
Derivatives of Matrix-Valued Functions Involving
Semi-Tensor Products in Vector Variables

Thanaphon Phoonphiphat and Pattrawut Chansangiam

Abstract—The propose of this paper to derive exact formulae
for the derivatives of certain matrix-valued functions with
vector variables involving semi-tensor products. Moreover, we
investigate the product rule of two matrix-valued functions
with vector variables involving semi-tensor products, and its
special cases. The paper results generalize the classical ones in
the literature, so that the matrix dimensions can be arbitrary
and the traditional matrix products are replaced by the semi-
tensor products. Moreover, we apply our derivative formulas to
compute the gradients of certain vector-valued function arising
from neural networks. Furthermore, the derivative formulas
can be applied to solve certain matrix equations that generalized
classical linear systems. Indeed, a least-squares solution can
be obtained as a minimizing vector of the least-squares error
associated with the matrix equation.

Index Terms—Matrix derivative, Kronecker product, semi-
tensor product, vectorization, zero-one matrix, least-squares
solution.

I. INTRODUCTION

MATRIX differential calculus plays an important role
in applied mathematics, statistics, data science,

econometrics, and related areas. Matrix derivatives are
fundamental topics for multivariate analysis, such as
asymptotic distributions, linear regression models, and
maximum likelihood estimation; see e.g. [1], [13]. The theory
of matrix derivatives was developed with the utilization
of matrix products, e.g., the traditional matrix product
(TMP), and the Kronecker product ⊗. Moreover, matrix
derivatives often involve vectorizations, e.g., Vec and Devec
operators, and specific zero-one matrices, e.g., selection and
permutation matrices. To derive derivative formulas, there
are two approaches in the literature. The first one is by
taking differentials as that in a pioneer work [13] and the
paper [14]. Another one is by deriving a few general rules
of differentiation such as the product rule and the chain rule;
see e.g. [2]. The latter approach was beneficial in linear
regression models, seemingly-unrelated regression models,
and linear simultaneous equation models. Over the years,
several authors had derived exact formulas for the derivatives
of certain matrix/vector/scalar-valued functions with respect
to matrix/vector/scalar variables. Moreover, they also derived
product rules and chain rules involving TMPs as well.

A natural way to extend the study of matrix derivatives
is to replace the TMP with the semi-tensor product (STP).
Indeed, the STP of matrices, introduced by D. Cheng [5], is

Manuscript received March 27, 2024; revised September 14, 2024. This
work was financially supported by King Mongkut’s Institute of Technology
Ladkrabang Research Fund (KREF016517).

T. Phoonphiphat is a graduate student of King Mongkut’s Institute
of Technology Ladkrabang, Bangkok, 10520, Thailand (e-mail:
65056043@kmitl.ac.th).

P. Chansangiam is a professor of Mathematics, School of Science, King
Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
(e-mail: pattrawut.ch@kmitl.ac.th).

a generalization of the TMP so that the factor matrices can
be of arbitrary dimensions. The STP of two real matrices
A ∈ Rm×n and B ∈ Rp×q is defined as the TMP between
each matrix factor expanding with certain identity matrices:

A⋉B = (A⊗ Iα
n
)(B ⊗ Iα

p
) ∈ R

αm
n ×αq

p , (1)

where α is the least common multiple (lcm) of n and p. For
the factor-dimension condition n = tp, the STP reduces to

A⋉B = A(B ⊗ It). (2)

If nt = p for some integer t, then A ⋉ B = (A ⊗ It)B.
For the matching-dimension condition n = p, the STP
reduces to the TMP of A and B. Since the STP is based
on the TMP, the STP posseses rich algebraic properties
as those for TMP, such as associativity, bilinearity, and
distributivity over the addition. Special features of STPs
are the pseudo-commutativity concerning swap matrices and
algebraic formulations of logical functions. See [3] for more
information about theory of STPs. It turns out that STPs
have a wide range of applications in mathematics and data
science: classical and fuzzy logic [6], boolean networks ([6],
[9], [10]), networked evolutionary games [7] and finite state
machines [8]. Moreover, STPs have applications in physics
[11] and engineering [12].

From the above discussion, the STP is one of powerful
matrix operations. Instead of focusing on the TMP it is
worthy to study matrix calculus in which the TMPs are
generalized to the STPs. In this paper, we investigate
the derivatives of certain matrix-valued functions involving
STPs with respect to a vector variable. In particular, we
observe the product rule for two matrix-valued functions. Our
results extend the classical results for the case of matching-
dimension condition (e.g. [2]) to the case of arbitrary
dimensions. Our derivative formulas can be applied to solve
matrix equations of the form A⋉x = B, where A is a given
matrix, B is a given vector/matrix, and x is an unknown
column vector.

This work is arranged as following. In Section II, symbolic
notations and useful results involving matrix algebra and
derivatives are given. In Section III, we derive exact formulas
of the derivative of certain matrix-valued functions involving
STPs in a vector variable. Section IV deals with the product
rule and its special cases. Applications of our theory to
neuron networks are presented in Section V. Applications to
matrix equations are discussed theoretically in Section VI,
and computationally in Section VII . Finally, Section VIII
provides a brief conclusion of the whole work.

II. PRELIMINARIES ON MATRIX CALCULUS

This section provides useful tools and notations which
will be used throughout this paper. Denote the set of natural

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2290-2298

__

numbers by N. Let us denote the set of m× n real matrices
by Rm×n. The transpose of a matrix A is denoted by A′.

A. Vectorizations and Matrix Products
Let A ∈ Rm×n be a matrix denoted by

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 =

a⃗∗1 a⃗∗2 · · · a⃗∗n



=


a⃗′1∗
a⃗′2∗

...
a⃗′m∗

 ,

where a⃗∗j is the j-th column of A and a⃗′i∗ is the i-th row
of A. The operators Vec and Devec are defined as follows:

Vec(A) =


a⃗∗1
a⃗∗2

...
a⃗∗n

 ∈ Rmn×1,

Devec(A) =
[⃗
a′1∗ a⃗′2∗ · · · a⃗′m∗

]
∈ R1×mn.

We also recall the Kronecker product and Tracy-Singh
product as well. The Kronecker product of A ∈ Rm×n and
B ∈ Rp×q is defined to be the following block matrix:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

 ∈ Rmp×nq.

Lemma 1. (e.g. [4]) The following properties hold for any
matrices A,B,C,D:

1) A⊗ (B ⊗ C) = (A⊗B)⊗ C,
2) (A⊗B)′ = A′ ⊗B′,
3) (A⊗B)(C ⊗D) = (AC)⊗ (BD),

provided that all matrix products exist.

Let A = [aij] ∈ Rm×n and B = [bij] ∈ Rp× be
partitioned with block submatrices Aij and Bkl of dimension
mi × nj and pk × ql, respectively. Then the Tracy-Singh
product of A and B is defined to be a block matrix as follows:

A⊠B =
[
[Aij ⊗Bkl]kl

]
ij
∈ Rmp×nq. (3)

A zero-one matrix is a matrix whose elements are all either
zero or one. It is an essential notation to deal with complexity
when working with matrices. Let eni be the i-th column of
the n × n identity matrix In. The following commutation
matrices will be used in later discussion:

K τ̃n
m,n =

[
In ⊗ em

′

1 In ⊗ em
′

2 . . . In ⊗ em
′

m

]
∈ Rn×nm2

,

Kτn
m,n =


Im ⊗ en1
Im ⊗ en2

...
Im ⊗ enn

 ∈ Rmn2×m.

Lemma 2. (e.g. [2]). From the above notation, we have:
1) If n = 1, then K τ̃1

m,1 = Devec(Im).
2) If m = 1, then K τ̃n

1,n = In.

B. Matrix Derivatives
We use the following layout conventions for matrix

derivatives; see e.g. [2, Ch. 4].

Definition 3. Let y = [y1 y2 · · · yn]
′

be an m × 1 vector
whose elements are differentiable functions of a scalar x. The
derivative of y with respect to x is a 1 × m vector defined
by

∂y

∂x
=

[
∂y1
∂x

∂y2
∂x

· · · ∂ym
∂x

]
.

Definition 4. Let A be an m × n matrix whose elements
are differentiable functions of elements of a p × 1 vector
x = [x1 x2 · · · xn]

′
. The derivative of A with respect to x

is a p×mn matrix defined by

∂A

∂x
=


∂ Vec(A)

∂x1
∂ Vec(A)

∂x2

...
∂ Vec(A)

∂xp

 .

Lemma 5. (e.g. [2, Ch. 4]). Let x be an n × 1 matrix and
let A be a matrix of constants. Then

1)
∂

∂x
Ax = A′ for A, m× n,

2)
∂

∂x
x′A = A for A, n× p,

3)
∂

∂x
x′Ax = (A+A′)x for A, n× n.

Theorem 6. (e.g. [2, Ch. 4]). Let x = [x1 x2 · · · xp]
′

be a p × 1 vector. Let y = [y1(x) y2(x) · · · yq(x)]
′ and

z = [z1(y) z2(y) · · · zr(y)]
′ be q × 1 and r × 1 vector

functions of x and y, respectively . Then the chain rule is
given by

∂z

∂x
=

∂y

∂x
· ∂z
∂y

.

Theorem 7. (e.g. [2, Ch. 4]). Let A and B be m × n and
n× r matrices, respectively. Assume that element of both A
and B are scalar functions of a vector x = [x1 x2 · · · xp]

′
of

size p× 1. The product rule of A and B is given by
∂

∂x
(A(x)B(x))

=
∂A(x)

∂x
(B(x)⊗ Im) +

∂B(x)

∂x
(Ir ⊗A′(x)).

Lemma 8. (e.g. [2, Ch. 4]). Let x ∈ Rp. Then

1)
∂

∂x
(x⊗ In) = K

τ̃p
n,p,

2)
∂

∂x
(In ⊗ x) = Devec(In)⊗ Ip,

3)
∂

∂x
(x′ ⊗ In) = Ip ⊗Devec(In).

III. DERIVATIVES OF MATRIX-VALUED FUNCTIONS WITH
VECTOR VARIABLES INVOLVING SEMI-TENSOR PRODUCTS

We derive exact formulas of the derivatives of certain
matrix-valued functions involving STPs in a vector variable.

Theorem 9. Let A ∈ Rm×n be a constant matrix, and let x
be a p× 1 vector variable. Then

∂

∂x
(A⋉ x) = K

τ̃p
α
p ,p [Iα

p
⊗ (A′ ⊗ Iα

n
)], (4)

∂

∂x
(x′ ⋉A) = [Ip ⊗Devec(I β

p
)](A⊗ I β2

pm

), (5)

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2290-2298

__

where α = lcm(n, p) and β = lcm(p,m).

Proof: From Eq. (1), we have

A⋉ x = (A⊗ Iα
n
)(x⊗ Iα

p
).

It follows from the product rule in Theorem 7 that

∂

∂x
(A⋉ x) =

∂

∂x
[(A⊗ Iα

n
)(x⊗ Iα

p
)]

=
∂(A⊗ Iα/n)

∂x
[(x⊗ Iα

p
)⊗ Imα

n
]

+
∂(x⊗ Iα/p)

∂x
[Iα

p
⊗ (A′ ⊗ Iα

n
)]

=
∂(x⊗ Iα/p)

∂x
[Iα

p
⊗ (A′ ⊗ Iα

n
)].

Now, Lemma 8 implies that

∂

∂x
(A⋉ x) = K

τ̃p
α
p ,p [Iα

p
⊗ (A′ ⊗ Iα

n
)].

We compute the following derivative according to Theorem
7:

∂

∂x
(x′ ⋉A) =

∂

∂x
[(x′ ⊗ I β

p
)(A⊗ I β

m
)]

=
∂(x′ ⊗ Iβ/p)

∂x
[(A⊗ I β

m
)⊗ I β

p
]

+
∂(A⊗ Iβ/m)

∂x
[Inβ

m
⊗ (x⊗ I β

p
)]

=
∂(x′ ⊗ Iβ/p)

∂x
[(A⊗ I β

m
)⊗ I β

p
]

=
∂(x′ ⊗ Iβ/p)

∂x
[A⊗ I β2

pm

].

Now, Lemma 8 implies that

∂

∂x
(x′ ⋉A) = [Ip ⊗Devec(I β

p
)](A⊗ I β2

pm

).

Corollary 10.
1) If p = nt for some t ∈ N, then Eq. (4) becomes

∂

∂x
(A⋉ x) = A′ ⊗ It.

2) If n = pt for some t ∈ N, then Eq. (4) becomes

∂

∂x
(A⋉ x) = K

τ̃p
t,p (It ⊗A′).

3) If m = pt for some t ∈ N, then Eq. (5) becomes

∂

∂x
(x′ ⋉A) = [Ip ⊗Devec(It)](A⊗ It).

4) If p = mt for some t ∈ N, then Eq. (5) becomes

∂

∂x
(x′ ⋉A) = A⊗ It.

Proof: For the case p = nt, we have α = lcm(n, p) = p.
By substituting α = p in (4) and applying Lemma 2, we
obtain

∂

∂x
(A⋉ x) = K

τ̃p
1,p [I1 ⊗ (A′ ⊗ It)]

= Ip [A′ ⊗ It]

= A′ ⊗ It.

For the case n = pt, we have α = lcm(n, p) = n and thus

∂

∂x
(A⋉ x) = K

τ̃p
t,p (It ⊗A′).

Similarly, the remaining results can be done in the same
manner by substituting β = lcm(p,m).

Theorem 11. Let A ∈ Rm×n be a constant matrix, and let
x = x(z) be a p × 1 vector function of an r × 1 vector z.
Then

∂

∂z
(A⋉ x(z)) =

∂x

∂z
K

τ̃p
α
p ,p [Iα

p
⊗ (A′ ⊗ Iα

n
)], (6)

∂

∂z
(x′(z)⋉A) =

∂x

∂z
[Ip ⊗Devec(Iα

p
)] (A⊗ I α2

pm

), (7)

where α = lcm(n, p) and β = lcm(p,m).
Proof: The results follow directly by applying Theorem

6 to (4) and (5) in Theorem 9.

We can observe certain special cases of Theorem 11 in a
similar manner as Corollary 10.

Theorem 12. Let A ∈ Rm×n be a constant matrix. Let x
and y be two independent vector variables of dimension p×1
and q × 1, respectively. Then

∂

∂x
(y′ ⋉A⋉ x) = K

τ̃p
β
p ,p

[I β
p
⊗ ((A′ ⋉ y)⊗ I βm

nα
)], (8)

where α = lcm(q,m) and β = lcm(nα/m, p).
Proof: Let M = y′ ⋉A = (y′ ⊗ Iα

q
)(A⊗ I α

m
). Then

(y′ ⋉A)⋉ x = [(y′ ⊗ Iα
q
)(A⊗ I α

m
)]⋉ x

= (M ⊗ I βm
nα

)(x⊗ I β
p
).

By taking derivative with respect to x and applying Theorem
7, it follows that

∂

∂x
(y′ ⋉A⋉ x) =

∂(M ⊗ Iβm/nα)

∂x
[(x⊗ I β

p
)⊗ I βm

q
]

+
∂(x⊗ Iβ/p)

∂x
[I β

p
⊗ (M ′ ⊗ I βm

nα
)]

=
∂(x⊗ Iβ/p)

∂x
[I β

p
⊗ (M ′ ⊗ I βm

nα
)]

= K
τ̃p
β
p ,p

[I β
p
⊗ (M ′ ⊗ I βm

nα
)].

Corollary 13.
1) If a pair (m, q) is relatively prime, and p = t(nα/m)

for some t ∈ N, then Eq. (8) becomes

∂

∂x
(y′ ⋉A⋉ x) = (A′ ⋉ y)⊗ It.

2) If a pair (m, q) is relatively prime, and nα/m = pt
for some t ∈ N, then Eq. (8) becomes

∂

∂x
(y′ ⋉A⋉ x) = K

τ̃p
t,p · [It ⊗ (A′ ⋉ y)].

3) If m = qt for some t ∈ N, and a pair (nα/m, p) is
relatively prime, then Eq. (8) becomes

∂

∂x
(y′ ⋉A⋉ x) = K τ̃p

n,p · [In ⊗ [A′(y ⊗ It)]⊗ Ip].

4) If q = mt for some t ∈ N, and a pair (nα/m, p) is
relatively prime, then Eq. (8) becomes

∂

∂x
(y′ ⋉A⋉ x) = K

τ̃p
nt,p · [Int ⊗ [(A′ ⊗ Is)y]⊗ Ip].

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2290-2298

__

5) If m = qt and p = s(nα/m) for some t, s ∈ N, then
Eq. (8) becomes

∂

∂x
(y′ ⋉A⋉ x) = [A′(y ⊗ It)]⊗ Is.

6) If m = qt and nα/m = ps for some t, s ∈ N, then
Eq. (8) becomes

∂

∂x
(y′ ⋉A⋉ x) = K τ̃p

s,p · [Is ⊗ [A′(y ⊗ It)]].

7) If q = mt and p = s(nα/m) for some t, s ∈ N, then
Eq. (8) becomes

∂

∂x
(y′ ⋉A⋉ x) = (A′ ⊗ It)y ⊗ Is.

8) If q = mt and nα/m = ps for some t, s ∈ N, then
Eq. (8) becomes

∂

∂x
(y′ ⋉A⋉ x) = K τ̃p

s,p · [Is ⊗ [(A′ ⊗ Is)y]].

Proof: The condition that the pair (m, q) is relatively
prime means that α = mq. The condition that the pair
(nα/m, p) is relatively prime means that β = nαp/m. Now,
the results follow from Eq. (8).

Theorem 14. Let A ∈ Rm×n be a constant matrix, and let
x and y be p × 1 and q × 1 independent vector variables,
respectively. Then

∂

∂y
(y′ ⋉A⋉ x)

= (Iq ⊗Devec(I β
q
))((A⋉ x)⊗ I β2n

mαq

), (9)

where α = lcm(n, p) and β = lcm(q,mα/n).
Proof: Let N = A⋉ x = (A⊗ Iα

n
)(x⊗ Iα

p
). Then

y′ ⋉ (A⋉ x) = y′ ⋉ [(A⊗ Iα
n
)(x⊗ Iα

p
)]

= (y′ ⊗ I β
q
)(N ⊗ I βn

mα
).

By taking derivative with respect to y and applying Theorem
7, we get

∂

∂y
(y′ ⋉A⋉ x) =

∂(y′ ⊗ Iβ/q)

∂y
[(N ⊗ I βn

mα
)⊗ I β

q
]

+
∂(N ⊗ Iβn/mα)

∂y
[I βn

pm
⊗ (y ⊗ I β

q
)]

=
∂(y′ ⊗ Iβ/q)

∂y
[(N ⊗ I βn

mα
)⊗ I β

q
]

=
∂(y′ ⊗ Iβ/q)

∂y
[N ⊗ I β2n

mαq

].

Finally, we arrive at Eq. (9) by using Lemma 8.

We can observe special cases of Theorem 14 in a similar
manner as Corollary 13.

Lemma 15. Let A(x) be an m×n matrix function of a vector
x ∈ Rp. Then

1)
∂

∂x
A(x) =

[(∂

∂x
A(x)

)
∗j

]n
j=1

,

2)
∂

∂x
(A(x)⊗ It)) =

∂A(x)

∂x
⊠Devec(It).

Proof: A direct computation reveals that

∂

∂x
A(x)

=



∂

∂x1
Devec(a∗1(x)) · · · ∂

∂x1
Devec(a∗n(x))

∂

∂x2
Devec(a∗1(x)) · · · ∂

∂x2
Devec(a∗n(x))

...
. . .

...
∂

∂xp
Devec(a∗1(x)) · · · ∂

∂xp
Devec(a∗n(x))



=



∂

∂x1
a′∗1(x)

∂

∂x1
a′∗2(x) · · · ∂

∂x1
a′∗n(x)

∂

∂x2
a′∗1(x)

∂

∂x2
a′∗2(x) · · · ∂

∂x2
a′∗n(x)

...
...

. . .
...

∂

∂xp
a′∗1(x)

∂

∂xp
a′∗2(x) · · · ∂

∂xp
a′∗n(x)


=

[(∂

∂x
A(x)

)
∗j

]n
j=1

.

We also have

A(x)⊗ It

=
[
a∗1(x)⊗ It a∗2(x)⊗ It · · · a∗n(x)⊗ It

]
=

[[
a∗1(x)⊗ etr

]t
r=1

· · ·
[
a∗n(x)⊗ etr

]t
r=1

]n
j=1

=

[[
a∗j(x)⊗ etr

]t
r=1

]n
j=1

.

By taking derivative with respect to x, the above equation
becomes

∂

∂x
(A(x)⊗ It)

=


∂

∂x1
Devec

[[
a∗j(x)⊗ etr

]t
r=1

]n
j=1

...
∂

∂xp
Devec

[[
a∗j(x)⊗ etr

]t
r=1

]n
j=1



=


∂

∂x1

[[
a′∗j(x)⊗ et

′

r

]t
r=1

]n
j=1

...
∂

∂xp

[[
a′∗j(x)⊗ et

′

r

]t
r=1

]n
j=1

 .

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2290-2298

__

Hence

∂

∂x
(A(x)⊗ It)

=


∂

∂x1

[
a′∗1(x)⊗ et

′

r

]t
r=1

· · · ∂

∂x1

[
a′∗n(x)⊗ et

′

r

]t
r=1

...
. . .

...
∂

∂xp

[
a′∗1(x)⊗ et

′

r

]t
r=1

· · · ∂

∂xp

[
a′∗n(x)⊗ et

′

r

]t
r=1



=


[∂

∂x1
a′∗1(x)⊗ et

′

r

]t
r=1

· · ·
[∂

∂x1
a′∗n(x)⊗ et

′

r

]t
r=1

...
. . .

...[∂

∂xp
a′∗1(x)⊗ et

′

r

]t
r=1

· · ·
[∂

∂xp
a′∗n(x)⊗ et

′

r

]t
r=1


=

[[(∂

∂x
A(x)

)
∗1

⊗ et
′

r

]t
r=1

· · ·
[(∂

∂x
A(x)

)
∗n

⊗ et
′

r

]t
r=1

]
=

[[(∂

∂x
A(x)

)
∗j

⊗ et
′

r

]t
r=1

]n
j=1

=
∂A(x)

∂x
⊠Devec(It).

Theorem 16. Let A ∈ Rm×n be a constant matrix, and
let x = x(z) and y = y(z) be p × 1 and q × 1 vector
functions of an r × 1 vector z. Denote α = lcm(q,m) and
β = lcm(nα/m, p). Then

∂

∂z
(y′(z)⋉A⋉ x(z))

=
∂y

∂z
·
[
∂(y′ ⋉A)

∂y
⊠Devec(I βm

nα
)

]
[x(z)⊗ I β2m

pnq

]

+
∂x

∂z
·K τ̃p

β
p ,p

[I β
p
⊗ [(A′ ⋉ y(z))⊗ I βm

nα
]]. (10)

In particular when p = q and x(z) = y(z), by denoting
t = nα/(mp), we get

∂

∂z
(x′(z)⋉A⋉ x(z))

=
∂x

∂z
[Ip ⊗Devec(Iα

p
)] [(A⊗ I α2

mp

)(x⊗ I tα
p
)]

+
∂x

∂z
K

τ̃p
t,p · [It ⊗ (A′ ⋉ x)]. (11)

Proof: From the formula (1), we have

y′(z)⋉A⋉ x(z)

= [(y′(z)⊗ Iα
q
)(A⊗ I α

m
)]⋉ x(z)

=
[
[(y′(z)⊗ Iα

q
)(A⊗ I α

m
)]⊗ I βm

nα

]
(x(z)⊗ I β

p
)

= [(y′(z)⋉A)⊗ I βm
nα

] (x(z)⊗ I β
p
).

Taking derivative with respect to z yields

∂

∂z
(y′(z)⋉A⋉ x(z))

=
∂[(y′(z)⋉A)⊗ Iβm/nα]

∂z
[x(z)⊗ I β

p
⊗ I βm

nq
]

+
∂(x(z)⊗ Iβ/p)

∂z
[I β

p
⊗ [(A′ ⋉ y(z))⊗ I βm

nα
]].

Now, Theorem 6 implies

∂

∂z
(y′(z)⋉A⋉ x(z))

=
∂y

∂z
·
∂[(y′(z)⋉A)⊗ Iβm/nα]

∂y
[x(z)⊗ I β2m

pnq

]

+
∂x

∂z
·
∂(x(z)⊗ Iβ/p)

∂x
[I β

p
⊗ [(A′ ⋉ y(z))⊗ I βm

nα
]].

Finally, Lemmas 15 and 8 yield

∂

∂z
(y′(z)⋉A⋉ x(z))

=
∂y

∂z
·
[
∂(y′ ⋉A)

∂y
⊠Devec(I βm

nα
)

]
[x(z)⊗ I β2m

pnq

]

+
∂x

∂z
·K τ̃p

β
p ,p

[I β
p
⊗ [(A′ ⋉ y(z))⊗ I βm

nα
]].

Note that if we partition ∂
∂y (y

′ ⋉A) as[
∂

∂y
(y′ ⋉A)∗1

∂

∂y
(y′ ⋉A)∗2 · · · ∂

∂y
(y′ ⋉A)∗nα

m

]
,

then the (r, l)-th submatrix of ∂
∂y (y

′ ⋉A)⊠Devec(I β
nm

) is
given by (∂

∂y
(y′ ⋉A)

)
∗,r

⊗ e
(β/nm)′

l

for each r = 1, 2, . . . , nα/m and l = 1, 2, . . . , β/(mn). In
particular, when p = q and x(z) = y(z), Eq. (10) reduces to
Eq. (11) due to an application of Theorem 9.

Corollary 17. Under the assumptions of Theorem 16,
suppose n = p and m = q. Then

∂

∂z
y′(z)Ax(z) =

∂y

∂z
·Ax(z) +

∂x

∂z
·A′y(z).

Proof: Since n = p and m = q, we have α = m and
β = n. Now, Eq. (10) reduces to

∂

∂z
y′(z)Ax(z)

=
∂y

∂z
·
[
∂(y′A)

∂y
⊠Devec(I1)

]
[x(z)⊗ I1]

+
∂x

∂z
·K τ̃p

1,p [I1 ⊗ [(A′y(z))⊗ I1]].

It follows from Lemmas 2 and 5 respectively that

∂

∂z
y′(z)Ax(z)

=
∂y

∂z
·
[
∂(y′A)

∂y

]
[x(z)] +

∂x

∂z
·K τ̃p

1,p [(A′y(z))]

=
∂y

∂z
· [A][x(z)] +

∂x

∂z
· Ip [(A′y(z))]

=
∂y

∂z
·Ax(z) +

∂x

∂z
· A′y(z).

Remark 18. For the special case p = m = n, Eq. (11)
becomes the item 3) in Lemma 5. To see this, note that α = p
and t = 1. Thus, we obtain

∂

∂x
(x′Ax) = [Iα ⊗Devec(Iα

α
)] [(A⊗ Iα2

α2
)(x⊗ I1)]

+K τ̃α
1,α · [I1 ⊗ (A′ ⊗ Iα

α
)(x⊗ Iα

α
)].

= IαAx + IαA
′x

= (A+A′)x.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2290-2298

__

The results in this section generalize the classical results
(e.g. [2, Ch. 4]) in the literature, particularly Lemma 5.

IV. THE PRODUCT RULE

In this section, we investigate the derivative of the semi-
tensor product between two matrix functions with respect to
a vector variable.

Theorem 19. Let A(x) and B(x) be m×n and c×d matrix
functions of a p× 1 vector variable x. Then

∂

∂x
(A(x)⋉B(x))

=

[
∂A(x)

∂x
⊠Devec(Iα

n
)

]
[B(x)⊗ Imα2

cn

] (12)

+

[
∂B(x)

∂x
⊠Devec(Iα

c
)

]
[I dα

c
⊗ (A′(x)⊗ Iα

n
)].

where α = lcm(n, c).

Proof: By denoting α = lcm(n, c), we get

A(x)⋉B(x) = (A(x)⊗ Iα
n
)(B(x)⊗ Iα

c
).

Theorem 7 now implies that

∂

∂x
(A(x)⋉B(x))

=
∂[A(x)⊗ Iα/n]

∂x
[(B(x)⊗ Iα

c
)⊗ Imα

n
]

+
∂[B(x)⊗ Iα/c]

∂x
[I dα

c
⊗ (A′(x)⊗ Iα

n
)].

By using Lemma 15, the above equation becomes

∂

∂x
(A(x)⋉B(x))

=

[
∂A(x)

∂x
⊠Devec(Iα

n
)

]
[B(x)⊗ Imα2

cn

]

+

[
∂B(x)

∂x
⊠Devec(Iα

c
)

]
[I dα

c
⊗ (A′(x)⊗ Iα

n
)].

Note that if we partition ∂
∂xA(x) and ∂

∂xB(x) as follows:[(∂

∂x
A(x)

)
∗1

(∂

∂x
A(x)

)
∗2

· · ·
(∂

∂x
A(x)

)
∗n

]
and [(∂

∂x
B(x)

)
∗1

(∂

∂x
B(x)

)
∗2

· · ·
(∂

∂x
B(x)

)
∗d

]
,

then each (j, r)-th submatrix of ∂
∂xA(x) ⊠ Devec(Iα

n
) and

each (l, s)-th submatrix of ∂
∂xB(x) ⊠ Devec(Iα

c
) are given

respectively by(∂

∂x
A(x)

)
∗j

⊗ e(
α/n)′

r ,
(∂

∂x
B(x)

)
∗l
⊗ e(

α/n)′

s .

From the product rule (Theorem 19), we can derive its
special cases as follows.

Corollary 20.
1) If n = c, then Eq. (12) becomes the product rule

involving TMP as discussed in Theorem 7.

2) If n = 1 (i.e., α = c), then Eq. (12) becomes

∂

∂x
(A(x)⋉B(x))

=

[
∂A(x)

∂x
⊠Devec(Ic)

]
[B(x)⊗ Imc]

+

[
∂

∂x
B(x)

]
[Id ⊗ (A′(x)⊗ Ic)].

3) If c = 1 (i.e., α = n), then Eq. (12) becomes

∂

∂x
(A(x)⋉B(x))

=

[
∂

∂x
A(x)

]
[B(x)⊗ Imn]

+

[
∂B(x)

∂x
⊠Devec(In)

]
[Idn ⊗A′(x)].

4) If m = d = 1, and a pair (n,c) is relatively prime, then
Eq. (12) becomes

∂

∂x
(A(x)⋉B(x))

=

[
∂A(x)

∂x
⊠Devec(Ic)

]
[B(x)⊗ Icn]

+

[
∂B(x)

∂x
⊠Devec(In)

]
[In ⊗ (A′(x)⊗ Ic)].

Proof: All formulas follow from the assumption that α =
lcm(n, c).

The results in this section generalize the classical results
(e.g. [2, Ch. 4]) in the literature, particularly Theorem 7.

V. APPLICATIONS TO NEURAL NETWORKS

In a neural network, suppose we have an n-component
input vector x ∈ Rn. In order to train a neuron, we choose a
weight vector w ∈ Rn with the same component number as
that for the input vector. We also need a scalar bias b ∈ R.
Then, the activation of a single computation unit in a neuron
is typically calculated as

F(x) =
n∑

i=1

wixi + b = w′x + b.

The function F is known as the unit’s affine function. To
train this neuron, we choose weights w and the bias b that
minimize an associated loss function. To minimize the loss
function, we use matrix derivatives.

Now, suppose we have t collections of an n-component
data. We can represent them with a single vector

x = [x1 · · · xn · · · xn(t−1)+1 · · · xnt]
′ ∈ Rnt.

Assume that

• we use the same weights for each data collection,
namely,

w = [w1 · · · wn]
′ ∈ Rn.

• we use different bias for different data sets, so we can
form the bias vector to be

b = [b1 · · · bt]′ ∈ Rt.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2290-2298

__

Thus, the affine function is given by

F(x) = (w′ ⋉ x) + b

=


∑n

i=1 wix(i−1)t+1 + b1∑n
i=1 wix(i−1)t+2 + b2

...∑n
i=1 wix(i−1)t+t + bt

 .

To minimize the associated loss function, we shall
differentiate F with respect to x,w, and b. Indeed, from
Corollary 10, we obtain

∂F

∂x
=

∂

∂x
(w′ ⋉ x) +

∂

∂x
b

= (w′)′ ⊗ It

= w ⊗ It

The same corollary implies.

∂F

∂w
=

∂

∂w
(w′ ⋉ x) +

∂

∂w
b

= [In ⊗Devec(It)](x⊗ It).

The gradient of F with respect to the bias is given by

∂F

∂b
=

∂

∂b
(w′ ⋉ x) +

∂

∂b
b = It.

VI. LEAST-SQUARES SOLUTIONS OF THE EQUATION
A⋉ x = b VIA MATRIX DERIVATIVES

In this section, we shall apply certain derivative formulas
to find least-squares solutions of a matrix equation related to
linear systems. Recall that the Moore-Penrose inverse of a
matrix A is denoted by A†; see, e.g., [13] for more details.

Recall that, in a classical linear system takes the form

Ax = b, (13)

where A ∈ Rm×n is a given constant matrix, b ∈ Rn is a
given vector, and x ∈ Rm is an unknown vector.

Lemma 21. (e.g. [13]) Suppose that the linear system (13)
is inconsistent. Then the least-squares solution to (13) is an
exact solution to the normal equation

A′Ax = A′b.

In fact, the general least-squares solutions of (13) can be
expressed as

x = (A′A)†A′b+
[
In − (A′A)†A′A

]
w, (14)

where w ∈ Rn is arbitrary. The minimal-norm solution of
Eq. (13) is given by

x = (A′A)†A′b. (15)

The system (13) has a unique least-squares solution if and
only if A is of full-column rank (i.e. rank(A) = n). Moreover,
such unique solution is given by (15).

We can extend the classical case to that when x ∈ Rp,
where p is a positive integer divided by n. Now, assume that
p = nt where t is a positive integer. We are given b ∈ Rmt,
and we would like to solve the following equation:

A⋉ x = b. (16)

To find a least-squares solution of Eq. (16), we follow an
idea of the works [15], [16], that is, we transform the matrix

equation into a simple linear system. So, we look for a vector
x∗ ∈ Rnt that minimizes the squared Euclidean norm

∥A⋉ x− b∥2.

Indeed, the least-squares error can be computed as follows:

∥A⋉ x− b∥2

= (A⋉ x− b)′(A⋉ x− b)

= (x′ ⋉A′ − b′)(A⋉ x− b)

= x′ ⋉A′A⋉ x− x′ ⋉ (A′ ⋉ b)− (b′ ⋉A)⋉ x + b′b.
(17)

The vector x∗ is an exact solution of Eq. (16) if and only if
the least-squares error (17) is zero. To minimize such error,
we shall differentiate it with respect to the vector x. Indeed,
we get

∂

∂x
∥A⋉ x− b∥2

=
∂

∂x
(x′ ⋉A′A⋉ x)− ∂

∂x
(x′ ⋉A′ ⋉ b)− ∂

∂x
(b′ ⋉A⋉ x).

(18)

The first term in (18) can be computed using Theorem 16.
The second term can be computed using (5) in Theorem 9,
and Lemma 5. The last term can be computed using (4) in
Theorem 9, and Lemma 2. Putting them together yields

∂

∂x
∥A⋉ x− b∥2

= [(A′A⊗ It)(x⊗ I1)] +K
τ̃p
1,p · [I1 ⊗ (A′A⋉ x)]

− (A′ ⋉ b)− (b′ ⋉A)′

= (A′A⊗ It)x + Ip · (A′A⊗ It)x

− (A′ ⋉ b)− (A′ ⋉ b)′

= (A′A⊗ It)x + (A′A⋉ x)− 2(A′ ⋉ b)

= (A′A⊗ It)x + (A′A⊗ It)x− 2(A′ ⊗ It)b

= (A′A⊗ It)x− (A′ ⊗ It)b. (19)

The least-squares solution can be obtained by setting the
derivative (19) to be zero, and solve for x. Thus, the least-
squares solutions of Eq. (16) can be obtained by solving the
linear system

Kx = f, (20)

where K = A′A⊗ It and f = (A′ ⊗ It)b.
Now, we apply Lemma 21 to discuss theoretical details

from the associated system (20). Note that

K† = (A′A⊗ It)
† = (A′A)† ⊗ It.

The general solutions of this system can be written as

x = K†f + (Int −K†K)w, (21)

where w ∈ Rnt is arbitrary. From properties of the Kronecker
product, the expression (21) becomes

x =
[
(A′A)†A′ ⊗ It

]
b+

[
Int − {(A′A)†A′A⊗ It}

]
w.
(22)

Among such solutions, the minimal-norm solution is given
by

x = K†f =
[
(A′A)†A′ ⊗ It

]
b. (23)

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2290-2298

__

In addition, Eq. (20) has a unique solution if and only if K
is of full rank. Note that

rankK = rank (A′A⊗ It) = (rankA′A) · (rank It)
= t rankA′A.

Thus, rankK = nt if and only if rankA′A = n, or
equivalently, A is of full-column rank. In this case, the unique
solution is given by (23).

We summarize the above discussion as follows.

Theorem 22. From the above notations, suppose that the
matrix equation (16) is inconsistent. Then:

(i) The least-squares solutions of (16) is an exact solution
of the linear system (20) where K = A′A ⊗ It and
f = (A′ ⊗ It)b.

(ii) The general least-squares solutions of (16) can be
expressed as (22), where w ∈ Rnt is arbitrary.

(iii) The minimal-norm least-squares solution of (16) is
given by (23).

(iv) The equation (16) has a unique least-squares solution
if and only if A is of full-column rank. Moreover, such
unique least-squares solution is given by (23).

Remark 23. When t = 1, the matrix equation (16) reduces
to the classical linear system (13). Hence, Theorem 22 is an
extension of Lemma 21.

In practice, to solve the linear system (20), we can use
a modern iterative method such as a preconditioned AOR
algorithm [17], and a gradient-descent algorithm [18].

VII. GRADIENT-DESCENT ALGORITHM FOR THE MATRIX
EQUATION AND NUMERICAL EXPERIMENTS

In this section, we propose an effective computational
method to solve the matrix equation (16), and illustrate
numerical experiments.

From Section VI, the least-squares solutions of Eq. (16)
are equivalent to the solutions of the associated linear system
(20). To solve the latter system, we adopt the gradient-
descent optimization technique from the work [18]. The
main idea is to minimize the residual error ∥Kx − f∥ at
each iteration. We thus obtain the following gradient-descent
iterative (GDI) algorithm:

Algorithm 1: GDI algorithm for solving Eq. (16)
A ∈ Rm×n, and b ∈ Rmt ;
Set i = 0. Choose x(0) ∈ Rp. Compute
K = A′A⊗ It, f = (A′ ⊗ It)b, M = (A′A)2 ⊗ It.

for i = 0, 1, 2, 3, . . . do
r(i) = f −Kx(i);
if ∥r(i)∥ ⩽ ϵ then

x(i) is a solution; break;
else

m(i) = Mr(i);
α(i+1) = mT

(i)r
(i)/(2mT

(i)m(i)) ;
x(i+1) = x(i) + α(i+1)Kr(i) ;

end
update i;

end

We make experiments via Matlab R2024a on the same
Mac Operating System (Intel i5 4C CPU/intel iris graphic
645GPU/8GB/128GB). The performance of the algorithm is
evaluated by the iteration number, the residual error

R(i) = ∥r(i)∥ = ∥f −Kx(i)∥,

and the CPU time measured in seconds using the tic-toc
function on MATLAB.

Example 24. Consider the equation A⋉ x = b, where

A =

 2 −1
0 1
−2 2

 ∈ R3×2,

b =
[
0 4 0 −2 0 −6

]′ ∈ R6.

We would like to find a least-squares solution

x = [x1 x2 · · ·x6]
′ ∈ R6

satisfying the above equation. Due to Theorem 22, this task
is equivalent to finding a solution of the associated linear
system Kx = f , where

K = A′A⊗ I3 =


8 0 −6 0
0 8 0 −6
−6 0 6 0
0 −6 0 6

 ∈ R4×4,

f = (A′ ⊗ I3)b =
[
0 20 0 −18

]′ ∈ R4.

We apply Algorithm 1 with an initial guess

x(0) =
[
1 1 1 1

]′
and a tolerance error ϵ = 0.05. The experimental results are
illustrated numerically in Table I and graphically in Figure
1.

TABLE I
NUMERICAL SOLUTIONS FOR EACH ITERATION

i x1 x2 x3 x4 R(i)

1 1 1 1 1 25.5342
2 0.9533 1.7362 1.0351 0.3690 12.9427
3 0.9288 2.1025 1.0513 0.0513 6.8096
4 0.9154 2.2839 1.0581 -0.1097 4.0079
5 0.9076 2.3730 1.0602 -0.1925 2.9093
6 0.9026 2.4159 1.0599 -0.2363 2.5578
7 0.8988 2.4360 1.0584 -0.2609 2.4575
8 0.8897 2.4448 1.0559 -0.2771 2.4264
9 0.8897 2.4464 1.0504 -0.2952 2.4083
10 0.7958 2.2619 0.9360 -0.4540 2.2017
...

...
...

...
...

...
49 0.0099 1.0158 0.0117 -1.9808 0.0272

In this problem, Algorithm 1 takes 49 iterations and
consumes only 0.036119 seconds to reach an approximate
solution

x(49) =
[
0.0099 1.0158 0.0117 −1.9808

]′
.

We can check the least-squares error

∥A⋉ x(49) − b∥2 = 0.0280.

Thus, x(49) is a desire least-squares solution. Hence,
Algorithm 1 is capable and effective.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2290-2298

__

Fig. 1. The residual error at each iteration for Ex. 24

VIII. CONCLUSIONS

This paper investigates matrix derivatives involving the
semi-tensor products. The recipes of several product rule’s
forms are formulated in Sections III and IV. Particularly, the
notation of zero-one matrices, the versatility of usual product
rule and chain rule, and Kronecker/Tracy-Singh products’
properties allow us to derive concise and elegant expressions
for those derivatives. Our results generalize the classical
ones in the literature, so that the matrix dimensions can
be arbitrary. As applications in neural networks, we apply
derivative formulas to compute the gradient of a vector-
valued function with respect to certain vector variables. The
derivative formulas can be applied to solve a matrix equation
of the form A ⋉ x = b. A least-squares solution can be
obtained as a minimizing vector of the associated least-
squares error. We can seek for a least-squares solution of
this matrix equation by solving the associated linear system.
Thus, we get formulas of general/minimal-norm/unique least-
squares solutions as in Theorem 22. Moreover, we propose
a gradient-descent iterative procedure to solve the matrix
equation for a least-squares solution. Looking ahead, further
refinement of derivative formulas and techniques involving
another matrix products would be found unlocking new
insights.

REFERENCES

[1] S. Liu, V. Leiva, D. Zhuang, T. Ma, J.I. Figueroa-Zúñiga, “Matrix
differential calculus with applications in the multivariate linear model
and its diagnostics,” Science Talks, vol. 8, 100274, 2023.

[2] DA. Turkington, “Matrix Calculus and Zero-One Matrices: Statistical
and Econometric Applications,” Cambridge University, 2001.

[3] D. Cheng, H. Qi, A. Xue, “A survey on semi-tensor product of
matrices,” Jrl. Syst. Sci. Complex., vol. 20, pp. 304–322, 2007.

[4] R.A. Horn, CR. Johnson, “Topics in Matrix Analysis.”, Cambridge
University, 1991.

[5] D. Cheng, “Semi-tensor product of matrices and its application to
Morgen’s problem”, Sci. China Ser. F vol. 44, pp. 195–212, 2001.

[6] D. Cheng, H. Qi, Q. Li, “Analysis and control of boolean networks:
a semi-tensor product approach,” London: Springer-Verlag, 2011.

[7] G. Zhao, H. Li, P. Duan, F. E. Alsaadi, “Survey on applications
of semi-tensor product method in networked evolutionary games,” J.
Appl. Anal. Comput., vol. 10, pp. 32–54, 2020.

[8] Y. Yan, D. Cheng, J. Feng, H. Li, J. Yue, “Survey on applications of
algebraic state space theory of logical systems to finite state machines,”
Sci. China Inf. Sci., vol. 66, 111201, 2023.

[9] Y. Yan, J. Yue, Z. Chen, “Algebraic method of simplifying Boolean
networks using semi-tensor product of Matrices,” Asian J. Control,
vol. 21, pp. 2569–2577, 2019.

[10] H. Ji, Y. Li, X. Ding, J. Lu, “Stability analysis of Boolean networks
with Markov jump disturbances and their application in apoptosis
networks,” Electronic Res. Arch., vol. 30, pp. 3422–3434, 2022.

[11] D. Cheng, Y. Dong, “Semi-tensor product of matrices and its some
applications to physics,” Methods Appl. Anal., vol. 10, pp. 565–588,
2003.

[12] H. Li, G. Zhao, M. Meng, J. Feng, “A survey on applications of semi-
tensor product method in engineering,” Sci. China Inf. Sci., vol. 61,
010202, 2018.

[13] J.R. Magnus, H. Neudecker, “Matrix Differential Calculus with
Applications in Statistics and Econometrics,” third ed., Wiley,
Chichester, UK, 2019.

[14] J.R. Magnus, “On the concept of matrix derivative,” Journal of
Multivariate Analysis, vol. 101, 9, pp. 2200-2206, 2010.

[15] J. Jaiprasert, P. Chansangiam, “Solving the Sylvester-transpose matrix
equation under the semi-tensor product,” Symmetry, vol. 14, 6, 1094,
2022.

[16] J. Jaiprasert, P. Chansangiam, “Exact and least-squares solutions of
a generalized Sylvester-transpose matrix equation over generalized
quaternions,” Electronic Res. Arch., vol. 32, 4, pp. 2789–2804, 2024.

[17] A. Li, “A new preconditioned AOR iterative method and comparison
theorems for linear systems,” IAENG Int. J. Appl. Math., vol. 42, 3,
pp. 161-163. 2012.

[18] K. Tansri, P. Chansangiam, “Gradient-descent iterative algorithm for
solving exact and weighted least-squares solutions of rectangular linear
systems,” AIMS Mathematics, vol. 8, 5, pp. 11781–11798, 2023.

[19] I. Goodfellow, Y. Bengio, A. Conrville. (2016, April 16) “Deep
Learning,” (Online). Available: https://www.deeplearningbook.org

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2290-2298

__

