating procedure for the broom graphs of order
Bn,3:

The broom graph of order B4,3 is produced by applying
the non-terminal production rules R1 to the handle S in the
initial membrane. After that, it applies the non-terminal rule
R2 and the terminal rule TS1

, once in the second membrane.
Then, it enters the third membrane uses non-terminal rule
R3 once and terminal production rule TS2 once.

To produce the broom graph of order B5,3, apply the
non-terminal production rules R1 to the handle S in the
initial membrane. Then, it applies the non-terminal rule R2

and the terminal rule TS1
, once in the second membrane.

After that, it enters the third membrane uses non-terminal
rule R3 twice and terminal production rule TS2 once.

To produce the broom graph of order B6,3, apply the
non-terminal production rules R1 to the handle S in the
initial membrane. Next, it applies the non-terminal rule R2

and the terminal rule TS1
, once in the second membrane.

Subsequently, it enters the third membrane uses non-terminal
rule R3 thrice and terminal production rule TS2 once.

The broom graph of order Bn,3 is produced by applying
the non-terminal production rules R1 to the handle S in the
initial membrane. Then, it applies the non-terminal rule R2

and the terminal rule TS1 , once in the second membrane.
After that, it enters the third membrane uses non-terminal
rule R3 n− 3 times and terminal production rule TS2

once.

Generating procedure for the broom graphs of order
Bn,4:

For generating the broom graph of order B5,4, use the
rule R1 twice in the first membrane, R2 twice and TS1

once
in the second membrane and R3 and TS2

once in the third
membrane.

The broom graph of order Bn,4 is generated by applying
the non-terminal rules R1 once, R2 twice, R3 n − 3 times
and the terminal rules TS1

and TS2
once.

Generating procedure for the broom graphs of order
Bn,d:

The broom graph of order Bn,4 is generated by applying
the non-terminal rules R1 once, R2 d − 2 times, R3 n − 3
times and the terminal rules TS1 and TS2 once.

IV. CONCLUSION

The proposed research aims to develop a comprehensive
repository of cycle, tree, and wheel graphs, along with their
analogous structures, including pan, tadpole, prism, sunlet,
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and web graphs, as well as binary, ternary, and k-ary trees,
gear, helm, flower, sunflower, and broom graphs. Cycle
and wheel graphs are well-regarded for their applicability
in analyzing complex game structures, particularly those
involving sequential player interactions, thus aiding in the
examination of strategic decision-making, equilibria, and
outcomes. Both game theory and networking widely utilize
binary and ternary trees, providing robust frameworks for
representing and managing intricate information structures.
Moreover, the modeling of social and communication net-
works employs broom graph structures, which facilitate the
analysis of coalition formation and power dynamics within
these networks. In game theory, these graphs assist in the
visualization and optimization of decision-making processes,
while in networking, they play a critical role in ensuring
efficient data handling and routing. Consequently, future
research will concentrate on generating all locally similar
graphs to cycle and wheel graphs, which hold significant
implications for network formation and resource allocation
within the context of game theory.
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