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Abstract—This study focuses on establishing the existence
of fixed points in graphical bv(s) spaces using generalized
contractions based on Reich and Edelstein-type conditions. The
proposed framework extends classical contraction principles, al-
lowing broader applications. Examples are provided to illustrate
the results and enhance their clarity. The study further explores
the solution of a fourth-order differential equation modeling the
deformation of a cantilever beam under a uniformly distributed
load, offering insights into its mechanical behavior.

Index Terms—Cantilever beam problem, Fixed points,
Graphical bv(s) metric spaces, Graphical Edelestein contrac-
tions, Graphical Reich contractions.

I. INTRODUCTION

REcent research underscores the growing importance of
graph theory across various disciplines, particularly in

the realm of metric fixed point theory. A significant contribu-
tion by Jachymski [6] proposed a novel interpretation of the
Banach contraction principle, highlighting the critical role of
graph structures rather than merely relying on the traditional
order structure of metric spaces. This idea has sparked further
developments and generalizations in the field. For instance,
Shukla et al. [9] introduced the notion of graphical metric
spaces, where the triangle inequality is applicable only to
elements connected within the graph, rather than universally
across the entire space. This concept has been expanded
to include several related structures, such as graphical b-
metric spaces [4], graphical rectangular metric spaces [1],
and graphical dislocated b-metric spaces [12]. Further studies
exploring fixed point results within graph-based frameworks
can be found in [2-4, 9-16]. Recently, Baradol et al. [3]
advanced this field by extending the concept of bv(s) metric
spaces [7] into the context of graph structures, thereby
introducing graphical bv(s) metric spaces. They successfully
formulated a graphical adaptation of the Banach contraction
principle within this extended framework.
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In our current study, inspired by these graph-based ap-
proaches and the existing body of work, we propose a method
to establish the existence of fixed points in graphical bv(s)
metric spaces using the contraction frameworks developed
by Reich [8] and Edelstein [5]. To demonstrate the breadth
of our results, we provide examples that illustrate fixed
point convergence, supported by both graphical analysis and
numerical iteration. Our findings not only extend the work
presented in [3] but also incorporate and generalize several
key results from the current literature. Additionally, we apply
our theoretical findings to solve a fourth-order differential
equation related to the Cantilever beam problem under a
uniform load distribution

II. PRELIMINARIES

Before outlining our key findings, we start this section
with some commonly used terminology and conclusions that
are crucial to our findings.

Consider a non-empty set J that contains the diagonal ∆.
We define a graph G as an ordered pair G = (V(G),Ξ(G)),
where V(G) is the set of vertices of G and Ξ(G) ⊆ V(G)×
V(G) is the set of edges of G i.e., V(G) = J and the set of
edges G all the self loops on each vertex, that is Ξ(G) ⊇ ∆.
In a graph G. A directed path of length from x to y is a
sequence of (n+ 1) distinct vertices {xi}ni=0 such that x0 =
x, xn = y and (xi−1, xi) ∈ Ξ(G), for all i = 1, 2, ..., n,
shortly (xPy)G is used to represent a path from x to y in a
graph G. z ∈ (xPy)G means that z lies on the path from x
to y. A sequence {xn} is said to be G-termwise connected
(G-TWC) if (xnPxn+1)G , for all n ∈ N . For a mapping
L : J × J , a sequence {xn} said to be L-picard sequence
if Lxn = xn+1 and xn 6= xn+1, for all n ∈ N . For n ∈ N ,
[x]nG = {y ∈ J : (xPy)G of length n}.

Definition II.1:([9]) Assume that G is a graph associated
with a non-empty set J . A graphical metric on J is mapping
℘ : J ×J → [0,∞) that satisfies the following criteria : for
all , `, c ∈ J such that

(G1) ℘(, `) = 0 iff  = `.

(G2) ℘(, `) = ℘(`, ).
(G3) (P`)G and c ∈ (P`)G ⇒ ℘(, `) ≤ ℘(, c) + ℘(c, `),

the pair (J , ℘) is a graphical metric space.

Definition II.2:([3]) Assume that G is a graph associated
with a non-empty set J . A graphical b- metric on J is a
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mapping ℘ : J × J → [0,∞) that satisfies the following
criteria : for all , `, c ∈ J such that

(Gb(1)) ℘b(, `) = 0 iff  = `.
(Gb(2)) ℘b(, `) = ℘b(`, ).
(Gb(3)) (P`)G and c ∈ (P`)G

⇒ ℘b(, `) ≤ s[℘b(, c) + ℘b(c, `)],

the pair (J , ℘b) is termed as graphical b-metric space.

Definition II.3:([2,11]) Let G be a graph associated with a
non-empty set J . A graphical rectangular metric on J is
a mapping ℘ : J × J → [0,∞) that satisfies the following
criteria : for all , ` ∈ J , c, d ∈ J /{, `} such that

(Gr(1)) ℘rms(, `) = 0 iff  = `.
(Gr(2)) ℘rms(, `) = ℘rms(`, ),
(Gr(3)) ℘rms(, `) ≤ s[℘rms(, c)+℘rms(c, d)+℘(d, `)].
Then the pair (J , ℘rms) is termed as graphical rectangular

metric space.

Definition II.4:([3]) Let G be a graph associated with a non-
empty set J . A mapping ℘ : J × J → [0,∞) that satisfies
the following criteria is a graphical bv(s) metric: for v ∈ N
and for all , ` ∈ J such that

(Gbv(s)(1)) ℘bv(s)(, `) = 0 iff  = `.
(Gbv(s)(2)) ℘bv(s)(, `) = ℘bv(s)(`, ) ,
(Gbv(s)(3)) for all distinct p1, p2, ..., pv ∈ (P`)G and a
real number s ≥ 1 holds
℘bv(s)(, `) ≤ s[℘bv(s)(, p1) + ℘bv(s)(p1, p2) + ...

+℘bv(s)(pv, `)].
The pair (J , ℘) is termed as graphical bv(s) metric space.

By giving precise values for v and s, it becomes evident
that we can draw the following conclusions [3].

(i) A graphical metric space is a graphical b1(1)-metric
space.

(ii) A graphical b-metric space with coefficient s is known
as a graphical b1(s)-metric space.

(iii) A graphical rectangular metric space is known as a
graphical b2(1)-metric space

(iv) A graphical rectangular b with coefficient s is
known as a graphical b2(s)-metric space.

Note II.5: From the definitions bv(s) metric space (Mitrovic
and Radenovic) and graphical bv(s) metric space (Baradol et.
al.,), it is observed that every graphical (Gbv(s)(1)) metric
space is bv(s) metric space. However, it is important be note
that the converse is not necessarily true, as illustrated in the
following examples.

Example II.6: Let J = {a1, a2, a3, a4, a5, a6, a7, a8, a9,
a10, a11, a12, a13} and let G = G1 ∪ G2 be an undirected
graph, where G1 and G2 are connected components with
V (G1) = {a1, a2, a3, a4, a5} ,
Ξ(G1) = {e1, e2, e3, e4, e5, e6, e7} and
V (G2) = {a6, a7, a8, a9, a10, a11, a12, a13},
Ξ(G) = {e8, e9, e10, e11, e12, e13, e14, e15}
encompassing a graph as shown in Fig 3 .

Fig. 1. G1

Fig. 2. G2

Fig. 3. G = G1 ∪ G2

Let ℘ : J × J → [0,∞) be a mapping defined in the
following way:

℘(ai, aj) =


o if ai = aj

d(ai, aj) ifai, aj ∈ Gl, l = {1, 2}

1
5 otherwise.

where d(ai, aj) = shortest distance between ai and aj .

Then clearly, (J , ℘) is a graphical b3(1) metric space

but not b3(1) metric space. For, let x = a7, y = a13

℘(a7, a13) = 3 > ℘(a7, a2) + ℘(a2, a1) + ℘(a1, a4)

+℘(a4, a13) = 1
5 + 1 + 1 + 1

5 = 12
5 .

Example II.7: Let J = { 12 ,
1
3 ,

1
4} ∪ {1, 0, 5}. Let G be a

directed graph defined by V(G) = J and

Ξ(G) = {(0, 1), (1, 13 ), ( 1
3 , 5), (5, 12 ), (0, 12 ), ( 1

4 ,
1
2 ), ( 1

4 , 5),

(1, 14 ), ( 1
3 , 0), ( 1

3 , 1), ( 1
4 , 0), ( 1

4 ,
1
3 )}.

We define ℘ : J × J → [0,∞) by ℘(x, y) = 0 implies
x = y

℘(0, 12 ) = 4 = ℘( 1
2 , 0), ℘( 1

4 ,
1
2 ) = ℘( 1

2 ,
1
4 ) = 10,

℘( 1
4 , 1) = ℘(1, 14 ) = 2, ℘( 1

3 , 0) = ℘(0, 13 ) = 1,
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℘(1, 13 ) = ℘( 1
3 , 1) = 1, ℘( 1

4 , 0) = ℘(0, 14 ) = 5,
℘( 1

4 ,
1
3 ) = ℘( 1

3 ,
1
4 ) = 3

℘(5, 1) = ℘(1, 5) = 1, ℘(0, 1) = ℘(1, 0) = 2,
℘(x, y) = 4

5 otherwise, endowed with the graph as shown
in the following Fig 4.

Fig. 4. Graph G associated with J

Then (J , ℘) is a graphical b4(1) metric space. It is
important to note that (J , ℘) is not a b4(1) metric space
since,
℘( 1

4 ,
1
2 ) = 10 > ℘( 1

4 , 1) + ℘(1, 5) + ℘(5, 13 ) + ℘( 1
3 , 0)

+℘(0, 14 ) = 49
5 .

Definition II.8:([3]) Let (J , ℘) denote a graphical bv(s)−
metric space associated with a graph G and consider a
sequence {yn} in J , {yn} is a cauchy sequence if for each
ε > 0, there exists m ∈ N such that ℘(yk, yl) < ε, for
all k, l ≥ m. That is limk,l→∞ ℘(yk, yl) = 0, the sequence
{yn} converges to z ∈ J if for each ε ≥ 0, there exists
m ∈ N such that ℘(yk, z) < ε, for all k ≥ m i.e.,
limk→∞ ℘(yk, z) = 0.

Definition II.9: ([3]) A graphical bv(s)-metric space is called
G-complete, if every term-wise connected (shortly G-TWC),
Cauchy sequence converges in J .

Definition II.10:([3]) Consider a graphical bv(s)-metric
space (J , ℘). A graphic Banach contraction (GBC) on J
is a mapping L : J → J such that:
(GBC-I) (L,L`) ∈ Ξ(G), whenever (, `) ∈ Ξ(G).
(GBC-II) For all (, `) ∈ Ξ(G), there exists η ∈ (0, 1)

such that ℘(L,L`) ≤ η℘(, `).
Here it is observed that any Banach contraction on a non-

empty set J is a graphic Banach contraction on J after
considering the set of edges is equal to J × J . But, its
converse may not hold, as stated in Remark 2.3 ([3]).

Definition II.11:([3]) A graph G = (V(G),Ξ(G)) is said to
have property (S) if, for each convergent G-TWC, the L-
Picard sequence {yn} has a limit ρ in J such that, (yk, ρ) ∈
Ξ(G) or (ρ, yk) ∈ Ξ(G), for all k ≥ m.

Definition II.12:([3]) Consider a complete graphical bv(s)
-metric space (J , ℘) and let L : J → J be an injective
G-TWC on J . Suppose that the following conditions are
satisfied:

(i) There exists xo ∈ J with Lpxo
∈ [xo]

rp
G for

p = 1, 2, ..., v, where rp = mpv + 1 and mp ∈ N ∪ {0}.
(ii) G has property (S).

Then for initial term xo ∈ J , the L-Picard sequence {xn}
in G-TWC and converges to both ρ∗ and Lρ∗ in J .

Definition II.13:([3]) Let G be a graph associated with
graphical bv(s) -metric space (J , ℘). A graphical Reich
contraction(GRC) on J is a mapping L : J → J such
that
(GRC-I) for all (p, q) ∈ Ξ(G)⇒ (Lp,Lq), (p,Lp), (q,Lq)

∈ Ξ(G).
(GRC-II) for all (p, q) ∈ Ξ(G) then there exists non-negative

integers a, b, c such that a+ b+ c < 1 and

℘(Lp,Lq) ≤ a℘(p,Lp) + b℘(q,Lq) + c℘(p, q).

Remark II.14: By giving precise values for a, b , c , v and
s, we can draw the following conclusions, highlighting the
extensive applicability and versatility of Definition II.3.

(i) When we consider a = b = 0 in (GRC), in Definition
II.13, we obtain graphic Banach contraction (GBC)[3].

(ii) When we consider a = b = λ, where λ ∈ [0, 1
s+1 )

and v = 2 in Definition II.13, we obtain Kannan
G-contraction [1].

(ii) When we consider v = 2, in Definition II.13, we
obtain Reich G-contraction [1].

Example II.15: Let J = {0, 12 ,
1
4 , 1, 5}. Let G be a directed

graph defined by V(G) = J and
Ξ(G) = {(0, 0), (0, 1), (1, 0), (0, 12 ), ( 1

2 , 5), (0, 5), (5, 1),

( 1
2 , 1), (5, 0), (0, 14 ), ( 1

4 , 1), (5, 14 ), (1, 1)}.
We define ℘ : J ×J → [0,∞) by ℘(, `) = 0 implies  = `

℘(0, 12 ) = 2 = ℘( 1
2 , 0), ℘( 1

2 , 5) = ℘(5, 12 ) = 6

℘( 1
4 , 1) = ℘(1, 14 ) = ℘( 1

2 , 1) = ℘(1, 12 )

= ℘(5, 0) = ℘(0, 5) = 3,
℘( 1

4 ,
1
2 ) = ℘( 1

2 ,
1
4 ) = 5 ,℘(0, 1) = ℘(1, 0) = 1,

℘(5, 1) = ℘(1, 5) = 2, ℘(, `) = 4
5 otherwise, endowed

with the graph as shown in the following Fig 5.

Fig. 5. Graph G associated with J
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Then (J , ℘) is a graphical b3(1) metric space. It is
important to note that (J , ℘) is not a b3(1) metric space,
since,

℘(
1

2
, 5) = 6 > ℘(

1

2
, 1) +℘(1, 0) +℘(0,

1

4
) +℘(

1

4
, 5) =

28

5
.

We now define L : J → J as

L() =



0 if  ∈ {0, 1}

1 if  ∈ {5, 14}

5  = 1
2

Clearly, L is a graphical Reich contraction on J with
a = 1

3 , b = 1
4 and c = 5

13 .
It is important note that when considering  = 1

2 and ` = 1,
there does not exist any constant c ∈ (0, 1), for which graphic
Banach contraction (GBC) holds, indeed

℘(L,L`) = ℘(L1

2
,L1) = 3 > c(3) = c℘(, `).

Therefore, it is of interest to us to ascertaining the existence
and uniqueness of fixed points for graphical Reich contrac-
tions.

Following on the similar lines of Lemma 2 and Lemma 3
of [3] , we have the following lemmas.

Lemma II.16: Let G be a graph associated with graphical
bv(s) -metric space L : J → J such that L is GRC. If
(p,Lp) ∈ Ξ(G) then ℘(Lnp,Ln+1p) ≤ βn℘(p,Lp), where
β = a+c

1−b .

Lemma II.17: Let (J , ℘) be a graphically bv(s) -metric
space associated with a graph G and L : J → J is a GRC.
If (p, q) ∈ Ξ(G) then ℘(Lnp,Lnq)→ 0 as n→∞.

Definition II.18: Let (J , ℘) denote a graphical bv(s) -metric
space associated with a graph G and L is a GRC contraction
on J . The quadruple (J , ℘,G,L) have property(R∗), if each
G-TWC L-Picard sequence {xn} in J has the unique fixed
point.

III. FIXED POINT RESULTS ON GRAPHICAL REICH
CONTRACTIONS

We now prove our main result.
Theorem III.1: Consider an injective map L : J → J
where (J , ℘) is a G-complete bv(s) -metric space. Suppose
that L is a GRC defined on J satisfying:

(i) there exists xo ∈ J with Lpxo
∈ [xo]

rp
G for

p = 1, 2, ..., v, where rp = mpv+1 and mp ∈ N ∪{0}
(ii) G has property (S)

(iii) graphical bv(s) -metric space is continuous.
Then the Picard sequence {xn}, for any xo ∈ J is
G-TWC and converges to ρ∗ in J .

Proof: For p = 1, 2, ..., v, under the assumption (i), suppose
that xo ∈ J such that
Lpxo
∈ [xo]

rp
G , where rp = mpv + 1 and mp ∈ N ∪ {0}.

Then there exists a path {e1k}
r1
k=0 such that xo = e10,

L1
xo

= e1r1 and (e1k−1, e
1
k) ∈ Ξ(G), for all k = 1, 2, ..., r1.

Since (e1k−1, e
1
k) ∈ Ξ(G) by (GRC-I), we have

(Le1k−1,Le1k), (e1k−1,Le1k−1), (e1k,Le1k) ∈ Ξ(G),

for all k = 1, 2, 3, ..., r1.
Therefore {Le1k}

r1
k=0 is a path from Le10 = Lxo = x1

to Le1r1 = L2xo = x2 of length r1.
Continuing this process, for all n ∈ N , we obtain
{Lne1k}

r1
k=0 a path from Lne10 = Lnv0 = xn to Lne1r1

= LnLxo = xn+1 of length r1, which leads {xn} is G-TWC
sequence.

On using Lemma II.14, we have
℘(xn, xn+1) = ℘(Lnx0,Lnx1) = ℘(Lnep0,Lne1r1)

≤ s[℘(Lne10,Lne11) + ℘(Lne11,Lne12) + ...

+℘(Lne1v−1,Lne1v)] + s2[℘(Lne1v,Lne1v+1)

+℘(Lne1v+1,Lne1v+2) + ..

+℘(Lne12v−1,Lne12v) + ...

+sm1 [℘(Lne1(m1−1)v,L
ne1(m1−1)v+1) + ...

+℘(Lne1r1−1,L
ne1r1)] (1)

→ 0 as n→∞.
Similarly, for p = 1, 2, ..., v, Lemma II.16 and (1), we

have
℘(xn, xp+n) = ℘(Lnx0,Lnxp) = ℘(Lnep0,Lneprp)

≤ s[℘(Lnep0,Lne
p
1) + ℘(Lnep1,Lne

p
2)

+...+ ℘(Lnepv−1,Lnepv)]

+s2[℘(Lnepv,Lne
p
v+1)

+℘(Lnepv+1,Lne
p
v+2) + ...

+℘(Lnep2v−1,Lne
p
2v)] + ..

+smp [℘(Lnep(mp−1)v,L
nep(mp−1)v+1) + ...

+℘(Lneprp−1,L
neprp)]→ 0 as n→∞,

therefore {xn} is a Cauchy sequence in J . (2)

Consequently, by G-completeness of J implies xn → ρ∗,
for some ρ∗ ∈ N . According to the property (S), there exists
k ∈ N such that (xn, ρ

∗) ∈ Ξ(G) or (ρ∗, xn) ∈ Ξ(G),∀n >
k.

Assume that for all n > k, (xn, ρ
∗) ∈ Ξ(G). Then by

(GRC-I), (Lxn,Lρ∗) ∈ Ξ(G). By (GRC-II), we have

℘(Lxn,Lρ∗) ≤ a℘(xn,Lxn) + b℘(ρ∗,Lρ∗) + c℘(xn, ρ
∗)

= a℘(xn, xn+1)+b℘(ρ∗,Lρ∗)+c℘(xn, ρ
∗).

Taking limits as n→ +∞, using continuity of ℘, employ-
ing (1) and (2), we obtain

℘(ρ∗,Lρ∗) ≤ b℘(ρ∗,Lρ∗) < ℘(ρ∗,Lρ∗),

which leads to a contradiction. Therefore xn+1 → Lρ∗.
Hence, Lρ∗ is also limit of the sequence {xn} .

Similarly, we can prove the case when (ρ∗, xn) ∈ Ξ(G),
for n > k.

It is obvious that a sequence in graphical bv(s) metric
space may converge to more than one limit[3].
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Theorem III.2: Along with the hypotheses of Theorem III.1,
if the quadruple (J , ℘,G,L) has property (R∗), then L has
a fixed point.

Proof: From the proof of Theorem III.1 and the Property
(R∗), we have Lρ∗ = ρ∗.

Theorem III.3: Along with the conditions of Theorem III.2,
suppose that for all ρ∗, η∗ ∈ fix(L)F there exists a path
(ρ∗Pη∗)G between ρ∗ and η∗ of length l, where l = 1 or
l = mv + 1 for m ∈ N ∪ {0}. Then L has a unique fixed
point.

Proof: Case(i). If l = 1, then (ρ∗, η∗) ∈ Ξ(G).

By (GRC-I), (Lρ∗,Lη∗) ∈ Ξ(G).

Again, by (GRC-II), we have

℘(Lρ∗,Lη∗) ≤ a℘(ρ∗,Lρ∗) + b℘(η∗,Lη∗) + c℘(ρ∗, η∗)

implies ℘(ρ∗, η∗) ≤ c℘(ρ∗, η∗),

hence, ρ∗ = η∗.

Case(ii). If l = mv + 1,m ∈ N ∪ {0} and let {ei}lj=0 be
the path from ρ∗ to η∗, so that e0 = ρ∗ and ek = η∗. Then

℘(ρ∗, η∗) = ℘(Lnρ∗,Lnη∗)
≤ s[℘(Lne0,Lne1) + ℘(Lne1,Lne2) + ...

+℘(Lnev−1,Lnev)] + s2[℘(Lnev,Lnev+1)

+℘(Lnev+1,Lnev+2) + ...+ ℘(Lne2v−1,Lne2v)]
+...+sm[℘(Lne(m−1)v,Lne(m−1)v+1)+ ...

+℘(Lnel−1,Lnel)]→ 0 as n→∞.

Therefore ρ∗ = η∗.

Example III.4: Let A = { 1
3n : n ∈ N} , B = {0, 1, 2} and

J = A∪B associated with the graph G = (V (G,Ξ(G)) such
that V (G) = J and Ξ = ∆ ∪ {(0, 1

3n ) : n ∈ N} ∪ {(r, s) ∈
A× A : r ≤ s}. We define a function ℘ : J × J → [0,∞)
such that

℘(0,
1

3n
) = ℘(

1

3n
, 0) = 0

℘(
1

3m
,

1

3n
) = ℘(

1

3n
,

1

3m
) =

1

3l−1

,
℘(a, b) = ℘(b, a) = 0,

where a ∈ A, b ∈ B and l = max{m,n}. Then (J , ℘) is a
complete b4(3) metric space. We define L : J → J by

L() =


2

32 if x ∈ [0, 1)


2 otherwise,

then L is an injective GRC with a = 1
2 , b = 1

3 , c = 1
5 . For

initial point xo = 1
3 , the sequence xn = 1

3n is a G-TWC L
-picard sequence. Since, for some fixed t ∈ N there exists
no ∈ N such that

0 ≤ (
1

3
)n(3)t < 1

for all n > n0, using this inequality, we can prove that {xn}
is a Cauchy sequence. Hence L satisfies all the conditions
of Theorem III.2, with 0 is the unique common fixed point
of L.

Example III.5: Let J = [0, 1] be endowed with a bv(s)
metric space defined by
℘(x, `) = (x− `)3, for x, ` ∈ J . Obviously, J is graphical
b3(1) metric space. Consider a mapping from L : J → J
by

L(x) =


x

x2+7 if  ∈ [0, 1)

1
4 otherwise.

We define G = (V(G)),Ξ(G) by V(G) = J and Ξ =
{(x, `) ∈ J × J : x ≤ `, x, ` ∈ [0, 1)}. Clearly, L is an
injective mapping. We now verify the inequality GRC − II
with a = 1

2 , b = 1
5 , c = 1

8 ,

℘(Lx,L`) = | x
x2+7 −

`
`2+7 |

3 = |x− `|3( |7−x`|
(`2+7)(x2+7) )

3

≤ 1
8 |x− `|

3

≤ 1
2 |x−

x
x2+7 |

3 + 1
5 |`−

`
`2+7 |

3 + 1
8 |x− `|

3.

Clearly, ’0’ is the unique fixed point of L.

We now present numerical calculations for the approxi-
mate fixed point of L, as shown in Table I. The convergence
behavior of these iterations is also analyzed, with results
displayed in Fig 6.

TABLE I

Iteration x0= 0.3 x0=0.5 x0=0.7 x0= 0.9
x1 0.0423 0.0690 0.0935 0.1152
x2 0.0060 0.0098 0.0133 0.0164
x3 0.0009 0.0014 0.0019 0.0023
x4 0.0001 0.0002 0.0003 0.0003
x5 0.0000 0.0000 0.0000 0.0000
x6 0.0000 0.0000 0.0000 0.0000

Fig. 6. Graph of convergence behaviour of xn
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IV. FIXED POINT THEOREMS ON GRAPHICAL EDLESTEIN
CONTRACTION MAPS

Let G be a graph associated with bv(s)-metric space
(J , ℘). A path {h̄i}

rp
i=0 from x to y, such that h̄0 = ep0 = x,

h̄rp = eprp = y is said to be ε-chainable if ℘(h̄i−1, h̄i) < ε,
i = 1, 2, ..., rp i.e., denote Ξε(G) = {(p, q) ∈ Ξ(G) :
℘(p, q) < ε}.

Definition IV.1: Let G be a graph associated with graphical
bv(s)-metric space (J , ℘). An G -Edelestein contraction on
J is a mapping L : J → J such that

(GETC-I) for each (, `) ∈ G implies (L,L`) ∈ Ξ(G)

(GETC-II) there exists Λ ∈ [0, 1) such that for all , ` ∈
Ξε(G) implies

℘(L,L`) < Λ℘(, `) (3)

Theorem IV.2: Let G be a graph associated with bv(s)-metric
space and L : J → J be an injective (GETC-II). Suppose
that :

(i) there exist xo ∈ J with Lpxo
∈ [xo]

rp
G for

p = 1, 2, ..., v,where rp = mpv + 1 and mp ∈ N ∪ {0}.

(ii) there exists xo ∈ J such that there is an ε- chainable

path from xo to Lxo in the graph G.

(iii) If a G-TWC Picard sequence {xn} converges in J ,

there exists l ∈ N and ζ∗ ∈ J such that

(xn, ζ
∗) ∈ Ξε(G) or (ζ∗, xn) ∈ Ξε(G) for all n > l.

Then for initial term xo ∈ J , the picard sequence {xn}
is GTWC and converges to ζ∗ in J .
Proof: For p = 1, 2, 3, ...v, let xo ∈ J , Lpxo ∈ [xo]

rp
G , where

rp = mpv + 1 and mp ∈ N ∪ {0}. Then there exists path
{e1k}

r1
k=0 such that xo = e10, L1xo = e1r1 and (e1k−1, e

1
k) ∈

Ξ(G) for all k = 1, 2, ..., r1 since (e1k−1, e
1
k) ∈ Ξ(G) by

(GETC-I), we have (Le1k−1,Le1k). Therefore {Le1k}
r1
k=0 is an

ε-chainable path from Le1o = Lxo = x1 to Le1r1 = L2xo =
x2 of length r1. Continuing this process, for all n ∈ N , we
obtain {Lne1k−1}

l1
k=0 a path from Lne1o = Lnxo = xn to

Lne1r1 = LnLxo = xn+1 of length r1. Thus {xn} is GTWC
sequence.

Since Ξ(Lnek,Lnek) ∈ Ξε(G) for all n ∈ N and for
k = 1, 2, ..., rp, and p = 1, 2, ..., v, we have

℘(Lnepk,Lne
p
k−1) < Λ℘(Ln−1epk,Ln−1e

p
k−1) < ....

< Λn℘(epk, e
p
k−1) < Λnε. (4)

By condition (iii) of Definition of bv(s) metric space and
for p = 1, 2, ...v, we have

℘(x0, xp) = ℘(ep0, e
p
rp)

≤ s[℘(ep0, e
p
1) + ℘(ep1, e

p
2) + ...+ ℘(epv−1, e

p
v)]

+s2[℘(epv, e
p
v+1) + ℘(epv+1, e

p
v+2) + ...+ ℘(ep2v−1, e

p
2v)]

+...+smp [℘(ep(mp−1)v, e
p
(mp−1)v+1)+ ...+℘(eprp−1, e

p
rp)]

< s[ε+ ε+ ...+ ε] + s2[ε+ ε+ ...+ ε] + ...

+smp [ε+ ε+ ...+ ε]

= sv+ s2v+ ...+ smp(v+ 1)]ε = Mrp. (5)

On using (4) and (5), we have

℘(xn, xn+P ) = ℘(Lnep0,Lneprp)

≤ s[℘(Lnep0,Lne
p
1) + ℘(Lnep1,Lne

p
2) + ...

+℘(Lnepv−1,Lnepv)]+s2[℘(Lnepv,Lne
p
v+1)

+℘(Lnepv+1,Lne
p
v+2) + ...

+℘(Lnep2v−1,Lne
p
2v)] +...

+smp [℘(Lnep(mp−1)v,L
nep(mp−1)v+1)+ ...

+℘(Lnepmp−1,L
nepmp

)]

< s[Λnε+ Λnε+ ...+ Λnε]

+s2[Λnε+ Λnε+ ...+ Λnε] + ...

+smp [Λnε+ Λnε+ ...+ Λnε]

= Λn[sv + s2v + ...+ smp(v + 1)]ε

= ΛnMrp → 0 as n→ +∞.

Therefore {xn} is a Cauchy sequence. Hence, by G-
completeness of J implies xn → ρ∗, for some ρ∗ ∈ N .
By condition(iii) of our assumption, there exists k ∈ N such
that (xn, ρ

∗) ∈ Ξ(G) or (ρ∗, xn) ∈ Ξ(G),∀n > k.

Assume that for all n > k, (xn, ρ
∗) ∈ Ξ(G). Then from

(4), we have

℘(Lxn,Lρ∗) < Λ℘(xn, ρ
∗).

Taking limits as n→∞, we have ℘(Lxn,Lρ∗)→ 0

Therefore xn = Lρ∗. Hence Lρ∗ is also limit of the
sequence {xn}.

Similarly, if (ρ∗, xn) ∈ Ξ(G) implies ℘(Lxn,Lρ∗)→ 0.

Therefore xn = Lρ∗. Hence Lρ∗ is also limit of the
sequence {xn}.

Theorem IV.3: Let the conditions of Theorem IV.2 holds.
Suppose that (J , ℘,G,L) has property R∗, then L has a
fixed point.

Proof: From the proof of Theorem IV.2 and property(R∗),
we have Lρ∗ = ρ∗.

Theorem IV.4: Let the conditions of Theorem IV.3 holds
and suppose that for all ρ∗, η∗ ∈ fix(L), there exists an ε-
chainable path (ρ∗Pη∗)G between ρ∗ and η∗ of length p > 1,
where p = mv + 1 for m ∈ N ∪ {0}. Then L has a unique
fixed point.

Proof: In lieu of Theorem IV.3, L has a fixed point. Suppose
ρ∗, η∗ ∈fix(L). If p = mv+1,m ∈ N ∪{0} and let {ei}pi=0

be the path from ρ∗ to η∗, so that e0 = ρ∗ and ek = η∗.
Then

℘(ρ∗, η∗) = ℘(Lnρ∗,Lnη∗)
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≤ s[℘(Lne0,Lne1) + ℘(Lne1,Lne2) + ...

+℘(Lnev−1,Lnev)] + s2[℘(Lnev,Lnev+1)

+℘(Lnev+1,Lnev+2) + ...+ ℘(Lne2v−1,Lne2v)]

+...+ sm[℘(Lne(m−1)v,Lne(m−1)v+1) + ...

+℘(Lnel−1,Lnel)]→ 0 as n→∞.

Therefore ρ∗ = η∗.

V. APPLICATION TO CANTILEVER BEAM PROBLEM

Consider the following fourth order two point boundary
value problem which is an example of beam problem when
uniform load is distributed, called Cantilever Beam problem

d4g

dt4
= K(t, g(t)), 0 < t < 1 (6)

g(0) = g
′
(0) = g

′′
(1) = g

′′′
(1) = 0

with I = [0, 1] and K ∈ C([0, 1]×R,R+). This problems is
equivalent to the integral equation

g(t) =

∫ 1

0

F(t, r)K(r, g(r))dr (7)

for t ∈ I, where F : I × I → [0,∞) is the Green’s function
given

F(t, r) =


r2(3t−r)

6 if 0 ≤ r ≤ t ≤ 1

t2(3t−r)
6 if 0 ≤ t ≤ r ≤ 1.

Consider the set J = C([0, 1], R) be the set of all real-valued
continuous functions defined on [0, 1] . Let us define

U = {† ∈ J : inft∈[0,1]†(t) > 0 and †(t) ≤ 1, t ∈ [0, 1]}.

Now, to define graph structure G = (V(G),Ξ(G)) on J ,

let V(G) = J and

Ξ(G) = ∆ ∪ {(p, q) ∈ u× u : p(t) ≤ q(t) ∀ t ∈ [0, 1]}

= {(p, p) : p ∈ J } ∪ {(p, q) ∈ U × U : p(t) ≤ q(t) ∀ t ∈
[0, 1]}.

Define a mapping ℘ : J × J → R as

℘(p, q) = sup0≤t≤1|p(t)− q(t)|3 for p, q ∈ J . Then (J , ℘)
is a complete b3(1) metric space.

Theorem V.1: Consider an injective function L : J → J
defined

Lg(t) =

∫ 1

0

F(t, r)K(r, g(r))dr (8)

Suppose the following assumptions holds.

(i) The function K : I ×R→ R+ is increasing on [0, 1].
In addition K(r, 1) = r and inft∈[0,1]F(t, r) ≥ 0.

(ii) For every t ∈ [0, 1],

|K(r, g(r))−K(r, v(r))| ≤ |g(r)− v(r)|3.

(iii) ϕ ∈ C([0, 1], R) is the lower solution of equation

(7) i.e.,

ϕ(s) ≤
∫ 1

0

F(t, r)K(r, ϕ(r))dr.

Then the existence solution for equation (8) provides the
solution for (6).

Proof: Clearly, L : J → J is well defined. Let (u, v) ∈
Ξ(G) i.e., u, v ∈ U and g(t) ≤ v(t), for all t ∈ [0, 1].

Now

Lg(t) =
∫ 1

0
F(t, r)K(r, g(r))dr

≤
∫ 1

0
F(t, r)K(r, 1)dr =

∫ 1

0
F(t, r)rdr ≤ 79

360 ≤ 1.

Hence, from condition (i), inft∈[0,1]L(g(t)) > 0 which
implies Lg(t) ∈ U . Similarly, Lv(t) ∈ U . Since K : I×R→
R+ is increasing on [0, 1], we have

Lg(t) =
∫ 1

0
F(t, r)K(r, g(r))dr

≤
∫ 1

0
F(t, r)K(r, v(r))dr

= Lv(t),
which implies (Lg(t),Lv(t)) ∈ Ξ(G).

Now for t ∈ [0, 1], we have

|Lg(t)− Lv(t)|

= |
∫ 1

0
[F(t, r)K(s, g(s))−F(t, r)K(s, v(s))]‖s

≤
∫ 1

0
F(t, r)|K(s, g(s))−K(s, v(s))|ds

≤ |g(s)− v(s)|3
∫ 1

0
F(t, r)ds

= |g(s)− v(s)|3
∫ 1

0
r2(3t−r)

6 dr +
∫ t
0
t2(3t−r)

6

≤ |g(s)− v(s)|3[ t
4

8 + 1
12 (3t2 − 2t3 − t4)]

≤ |g(s)− v(s)|3[ 18 + 6
12 ]

= |g(s)− v(s)|3[ 18 + 6
12 ]

= 5
8 |g(s)− v(s)|3

≤ 5
8supt∈[0,1]|g(s)− v(s)|3

= 5
8℘(u, v)

This implies

℘(Lg(t),Lv(t)) ≤ c℘(u, v) + a℘(p,Lp) + b℘(q,Lq),

where c = 5
8 , for any a, b with a + b + 5

8 < 1. Thus L
is GRC on J . From condition (iii), there exist a solution
ϕ(s) ∈ J such that Lp[ϕ(s)]lG for each p = 1, 2, 3, ...v, so
that the condition (i) of Theorem III.1 is satisfied. Also, it is
easy to see that property (R∗) is satisfied. Hence, Theorem
III.2 assures that L has a unique fixed point and hence the
integral equation (8) has solution in J which confirms that
the existence of the solution of Cantilever beam problem.
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VI. CONCLUSIONS

We established the existence of fixed points for both
Reich contractions [8] and Edelstein contractions [5] within
the context of graphical bv(s) metric spaces, focusing on
an injective mapping. The graphical bv(s) metric space is
particularly noteworthy and compact because the triangle
inequality is only enforced for the connected elements within
the graph structure, rather than across the entire space. Our
theorems not only extend but also generalize the well-known
results from [3]. Additionally, our findings are supported by
examples and have practical applications in solving fourth-
order differential equations. In particular, we applied our re-
sults to solve the Cantilever beam problem under a uniformly
distributed load.
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