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Abstract—As an extension and further development of
the network evolution mechanism at the link level, link
prediction is experiencing significant growth in both physics
and computer science domains. In this study, we introduce a
novel similarity metric that employs the Local Generalized
Gravity Model, which computes similarity scores based on
the local clustering coefficient and the spreading ability of
nodes within the network. We evaluate its performance on
eight real-world networks, and the results demonstrate that
our proposed algorithm achieves higher prediction accuracy
than other benchmarks based on the AUC evaluation crite-
rion.

Index Terms—Complex network, Generalized gravity
model, Spreading ability, Link prediction

I. INTRODUCTION

COMPLEX networks have emerged as indispensable
tools for analyzing complex systems, providing a

comprehensive framework for representation across di-
verse real-world domains, including financial networks[1],
social networks[2], and air transportation networks[3],
among others. The formalized graphical descriptions of-
fered by complex networks have significantly enhanced
their efficacy in depicting these systems. One of the pri-
mary objectives in modeling complex systems as networks
is to unravel the intricate interplay between network struc-
ture and functionality. This focus has spurred the devel-
opment of network science, establishing it as a paramount
interdisciplinary research field. In the context of modeling,
complex networks utilize nodes to represent individuals or
entities within complex systems such as bacteria, neurons,
roads, airlines, and computers. These nodes are inter-
connected by edges that signify interaction relationships
governed by specific rules or connections. For instance,
in scientific collaboration networks, nodes represent au-
thors and edges denote collaborations between them; in
neural networks, nodes represent neurons and edges in-
dicate interactions among them; in road transportation
networks, nodes correspond to cities and edges represent
the connections between those cities. Research in network
science encompasses various aspects, including commu-
nity detection[4], identifying influential spreaders[5][6],
synchronization[7] and link prediction[8]. Among these,
link prediction stands out as one of the paradigmatic
challenges[9]. It involves estimating the probability of
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existing but undiscovered connections or potential future
connections within a given network based on its structure
and existing link information. Investigations within this
domain are essential for deciphering the evolutionary
trends of networks and for forecasting their prospective
actions. To clarify this, a network diagram is depicted in
Fig.1. The left graph depicts the actual linkages within
the current network, consisting of five connecting edges
formed between five nodes, thereby constituting a non-
complete graph. We hypothesize that certain links may be
missing from this graph. Given this premise, we implement
a link prediction technique. Through comprehensive anal-
ysis of the network and subsequent deductions, we derive
the predictive outcomes illustrated in the right graph. The
red dashed lines signify the connections present in the
network but yet to be identified. To forecast such potential
connections, a similarity measure must be given to every
pair of nodes that lack a direct link in the network. These
similarity values are then ranked in descending order,
with the assumption assumed that the pairs at the top
of the ranking have the highest probability of forming a
connection. The prediction of connections plays a crucial
role both theoretically and practically. Theoretically, it
serves as an robust analytical framework for dissecting
the intricacies of complex network in greater detail. Practi-
cally, link prediction can be employed to forecast potential
connections that may arise in evolving networks over time.
For instance, within social networks, the ability to predict
links can be utilized to enhance privacy management[10].
In the context of spam email detection, analyzing the
relationships between email senders and recipients can aid
in determining the likelihood of an email being classified
as spam[11]. Additionally, in recommendation systems,
the quality of recommendations can be improved by
suggesting new friends to users based on their historical
browsing behavior or by recommending new products on
shopping platforms[12].

In recent years, numerous algorithms have been pro-
posed for predicting network connections. However,
achieving precise predictions of node connections remains
a challenging task. Among these algorithms, similarity
indices based on network structure have attracted con-
siderable interest because of their reliable performance
and efficient computation. These indices are generally
categorized into three types: local, global, and random
walk-based similarities. Local similarity indices primarily
focus on the immediate neighborhood structure of a node,
resulting in lower computational complexity compared
to their global counterparts. This characteristic makes
them advantageous for handling large networks, facili-
tating swift and efficient link predictions. In contrast,
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global similarity indices necessitate consideration of the
entire network structure, thereby demanding higher com-
putational resources. Moreover, random walk algorithms
require multiple iterations[13], which result in increased
computational costs, especially in large-scale networks.
Local similarity indices demonstrate exhibit heightened
sensitivity to local network changes, enabling them to can
accurately reflect similarity relationships between nodes
and maintain robust performance in the presence of local
structural changes or noise within the network. Given on
these advantages, this paper focuses on methodologies
grounded in local similarity principles. The fundamental
premise of local similarity is straightforward: nodes with
more common neighbors are considered more similar and
are more likely to be connected. The most basic measure
of similarity, which relies on common neighbors, is known
as the Common Neighbors Index (CNI)[14]. Building
on this concept, several metrics take into account the
influence of node degrees at both ends, including the
Preference Attachment Index (PAI)[15], Hub Depressed
Index (HDI)[16], Hub Promoted Index (HPI)[16], Soren-
son Index (SI)[17] and Jaccard Index (JI)[18]. Recently,
Xu et al. introduced a novel algorithm known as the Local
Neighbor Gravity Model (LNGM), which employs the
principles of the gravity model[19]. Drawing inspiration
from the law of universal gravitation, this algorithm in-
tegrates neighborhood and path information. It considers
node’s degree as its mass and the distance between nodes,
based on the shortest path, to identify influential spread-
ers. However, these methods predominantly depend on
common neighbor information to extract local topological
characteristics of nodes, which results in an underutiliza-
tion of node-specific information extraction and ultimately
limits predictive accuracy. In contrast, Li et al. recently
introduced a generalized gravity centrality, positing that
the spreading ability provides a more precise measure
of local information than node degree alone[20]. Further-
more, research indicates that local clustering coefficients
significantly influence node spreading ability[21].

Building on the preceding discourse, this study employs
the spreading ability of nodes as an analogy for to mass
in the gravity model. The capacity of a node to propagate
information is influenced by two key factors: its degree and
its local clustering coefficient. Nodes with identical de-
grees but higher local clustering coefficients exhibit denser
connections among their neighbors, thereby enhancing the
likelihood of information dissemination within these local
networks rather than externally. Consequently, the impact
of that node is reduced. Within the scope of link prediction
challenges, this implies a reduced similarity between two
nodes. Therefore, leveraging the spreading ability of nodes
to predict potential links between them is underpinned by
robust theoretical foundations.

The layout of this paper is arranged in the subsequent
order: Section II presents several classical link prediction
indices utilized for comparison, accompanied by a descrip-
tion of the generalized gravity model and our proposed
algorithm. Section III offers an experimental evaluation
of the generalized gravity model. Finally, Section IV
summarizes and discusses the results.
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Fig. 1. Link prediction schematic diagram. The red dashed lines
represent predicted future edges.

II. METHOD

The gravity model is widely utilized to describe interac-
tions among objects with mass. In this study, we consider a
node’s ability to spread information as its mass within the
gravity model framework, and the length of the shortest
path connecting two nodes signifies the distance as per
the model’s parameters. The spreading ability of nodes
is quantified using local clustering coefficients and node
degrees. This paper aims to demonstrate that assessing
mass in terms of node spreading ability yields more
accurate prediction outcomes compared to solely using
node degree as a measure of mass.

The network’s local clustering coefficient for node i,
which has a degree of ki, is specified as:

Ci =
2Ei

ki (ki − 1)
, (1)

where Ei and ki (ki − 1) /2 denote the current count of
edges and the theoretical maximum of potential edges
among the neighbors of node i, respectively.

The spreading ability of the node i is defined as

sp(i) = exp(−qC(i))k(i), (2)

where q is an adjustable parameter with q ≥ 0, allowing
for flexible modification in various applications. In this
work, we set q = 2 for calculation[20].

The influence between nodes in the network is defined
as follows:

Gij =
sp(i)× sp(j)

d2ij
, (3)

where dij is the shortest distance between the nodes i and
j. The similarity calculation score is defined as

sij = α
∑

dim≤2

Gmj/ki + β
∑

djm≤2

Gim/kj , (4)

where α, β∈(0,1) and α+β = 1. α is a variable parameter
that can be adjusted according to the requirements of
practical scenarios.

A. Compared algorithm

We perform a comparative analysis of our suggested
algorithm against the subsequent algorithms.

1) Common Neighbors Index(CNI): Regarding two
nodes within the network, their neighbor sets are defined
as Γ(i) and Γ(j). The similarity score is calculated by
tallying the common neighbors among the two distinct
nodes. The formula for computation is presented below:

sij = |Γ(i) ∩ Γ(j)| , (5)
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2) Preference Attachment Index(PAI): The application
of the preferential attachment index can result in a scale-
free network. The core concept behind the preferential
attachment index is that the likelihood of a new connection
forming with a node is directly proportional to the node’s
degree k. Thus, the chance of a new link forming between
nodes i and j is relative to the multiplication of their
respective degrees. The computation of the similarity score
between a pair of nodes is specified as follows:

sij = kikj , (6)

3) Hub Depredded Index(HDI): This metric is em-
ployed to portray the topological resemblance between
each set of reactants within the metabolic network. It is
determined by the proportion of the shared neighbors of
nodes i and j to the highest degree among the two nodes.
The formula for calculating the similarity score between
a pair of nodes is outlined below:

sij =
|Γ(i) ∩ Γ(j)|
max{ki, kj}

, (7)

4) Hub Promoted Index(HPI): HPI is defined similarly
to the HDI, the difference is that the denominator takes
the minimum of the two node degrees, i.e.

sij =
|Γ(i) ∩ Γ(j)|
min{ki, kj}

, (8)

5) Sorenson Index(SI): In the Sorenson Index, the
similarity score for two nodes is derived by doubling the
count of their mutual neighbors and then dividing by the
aggregate of their individual degrees. The expression is
delineated below:

sij =
2× |Γ(i) ∩ Γ(j)|

ki + kj
, (9)

6) Jaccard Index(JI): The Jaccard coefficient measures
the similarity score between two nodes i and j by taking
the ratio of common neighbors to the union of all neigh-
bors of the nodes. The calculation formula is as follows:

sij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

, (10)

7) Local Neighbors Gravity Model(LNGM): The local
neighbors gravity model consider the combined influence
of 1-hop and 2-hop neighbor nodes. The influence Gij of
nodes i and j in the network is outlined below:

Gij =
k(i)× k(j)

d2ij
, (11)

the potential for future connections between nodes i and
j is characterized as

sij = α
∑
dib≤2

Gbj/ki + (1− α)
∑
djb≤2

Gib/kj . (12)

B. Datasets

In order to assess the algorithm’s forecasting capabili-
ties, eight classic real-world network datasets have been
selected. The data descriptions are as follows:

1) USAir: The USAir dataset represents the U.S. air
transportation network, where each node corresponds to an
airport, and edges between nodes indicates the existence
of direct flights between the corresponding airports[22].

2) NS: The NS dataset depicts a collaborative network
of scientists, emphasizing two review articles and incorpo-
rating additional significant literature. Nodes in this net-
work represent scientists, and edges signify collaboration
relationships among them[23].

3) Email: The Email dataset illustrates a network of
email interactions, with nodes signifying users and edges
representing email exchanges among them[24].

4) PB: The PB network represents a network of U.S.
political blogs, with nodes representing distinct blog pages
and edges indicating hyperlinks that interconnect these
pages[25].

5) Facebook: The Facebook network dataset captures
a social networking landscape, with nodes denoting
users and edges signifying connections due to mutual
following[26].

6) Power: The Power Network represents the Western
U.S. Power Grid, with nodes representing substations or
converter stations, and edges depicting the high-voltage
lines connecting them[27].

7) Jazz: The Jazz network depicts collaborations
among jazz musicians, where nodes representing indi-
vidual musicians and edges represent the collaborative
relationships between them[28].

8) Wikivote: The Wikivote dataset represents
Wikipedia, an open-source encyclopedia edited by a
global community of volunteers. The network focus
on active users who participate in the nomination and
voting process for administrative roles. During elections,
users express support, opposition, or neutrality towards
candidates through public votes. The individual with
the highest number of votes becomes the appointed
administrator. This dataset delineates a social networking
platform, where nodes stand for users, and edges signify
the voting interactions among them[29].

Table I summarizes the key characteristics of the se-
lected datasets, characterized by: N for the node count,
M for the edge count, C for the clustering coefficient, k
for the average degree, d for the average network distance,
and r for the assortative factor.

TABLE I
CHARACTERIZATION OF EIGHT REAL NETWORKS.

Datasets N M C k d r

USAir 332 2126 0.7494 12.8072 2.7381 -0.2079

NS 379 914 0.7981 4.8232 6.0419 -0.0817

Email 1133 5451 0.2540 9.6222 3.6060 -0.0782

PB 1222 16741 0.3600 27.3552 2.7375 -0.2213

Facebook 4039 88234 0.6170 43.6910 3.6925 0.0636

Power 4941 6549 0.1065 2.6691 18.9892 0.0035

Jazz 198 2742 0.6334 27.6970 2.2350 0.0202

Wikivote 7066 100736 0.2090 28.5129 0.2475 -0.0833

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2218-2224

 
______________________________________________________________________________________ 



C. Divided training sets

Consider an undirected network G = (V,E), consist of
a set of nodes V and the set of edges E. let U be the
set of all possible edges between nodes in G, consisting
of N(N − 1)/2 pair of nodes. In link prediction, known
edges in the network are typically split into a training set
Etrain and a test set Etest. Here, E = Etrain ∪ Etest

and Etrain ∩ Etest = ∅. Fig.2 illustrates this process
visually. Various methods exist for partitioning datasets,
including random sampling[30], item-by-item traversal,
and k-fold cross-validation. In this study, we adopt the
widely accepted method of random sampling. In a network
denoted as G, which is comprised of N distinct nodes and
M connecting edges, we set the splitting ratio p ∈ (0, 1),
meaning the test set comprises pM randomly chosen
edges. Through experimentation, we establish p = 0.2 as
the optimal ratio.

＝ ＋

E E train E test

Fig. 2. Divide the original graph into a training set and a test set.

D. Evaluation criterion

To assess the effectiveness of our proposed algorithm,
we utilize the AUC value to evaluate its performance on a
specific dataset and compare it with other algorithms. The
AUC value indicates the probability of a model assigning
a higher similarity score to an actual edge from the test
set compared to a non-existent edge. For every one of the
n independent experiments, the model receives 1 point if
the score for a test set edge is higher than that for a non-
existent edge, and 0.5 points if the scores match. The AUC
is defined in the following way[31]:

AUC =
n′ + 0.5n′′

n
, (13)

n′ instances where the similarity values of edges in the
test set exceed those of non-existent edges are denoted,
while n′′ indicates cases where the similarity values are
equal. Higher AUC values approaching 1 signify greater
accuracy of the algorithm.

The construction details of the LGGM are outlined in
Algorithm 1.

Precision is another commonly used evaluation metric
for link prediction, characterized by the proportion of
accurately predicted positive samples among the top-L
ranked predicted links. Specifically, if m correctly pre-
dicted links are found among the top-L links ranked by
the likelihood of link occurrence and these m links are
indeed present in the test set, the calculation for precision
can then be carried out:

precision =
m

L
, (14)

clearly, the prediction accuracy depends on achieving a
higher precision.

The Root Mean Square Error (RMSE) metric is an
assessment tool that quantifies the deviation between es-
timated and actual values. Its calculation formula is as
follows:

RMSE =

√√√√ 1

n

n∑
i=1

n∑
i=1

(yi − ŷi)2, (15)

in this context, yi corresponds to the actual observed value
of the node pair within the test set, whereas ŷi signifies the
predicted value obtained from the training set. n denotes
the number of observations. A larger value of RMSE,
indicates a greater deviation between the predictive model
and the actual observations; conversely, a smaller value of
RMSE suggests that the model exhibits higher prediction
accuracy.

Algorithm 1: LGGM
Input: Network G=(V,E), with N nodes and M

edges;
Output: AUC;

1 for i = 1 → N do
2 Calculate the degree ki and the clustering

coefficient C(i);
3 end
4 for i, j ∈ N ,i ̸= j do
5 Calculate the shortest distance dij ;
6 end
7 for dij≤2 do
8 Calculate the influence Gij between i and j by

Eq.(3);
9 for dij > 2 do

10 Gij = 0;
11 end
12 end
13 Compute the similarity score Sij by Eq.(4);
14 Arrange the list of all Sij in descending order;
15 Calculate AUC by Eq.(12);
16 return AUC;
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Fig. 3. The AUC for LGGM at different values of α.
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TABLE II
BEST AUC VALUES AND THE CORRESPONDING VALUES OF α.

USAir NS Email PB Facebook Power Jazz Wikivote

AUC 0.9501 0.9603 0.8343 0.9187 0.9918 0.6159 0.9537 0.9317

α 0.4 0.7 0.3 0.6 0.4 0.6 0.6 0.7

TABLE III
AUC OF DIFFERENT METHODS IN DIFFERENT NETWORKS.

Datasets CNI PAI JI SI HPI HDI LNGM LGGM

USAir 0.933 0.8838 0.897 0.8966 0.8198 0.8902 0.9333 0.9501

NS 0.9493 0.6279 0.947 0.9469 0.9094 0.9458 0.9495 0.9588

Email 0.8481 0.7827 0.8465 0.8466 0.8077 0.8466 0.8486 0.8349

PB 0.917 0.8991 0.8711 0.871 0.8231 0.8673 0.9171 0.9175

Facebook 0.9924 0.8314 0.9905 0.9906 0.9823 0.9896 0.9924 0.9904

Power 0.5591 0.4715 0.5496 0.5496 0.2545 0.5497 0.5595 0.6097

Jazz 0.9541 0.7839 0.8742 0.9253 0.9332 0.9525 0.9511 0.9567

Wikivote 0.908 0.9073 0.8737 0.8738 0.5934 0.8728 0.9082 0.9315

TABLE IV
COMPARISON OF LNGM’S AND LGGM’S ACCURACY QUANTIFIED BY PRECISION.

Algorithms USAir NS Email PB Facebook Power Jazz Wikivote

LNGM 0.5874 0.2218 0.264 0.4332 0.9521 0.0963 0.5817 0.342

LGGM 0.5961 0.2382 0.2679 0.47 0.9569 0.1226 0.5863 0.339

CNI PAI JI SI HPI HDI LNGM LGGM
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Fig. 4. Average AUC for each link prediction model on all datasets.

III. RESULT AND DISCUSSIONS

To investigate the impact of different α values on AUC,
we conducted experiments using the LGGM with α values
spanning from 0.1 to 0.9.

The average AUC values across all datasets are pre-
sented in Fig.3. As illustrated in the line graph in Fig.
3, the AUC of LGGM exhibits minimal variation with
changing α values. The highest AUC value of 0.8937 is
attained when α is set to 0.7, while the lowest AUC of
0.8916 occurs at α = 0.4. The difference between these
two values is merely 0.0021, which is not statistically
significant. Although we attempted to identify the optimal
α value using various datasets presented in Table II, the

Fig. 5. RMSE analysis of LGGM on different datasets.

results did not reveal indicate a clear optimal choice.
However, it is noteworthy that α values of 0.1, 0.2, 0.8, and
0.9 are not considered optimal. Furthermore, the optimal
α value varies depending on the dataset. For example,
the NS and Wikivote datasets exhibit optimal AUC values
at α = 0.7 (0.9603 and 0.9317, respectively), while the
Email dataset achieves an optimal AUC value of 0.8343
at α = 0.3. The optimal AUC values for the remaining
datasets are detailed in Table II. Based on the information
in Table II and Fig.3, there is a considerable degree of
randomness in selecting the optimal α value. To mitigate
prediction errors associated with this randomness, we
have chosen α = 0.7 as the benchmark for performance
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Fig. 6. The AUC for each link prediction model on each dataset.

comparison in this study.

We compared the proposed algorithm with several clas-
sical algorithms. Table III summarizes the AUC values
of each algorithm across different datasets. To validate
the stability of the outcomes, we conducted 20 separate
experiments and calculated the average AUC values. Fig.
4 presents the average AUC values of the considered algo-
rithms across all datasets. Our findings indicate that among
this group of algorithms, LGGM has the highest average
AUC value thereby outperforming all the compared algo-
rithms. Specifically, LGGM attains an average AUC value
of 0.8935, representing a 16% increase compared to HPI’s
lowest average AUC value of 0.7654, and 1.6% higher
than LNGM’s average AUC value. This demonstrates that
the accuracy of LGGM has improved and surpasses that of
the other algorithms. Notably, we observed that the AUC
of LNGM was higher than that of LGGM for the Email
and Facebook datasets. Therefore, we further compared
the precision of both algorithms. Additionally, we eval-
uated the precision of LNGM and LGGM from the per-
spective of accuracy. The experimental results indicate that
LGGM consistently exhibits significantly higher precision
than LNGM across nearly all datasets. This observation
underscores LGGM’s robust generalization capability and
stability, enabling effective identification of genuine links
across diverse datasets of varying types and scales while

minimizing false positives. Specific results are presented
in Table IV, illustrating LGGM’s superior performance.
Overall, LGGM provides competitive and robust predictive
outcomes when stacked against alternative methods. Fig.5
illustrates the RMSE values of the LGGM across various
datasets. The figure indicates that the RMSE value for
the Power dataset is the highest, which indicates that the
prediction results of LGGM on this dataset are somewhat
different from the observation results. Conversely, the
RMSE for the Facebook dataset is the lowest, indicating a
better model fit in this case. In addition, the RMSE values
for the algorithm across the eight datasets fall within the
range of (0, 0.3), with the maximum value being less than
0.5. This performance is generally regarded as indicative
of good overall results.

In Fig.6, we illustrate the AUC value for each algorithm
on eight datasets, this is to determine which datasets
poses more challenges for link prediction compared to
others. Two key factors explain this phenomenon: Firstly,
in social networks like Facebook, user behavior patterns
are crucial for the accuracy of link prediction. Subsequent
relationships between users often reflect specific behavior
patterns including interests, social circles, and activity lev-
els. Link prediction algorithms leverage these patterns to
accurately predict future connections. The rich and diverse
interactions among Facebook users create a complex, in-
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formative network structure, offering valuable insights into
user behavior dynamics. Secondly, the scale and density of
data within the Facebook datasets significantly enhance the
effectiveness of link prediction algorithms. With millions
of users and abundant interaction data, algorithms have
access to a vast amount of information. This extensive
data allows the algorithms to learn and adapt to intricate
network dynamics, resulting in superior predictive perfor-
mance on the Facebook dataset as compared to others
with smaller data sizes or lower interaction densities. In
contrast, LGGM shows the lowest AUC value among the
Power datasets. The Power datasets represents a power
network, a type of technological network within artificial
network systems. The formation of this network is not
instantaneous but involves long-term evolutionary devel-
opment. The lower AUC value suggests that predicting
links in technological networks is particularly challenging.

IV. CONCLUSION

To tackle the challenges associated with link prediction
within complex networks, we propose an innovative algo-
rithm based on the Local Generalized Gravity Model. This
approach replaces mass in the gravity equation with node
spreading ability, utilizing local clustering coefficients and
degree metrics to extract topological insights from nodes.
We compare the proposed method with other benchmark
algorithms. The findings indicate that our method con-
sistently surpasses benchmark algorithms in predictive
accuracy across various datasets. Additionally, we assess
the efficiency of the suggested algorithm under different
parameter configurations.
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