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Abstract—This paper presents a dynamic model for
the transmission of schistosomiasis, which involves t-
wo definitive hostshumans and bovinesand an inter-
mediate host, snails. The study demonstrates the
positive invariance and non-negativity of the system.
It outlines the conditions necessary for the existence
of both disease-free and endemic equilibrium points.
Additionally, it provides criteria for the local and
global stability of the disease-free equilibrium point.
The local stability of the endemic equilibrium point
is analyzed using central manifold theory, while glob-
al stability is established through the construction
of a Lyapunov function, simultaneously proving the
existence of forward bifurcation in the system. A
sensitivity analysis of the basic reproduction num-
ber concerning various parameters reveals that the
effective contact rate between hosts and cercariae, a-
long with the hatching rate of cercariae, are critical
factors influencing the extinction of schistosomiasis.
Consequently, strategies such as minimizing contact
between humans and livestock in freshwater contami-
nated with cercariae, as well as effectively eliminating
schistosomiasis eggs, can be implemented to control
the disease’s spread.

Index Terms—Schistosoma, equilibrium point, local

stability, global stability, forward bifurcation.

1 Introduction

Schistosomiasis is a parasitic disease first described
by Theodor Bilharz in 1851, and the disease was o-

riginally named bilharzia. This disease is caused by para-
sitic trematode worms called schistosomes and is current-
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ly the second most widespread endemic parasitic disease
globally [1], [2]. Infection occurs when individuals come
into contact with freshwater that contains larvae (cercari-
ae) of these parasites. An estimated 264.4 million peo-
ple required treatment for schistosomiasis in 2022 [3]. Of
the 23 known Schistosoma species, Schistosoma haemato-
bium, Schistosoma mansoni and Schistosoma japonicum
mainly infect humans [4]. Schistosoma japonicum is par-
ticularly common in China, the Philippines, and Indone-
sia [5].

Schistosoma japonicum has a complex life cycle consisting
of two free-living stages, miracidia and cercariae. And t-
wo host populations, the intermediate host snails and the
definitive host mammals. In addition to humans, over 40
mammals, including bovine, sheep, and dogs, can act as
final hosts for Schistosoma japonicum [6]. Its distribution
closely aligns with that of the snails, making schistoso-
miasis typically endemic. The disease generally develops
when cercariae penetrate the skin of the definitive host.
After about five weeks, paired male and female adults in
the final host begin to lay eggs, some of which are excret-
ed into the environment. In freshwater, these eggs hatch
and release ciliated miracidia that seek out and infect in-
termediate hosts (snails) to promote sporangium devel-
opment. After about four weeks, the sporozoites begin to
reproduce asexually, releasing thousands of swimming in-
fective cercariae into the water. These cercariae actively
search for and penetrate definitive hosts, maturing into
adults within the host’s body [7]. The interaction be-
tween human and animal schistosomiasis exacerbates the
prevalence of the disease and complicates efforts for its
prevention and control.

Mathematical modeling of schistosomiasis transmission
dynamics serves as an effective method for comprehend-
ing disease transmission patterns, identifying critical fac-
tors in epidemic spread, and aiding in the developmen-
t of disease control strategies. The initial mathematical
model for schistosomiasis transmission was introduced by
Macdonald [8] in 1965. Since then, various mathemati-
cal models have been proposed to investigate the trans-
mission dynamics of schistosomiasis. Barbour enhanced
Macdonald’s model [9] in 1996, which monitored the dy-
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namics of both infected humans and snails within a com-
munity. Chiyaka et al. [7] constructed a deterministic
mathematical model considering miracidia and cercariae
in 2009. Gao et al. [10] modified it in 2011, adding param-
eters for infected human population treatment. In 2015,
Zou and Ruan [11] categorized schistosomiasis epidemic
areas in China into three types: plain areas with water
networks, mountainous and hilly regions, and swamp and
lake areas, proposing tailored control strategies for each.
Gao et al. [12] modify the Barbour’s two-host model with
seasonal fluctuations in 2017. In 2021, Ronoh et al. [13]
developed a six-dimensional differential equation model
that examined schistosomiasis transmission among hu-
mans, non-human mammals, and cercariae, incorporat-
ing a saturation rate for transmission between humans
and non-human mammals, while also assessing the in-
fluence of immune and environmental factors. Nur et
al. [14] established a seven-dimensional differential equa-
tion model that analyzed transmission among humans,
snails, miracidia, and cercariae, evaluating the effects of
health education and molluscicides based on model pa-
rameters. In 2023, Zhang and zhao [15] explored a multi-
host schistosomiasis model that included seasonality and
temperature-dependent delays. Building on these stud-
ies, we propose a mathematical model for schistosomiasis
transmission that considers intermediate host snails and
final host mammals (bovines and humans), followed by
an analysis of its dynamic properties.

The organization of this paper is as follows. In section 2,
we propose a schistosomiasis model incorporates an in-
termediate host and two definitive hosts, and study the
non-negative properties of solutions and the positive in-
variance of feasible regions. In section 3, we determine
the basic reproduction numbers for the model and equi-
librium points and their existence condition. and then we
give some sufficient conditions for global stability of the
disease-free equilibrium point. By using central manifold
theory, we discuss the local stability of endemic equilibri-
a. By constructing the Lyapunov function, we prove the
global stability of endemic equilibrium point. In Section
4, numerical simulations are presented for supporting the
analytic results. Finally, section 5 concludes the paper
with a brief discussion.

2 Model formulation

In this section, we develop a mathematical model to pri-
marily illustrate the transmission dynamics of Schisto-
somiasis japonicum in China. Numerous studies indi-
cate that bovines are the primary source of infection for
the spread of Schistosoma japonicum in the country [16],
while other mammals like dogs, pigs, mice, and goats con-
tribute minimally to the overall transmission [17]. There-

fore, this article presents a mathematical model that de-
scribes the transmission dynamics of schistosomiasis a-
mong humans, bovines, and snails, while also including
a contaminated environment that harbors cercaria as a
transmission vector.

Let Sh(t) and Ih(t) denote the number of susceptible and
infected humans at time t, respectively. Sb(t) and Ib(t)
denote the number of susceptible and infected bovines at
time t, respectively. Sv(t) and Iv(t) denote the density
of susceptible and infected snail population, and Ce(t)
denote the density of cercaria population at time t, re-
spectively. The schistosomiasis model is described by the
following system of 7 ordinary differential equations

dSh
dt

= Λh + γIh − βhCeSh − µhSh,

dIh
dt

= βhCeSh − (µh + δ + γ)Ih,

dSb
dt

= λb − βbCeSb − µbSb,

dIb
dt

= βbCeSb − µbIb,

dSv
dt

= Λv − βvCeSv − (µv + dv)Sv,

dIv
dt

= βvCeSv − (µv + dv)Iv,

dCe
dt

= α(Ih + Ib)− µcCe,

(2.1)

where all parameters are positive, and βh, βb, βv, γ, δ,
α, dv, µh, µb, µv, µc ∈ (0, 1). The parameters of system
(2.1) are described as in Table 1:

Table 1: Description of parameters in system (2.1)

Parameter Description value
βh effective contact rate between susceptible human and cercariae [18]
βb effective contact rate between susceptible bovine and cercariae [18]
βv effective contact rate between susceptible snail and cercariae [7]
γ recovery rate of infected humans [19]
δ human death rate due to infection [20]
dv the killing rate of using drugs to kill snails [7]
α parasite egg hatch rate estimated

Λh, λb,Λv recruitment rate for humans, bovines, snails, respectively estimated
µb natural death rate of bovines [18]

µh, µv, µc natural death rate of humans, snails, cercariae, respectively estimated

The model system (2.1) will be analyzed in a biologically
feasible region Ω, given by

Ω :={(Sh, Ih, Sb, Ib, Sv, Iv, Ce)∈ R7
+ : Nh ≤

Λh
µh
, Nb ≤

λb
µb
,

Nv ≤
Λv

µv+dv
, Ce ≤

α(Λhµb+λbµh)

µhµbµc
},
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where Nh = Sh+Ih, Nb = Sb+Ib, Nv = Sv+Iv represent
the total number of humans, the total number of bovines,
and the total number of snails, respectively.

For the model system (2.1) to be biologically meaningful,
it is important to indicate that all solutions with non-
negative initial values will remain non-negative when t ≥
0, hence we give the following Theorem.

Theorem 2.1. If initial value Sh(0), Ih(0), Sb(0), Ib(0),
Sv(0), Iv(0), Ce(0) ≥ 0, then the solutions (Sh(t), Ih(t),
Sb(t), Ib(t), Sv(t), Iv(t), Ce(t)) of system (2.1) are non-
negative when t ≥ 0, and Ω is a positive invariant set
of the system (2.1).

Proof. Let F (t)=min{Sh(t), Ih(t), Sb(t), Ib(t), Sv(t), Iv(t),
Ce(t)}. Assuming exists t∗ > 0, such that F (t∗) = 0,
F (t) > 0 for t ∈ [0, t∗), and when t+∗ > t∗, F (t+∗ ) < 0.
If F (t∗) = Sh(t∗), then Ih(t∗), Sb(t∗), Ib(t∗), Sv(t∗),
Iv(t∗), Ce(t∗) > 0. From the first equation of system
(2.1), we have

dSh(t∗)

dt
= Λh + γIh(t∗)− βhCe(t∗)Sh(t∗)− µhSh(t∗),

= Λh + γIh(t∗) > 0.

If (dSh(t∗)/dt) > 0, by the monotonic function property,
when t+∗ > t∗, we have F (t+∗ ) > 0. This is contradict
with the previous assumption. Thus, when t ≥ 0, we
have Sh(t) ≥ 0. Similarly, when t ≥ 0, we can prove that
Ih(t), Sb(t), Ib(t), Sv(t), Iv(t), Ce(t) ≥ 0.

Next, we prove the positively invariance of Ω for system
(2.1). From system (2.1), we can get that the total num-
ber of humans satisfies differential equation

dNh
dt

= Λh − µhNh − δIh,

≤ Λh − µhNh.

This means that, Nh(t)→ Λh/µh as t→ +∞. Similarly,
Nb(t)→ λb/µm, Nv → Λv/(µv + dv) as t→ +∞.

From the 7th equation of system (2.1), we get

dCe
dt

= α(Ih + Ib)− µcCe,

≤ α
(

Λh
µh

+
λb
µb

)
− µcCe.

This means that, Ce ≤ (Λhµb+λbµh)α/(µhµbµc) as t →
+∞. Therefore, it is proven that Ω is a positive invariant
set of System (2.1).

3 Model analysis

3.1 Basic reproduction number

The basic reproduction number, denoted by R0, defined
as the expected number of secondary cases produced by
a typical infected individual in a completely suscepti-
ble population during its entire period of infectiousness
(see [21]). R0 is often used to predict trends in disease
transmission and to evaluate the effectiveness of control
measures. We compute the basic reproduction number
using the next generation matrix approach as described
by Castillo-Chavez et al [22]. This is achieved by rewrit-
ing the model system (2.1) in the form

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z),

dZ

dt
= h(X,Y, Z).

(3.1)

where X = (Sh, Sb, Sv), Y = (Ih, Ib, Iv), Z = Ce. Com-
ponents of X, Y and Z represent the number of suscep-
tible, infected individuals that cannot transmit the dis-
ease and infected individuals capable of transmitting the
disease, respectively. Let U0 = (Λh/µh, λb/µb,Λv/(µv +
dv), 0, 0, 0, 0) denote the disease free equilibrium of sys-
tem(3.1). Denote g̃(x∗, Z) = (g̃1(x∗, Z), g̃2(x∗, Z),
g̃3(x∗, Z)), where

g̃1(x∗, Z) =
ΛhβhCe

µh(µh + δ + γ)
,

g̃2(x∗, Z) =
λbβbCe
µ2
b

,

g̃3(x∗, Z) =
ΛvβvCe

(µv + dv)2
.

Let A = DZh(X∗, g̃(x∗, 0), 0), by calculation, we can get
that

A = α

(
Λhβh

µh(µh + δ + γ)
+
λbβb
µ2
b

)
Ce − µcCe.

Then A can be written as A = M −D, here

M =
Λhβh

µh(µh + δ + γ)
+
λbβb
µ2
b

≥ 0,

D = µc > 0.

The basic reproductive number is the spectral radius
(dominant eigenvalue) of the matrix MD−1, that is,

R0 = ρ(MD−1) =
α

µc

(
Λhβh

µh(µh + δ + γ)
+
λbβb
µ2
b

)
.

(3.2)
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3.2 Equilibrium points

Theorem 3.1. In Ω, the disease-free equilibrium point
E0 : (Λh/µh, 0, λb/µb, 0,Λv/(µv + dv), 0, 0) is the unique
equilibrium point of system (2.1) when R0 ≤ 1; Sys-
tem (2.1) has exactly two equilibria points E0 and Ec :
(S∗h, I

∗
h, S

∗
b , I
∗
b , S

∗
v , I
∗
v , C

∗
e ) when R0 > 1, where

S∗h =
Λh + γI∗h
µh + βhC∗e

, I∗h =
βhΛhC

∗
e

µhγ + (δ + µh)(µh + βhC∗e )
,

S∗b =
λb

µb + βbC∗e
, I∗b =

βbλbC
∗
e

µb(µb + βbC∗e )
,

S∗v =
Λv

µv + dv + βvC∗e
, I∗v =

βvΛvC
∗
e

(µv + dv)(µv + dv + βvC∗e )
,

C∗e =
−B +

√
B2 − 4AC

2A
,

and

A = (βhβbµbµc(δ + µh)) /α,

B = µbµc(βbµh(µh + δ + γ) + βhµb(µh + δ))/α

− βhβbΛhµb − βhβbλb(µh + δ)

C = µhµcµ
2
b(µh + δ + γ)(1−R0).

Proof. To get equilibria points of system (2.1), we need
to solve 

Λh + γIh − βhCeSh − µhSh = 0,

βhCeSh − (µh + δ + γ)Ih = 0,

λb − βbCeSb − µbSb = 0,

βbCeSb − µbIb = 0,

Λv − βvCeSv − (µv + dv)Sv = 0,

βvCeSv − (µv + dv)Iv = 0,

α(Ih + Ib)− µcCe = 0.

(3.3)

From (3.3), we obtain that

Sh =
Λh + γIh
µh + βhCe

, Ih =
βhΛhCe

µhγ + (δ + µh)(µh + βhCe)
,

Sb =
λb

µb + βbCe
, Ib =

βbλbCe
µb(µb + βbCe)

,

Sv=
Λv

µv + dv + βvCe
, Iv=

βvΛvCe
(µv + dv)(µv + dv + βvCe)

,

and Ce satisfies
(
AC2

e +BCe + C
)
Ce = 0, where A,B,C

are expressed in the statement of the Theorem 3.1. We
observe that system (2.1) always has the disease free e-
quilibrium E0.

Obviously, A > 0 and it is easy to check that

B>(µhµbµcβb(µh+δ+γ)+βhµcµ
2
b(µh+δ))(1−R0)/α.

When R0 < 1, we get B > 0 and C > 0. Thus,
AC2

e +BCe+C = 0 has no positive roots. When R0 = 1,
we get B > 0 and C = 0. Equation AC2

e + BCe + C =
0 has nonzero negative root Ce = −B/A. Therefore,
when R0 ≤ 1, E0 is the unique equilibrium point of sys-
tem (2.1). When R0 > 1, we have C < 0, equation
AC2

e + BCe + C = 0 has a unique positive root C∗e , giv-
en in Theorem 3.1. Thus, system (2.1) has exactly two
equilibria E0 and Ec, given in the statement of this the-
orem.

3.3 Stability of equilibrium points

3.3.1 Local stability analysis for disease free e-
quilibrium point E0

In this subsection, we study the stability of the disease
free equilibrium E0.

Theorem 3.2. The disease free equilibrium point E0 of
system (2.1) is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof. We compute the Jacobian matrix at E0 and get

J(E0) =



−µh γ 0 0
0 −(µh + δ + γ) 0 0
0 0 −µm 0
0 0 0 −µm

0 0 0 0
0 0 0 0
0 α 0 α

0 0 −βhS∗
h

0 0 βhS
∗
h

0 0 −βmS∗
m

0 0 βmS
∗
m

−(µn + dn) 0 −βnS∗
n

0 −(µn + dn) βnS
∗
n

0 0 −µc


. (3.4)

From the characteristic equation |(λI − J(E0))| = 0 of
system (2.1) at E0, it can obtain that

(λ+ µh)(λ+ µh + δ + γ)(λ+ µm)2(λ+ µn + dn)2

(λ+ µc −
αβhS

∗
h

µh + δ + γ
− αβmS

∗
m

µm
) = 0,

further

λ1 = −µh < 0, λ2 = −(µh + δ + γ) < 0,

λ3,4 = −µm < 0, λ5,6 = −(µn + dn) < 0,

λ7 =
αβhS

∗
h

µh + δ + γ
+
αβmS

∗
m

µm
− µc
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= α

(
βhΛh

µh(µh + δ + γ)
+
βmλm
µ2
m

− µc
α

)
.

When R0 < 1, λ7 < 0, all eigenvalues of (3.4) are neg-
ative. Therefore, the disease-free equilibrium point E0

is locally asymptotically stable. When R0 > 1, λ7 > 0,
(3.4) has a positive eigenvalue. Therefore, the disease free
equilibrium point E0 is unstable in this case.

3.3.2 Local stability analysis for endemic equi-
librium point Ec

Center manifold theory is often used to analyze the
stability of non-hyperbolic equilibrium points. A non-
hyperbolic equilibrium point is one in which the linearized
matrix has at least one eigenvalue with zero real part.
Therefore, we use the center manifold theory [23] to ana-
lyze the local asymptotic stability of endemic equilibrium
point. This theory is applied to analyze the existence of
forward bifurcations and backward bifurcations. When
forward bifurcation occurs, it implies that the endem-
ic equilibrium point is locally asymptotically stable for
R0 > 1, but in the neighborhood of 1. The theorem is as
follows.

Theorem 3.3. The system (2.1) exhibits a forward bi-
furcation at R0 = 1. Therefore, the endemic equilibrium
point Ec is locally asymptotically stable for R0 > 1 but
close to 1.

Proof. In the proof of Theorem 3.2, it is shown that if
R0 = 1 then one eigenvalue of (3.4) is zero and the other
eigenvalue is negative. Therefore, the bifurcation point
will be evaluated when R0 = 1. Assuming that R0 is
a function of the bifurcation parameter, we chose βh as
bifurcation parameter. By R0 = 1, and solve for βh, we
get bifurcation point

β∗h =
µh(µh + δ + γ)(µcµ

2
b − αλbβb)

αΛhµ2
b

.

When R0 = 1, βh = β∗h, the Jacobian matrix J(E0, β
∗
h)

of system (2.1) at point E0 is the same as the Jacobian
matrix J(E0) in (3.4).

From the previous analysis, we can get that J(E0, β
∗
h)

has an eigenvalue λ = 0, and the other eigenvalues are
negative. Therefore, we can apply the Center manifold
theory [23] to analyze the dynamic behavior of system
(2.1) near βh = β∗h. By Theorem 4.1 of the paper [23], it
can be shown that the Jacobian matrix at βh = β∗h has
a right eigenvector and a left eigenvector associated with

the zero eigenvalue, which are given by

~u =



u1

u2

u3

u4

u5

u6

u7


=



−βhΛh(uh+δ)
µ2
h

u7

βhΛh

µh(uh+δ+γ)u7

−βbλb

µ2
b
u7

βbλb

µ2
b
u7

− βnΛv

µv(µv+dv)u7
βnΛv

µv(µv+dv)u7

u7


,

and

~v = (v1, v2, v3, v4, v5, v6, v7)

=

(
0,

α

uh + δ + γ
v7, 0,

α

ub
v7, 0, 0, v7

)
,

respectively, where u7 > 0, v7 > 0. Before applying
center manifold theory [23], we make small change as
follows, let

Sh = x1, Ih = x2, Sb = x3, Ib = x4,

Sv = x5, Iv = x6, Ce = x7,

and
X = (x1, x2, x3, x4, x5, x6, x7)T ,

then the system (2.1) can be written in the following for-
m:

dX/dt = f(X) = (f1, f2, f3, f4, f5, f6, f7). (3.5)

where

f1 = Λh + γx2 − βhx1x7 − µhx1,

f2 = βhx1x7 − (µh + δ + γ)x2,

f3 = λm − βmx3x7 − µmx3,

f4 = βmx3x7 − µmx4,

f5 = Λn − βnx5x7 − (µn + dn)x5,

f6 = βnx5x7 − (µn + dn)x6,

f7 = α(x2 + x4)− µcx7.

For system (3.5), the associated non-zero partial deriva-
tives of f(X) at E0 for the model are given by

∂2f2

∂x1∂x7
(E0;β∗h) = β∗h,

∂2f2

∂x7∂x1
(E0;β∗h) = β∗h,

∂2f4

∂x3∂x7
(E0;β∗h) = βb,

∂2f4

∂x7∂x3
(E0;β∗h) = βb,

∂2f2

∂x7∂βh
(E0;β∗h) =

Λh
µh
.

From this, we obtain

a = Σnk,i,j=1vkuiuj
∂2fk
∂xi∂xj

(E0;β∗h)
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= v2u1u7

(
∂2f2

∂x1∂x7
(E0;β∗h) +

∂2f2

∂x7∂x1
(E0;β∗h)

)
+ v4u3u7

(
∂2f4

∂x3∂x7
(E0;β∗h) +

∂2f4

∂x7∂x3
(E0;β∗h)

)
= −2αv7u

2
7

(
βhΛh(µh + δ)

µ2
h(µh + δ + γ)

+
βbλb
µ3
b

)
< 0,

and

b =Σnk,i=1vkui
∂2fk
∂xi∂βh

(E0;β∗h)

= v2u7
∂2f2

∂x7∂βh
(E0;β∗h)

=
Λh
µh
v2u7 > 0.

Because a < 0, b > 0, according to Theorem 4.1 in [23],
when βh > β∗h, i.e. R0 > 1, the system (2.1) will experi-
ence forward bifurcation and a positive locally asymptot-
ically stable equilibrium point will appear. In Theorem
(3.1), it has been proven that the system has a unique
positive equilibrium point, which is the endemic equilib-
rium point Ec. Therefore, when R0 > 1 and approaches
1, Ec is locally asymptotically stable.

3.3.3 Global stability of the disease free equilib-
rium point E0

Next, we prove the global asymptotic stability of the dis-
ease free equilibrium point. In order to prove the global
asymptotic stability of E0, we adopt the method in [22].

Rewrite the system (2.1) as follows:
dX

dt
= F (X,Z),

dZ

dt
= G(X,Z), G(X,0) = 0,

(3.6)

where, X = (Sh, Sb, Sv) represents the number of un-
infected individuals, Z = (Ih, Ib, Iv, Ce) represents the
number of infected and infectious individuals. U0 =
(X∗,0) = (Λh/µh, λh/µb,Λv/(µv + dv), 0, 0, 0, 0) repre-
sents the disease free equilibrium point of system (3.6),
here X∗ = (Λh/µh, λb/µb,Λv/(µv + dv)).

According to [22], when system (3.6) satisfies the follow-
ing conditions (H1) and (H2), the global stability of the
disease free equilibrium point U0 can be obtained.

(H1) dX/dt = F (X, 0), X∗ is globally asymptotically sta-
ble.

(H2) G(X,Z) = AZ−Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈
Ω, where A = DZG(X∗, 0) is an M matrix (the off-

diagonal elements A are nonnegative) and Ω is the region
where the model makes biological sense.

Theorem 3.4. The disease free equilibrium point U0 of
system (3.6) is globally asymptotically stable if R0 < 1.
That is, the disease free equilibrium point E0 of the sys-
tem (2.1) is globally asymptotically stable.

Proof. In our case, from the system dX/dt = F (X, 0), we
obtain that 

dSh
dt

= Λh − µhSh,

dSb
dt

= λb − µbSb,

dSv
dt

= Λv − (µv + dv)Sv

(3.7)

The coefficient matrix of the system (3.7) at the X∗ =
(Λh/µh, λh/µb,Λv/(µv + dv)) is

J(x∗) =

 −µh 0 0
0 −µb 0
0 0 −(µv + dv)

 .

It eigenvalues are all negative. According to the Routh-
Hurwitz criterion [24], x∗ is globally asymptotically sta-
ble.

From the system (3.6), we obtained that

A =


−(µh + δ + γ) 0 0 βhΛh

µh

0 −µb 0 βbλb

µb

0 0 −(µv + dv)
βvΛv

µv+dv

α α 0 −µc

 .

Ĝ(X,Z) =



(
Λh

µh
− Sh

)
βhCe(

λb

µb
− Sb

)
βmCe(

Λv

µv+dv
− Sv

)
βvCe

0

 .

Obviously, the non-diagonal elements of A are non-
negative, so A is a M -matrix. For Sh ≤ Λh/µh, Sb ≤
λb/µb, Sv ≤ Λv/(µv + dv) in Ω, so the Ĝ(X,Z) ≥ 0.
Therefore, the system (3.6) satisfies conditions (H1) and
(H2), and Theorem 3.5 is proved.

3.3.4 Global stability of the endemic equilibrium
point Ec

In this subsection, we prove the global asymptotic stabili-
ty of the endemic equilibrium point Ec. In order to prove
the global asymptotic stability of Ec, we constructing the
Lyapunov function use the approach in [25].
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Theorem 3.5. When R0 > 1, the endemic equilibrium
point Ec of the system (2.1) is globally asymptotically sta-
ble if r = 0 and Ce/C

∗
e ≤ 1.

Proof. Constructing the Lyapunov function as follow

V =
I∗h + I∗b
I∗b

(
Sh − S∗h − S∗hln

Sh
S∗h

+ Ih − I∗h − I∗hln
Ih
I∗h

)
+
βhS

∗
h

βbS∗b

(
Sb − S∗b − S∗b ln

Sb
S∗b

+ Ib − I∗b − I∗b ln
Ib
I∗b

)
+
(
Sv − S∗v − S∗v ln

Sv
S∗v

+ Iv − I∗v − I∗v ln
Iv
I∗v

)
+
βhC

∗
eS
∗
h

αI∗b

(
Ce − C∗e − C∗e ln

Ce
C∗e

)
.

Differentiating V along system (2.1) gives

V ′ =
I∗h + I∗b
I∗b

((
1− S∗h

Sh

)
S′h +

(
1− I∗h

Ih

)
I ′h

)
+
βhS

∗
h

βbS∗b

((
1− S∗b

Sb

)
S′b +

(
1− I∗b

Ib

)
I ′b

)
+
((

1− S∗v
Sv

)
S′v +

(
1− I∗v

Iv

)
I ′v

)
+
βhC

∗
eS
∗
h

αI∗b

((
1− C∗e

Ce

)
C ′e

)
.

(3.8)

At endemic equilibrium state, we have

Λh = βhC
∗
eS
∗
h + µhS

∗
h − γI∗h, µh + δ + γ =

βhC
∗
eS
∗
h

I∗h
,

λb = βbC
∗
eS
∗
b + µbS

∗
b , µb =

βbC
∗
eSb∗
I∗b

,

Λv = βvC
∗
eS
∗
v + (µv + dv)S

∗
v ,

µc =
α(I∗h + I∗b )

C∗e
, µv + dv =

βvC
∗
eS
∗
v

I∗v
.

(3.9)

Substitute equation (3.9) into equation (3.8) and expand
to simplify it, we get

V ′ =−µh(I∗h + I∗b )

I∗b

(Sh−S∗h)2

Sh
− µbβhS

∗
h

βbS∗b

(Sb − S∗b )2

Sb

− (µv + dv)(Sv−S∗v )2

Sv
+ rI∗h

(S∗h
Sh

+
Ih
I∗h
− IhS

∗
h

I∗hSh
− 1
)

+
I∗hβhC

∗
eS
∗
h

I∗b

(
3− S∗h

Sh
− C∗e Ih
CeI∗h

− I∗hCeSh
IhC∗eS

∗
h

)
+ βhC

∗
eS
∗
h

(
5 +

Ce
C∗e
− S∗h
Sh
− Ih
I∗h
− I∗hCeSh
IhC∗eS

∗
b

− S∗b
Sb
− IbC

∗
e

I∗bCe
− I∗bCeSb
IbC∗eS

∗
b

)
+ βvC

∗
eS
∗
v

(
2 +

Ce
C∗e
− S∗v
Sv
− Iv
I∗v
− I∗vCeSv
IvC∗eS

∗
v

)
.

With the assumption that r = 0 and Ce/C
∗
e ≤ 1, by the

arithmetic-geometric mean inequality, it follows that

V ′ ≤ 0.

Moreover, the equality V ′ = 0 holds if and only if Sh =
S∗h, Ih = I∗h, Sb = S∗b , Ib = I∗b , Sv = S∗v , Iv = I∗v and
Ce = C∗e . Therefore, Ec of the system (2.1) is globally
asymptotically stable when R0 > 1 and r = 0, Ce/C

∗
e ≤

1.

4 Numerical simulations

In this section, some numerical simulations are used to
verify the correctness of the above theory. Meanwhile,
through the sensitivity analysis of the model parameters,
the control strategy of schistosoma was proposed. The
initial value of the numerical simulation in this section is
the same, which is (Sh(0), Ih(0), Sb(0), Ib(0), Sv(0), Iv(0),
Ce(0)) = (200, 20, 200, 20, 500, 50, 100).

4.1 Parameter sensitivity analysis

Uncertainty and sensitivity analysis techniques help us
to evaluate and control the uncertainty in the model out-
put generated by the uncertainty in the parameter input.
When the output reaches the set value, the correspond-
ing maximum and minimum values of the parameters are
the variation range of the parameters, which is the ba-
sic time sensitivity measurement method [26]. Temporal
sensitivity measurement is also known as a local analysis
method because it aims to obtain an address point esti-
mate rather than the entire distribution. In sensitivity
analyses, we used Latin Hypercube Sampling followed by
transformation on a logarithmic scale.
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Fig. 1: Parameter sensitivity analysis for R0 > 1.

In Fig.1 and 2, we present the analysis of the sensitivity
and uncertainty of the parameters, with the length of the
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blue bands indicating the sensitivity of the parameters.
The shorter the band, the higher the sensitivity of the
corresponding parameter. A positive part indicates an
increase in the basal value and a negative part indicates
a decrease in the basal value. In Fig.1, the sensitivity
analysis of the parameters to changes in the magnitude
of R0 is depicted when R0 > 1. In Fig.2, the sensitivity
analysis of the amount of presence of Ih, Ib, Iv and Ce on
the relevant parameters is indicated. In Fig.2(i-iv), we see
that Ih, Ib, Iv and Ce are all most sensitive to the recruit-
ment rate Λh of definitive host humans, the hatching rate
α of parasite eggs, the effective contact rate βh between
susceptible and cercariae, and the natural mortality rate
µh of humans.

4.2 Time series and bifurcation

In Fig.3 (i), taking (Λh,Λb, λv, γ, δ, α, βh, βb, βv, µh, µb,
µv, µc, dv)=(400, 20, 200, 1/43, 0.000027, 0.0092, 0.001,
0.00186, 0.00615, 0.384, 0.35, 0.000569, 1/30, 0.3). In this
case, the basic reproduction number R0 < 1, the disease-
free equilibrium point E0 of the system (2.1) is globally
asymptotically stable, which is consistent with Theorem
3.5. In Fig.3 (ii), taking (Λh,Λb, λv, γ, δ, α, βh, βb, βv, µh,
µb, µv, µc, dv) = (400, 20, 200, 1/43, 0.000027, 0.0092,
0.00406, 0.00186, 0.00615, 0.384, 0.35, 0.000569, 1/30, 0.3).
In this case, the basic reproduction number R0 > 1,
the endemic equilibrium point Ec of the system (2.1) is
locally asymptotically stable, which is consistent with
Theorem 3.3.

Taking βh ∈ (0.0001, 0.004), the other parameters are
the same as in Fig.3 (i). In Fig.4, we give the bifurcation
diagram for the system (2.1) which shows an exchange of
stability between disease-free and endemic equilibria at
R0 = 1. (Sh(0), Ih(0), Sb(0), Ib(0), Sv(0), Iv(0), Ce(0)) =
(200, 20, 200, 20, 500, 50, 100).

Next, we analyze the influence of contact rates βh on Ih,
Ib, Iv, and the influence of contact rates βb on Ih, Ib,
Iv, respectively. Changing βh from 0.005 to 0.008, the
other parameters are the same as in Fig.3(i), as shown
in Fig.5(i),(ii),(iii), the number of infected individual Ih,
Ib, Iv decreases as infection ratios βh decrease. Chang-
ing βb from 0.001 to 0.004, the other parameters are the
same as in Fig.3 (ii), in Fig.5 (iv),(v),(vi), the number of
infected individual Ih, Ib, Iv decreases as infection ratios
βb decrease. Further, From Fig.5(iv) we can see that the
infected bovines play an important role in the human-to-
human transmission of schistosomiasis, and killing infect-
ed bovines will help suppress human-to-human transmis-
sion of schistosomiasis. However, it is not enough to re-
duce the effective contact rate between susceptible bovine
and cercariae alone, and it needs to be combined with
other intervention measures.

Fig. 4: forward bifurcation diagram

In Fig.7, we show the influence of α on the Ce and Ih.
Changing α from 0.007 to 0.01, the other parameters are
the same as in Fig.3(i), as shown in Fig.7(i),(ii), the num-
ber of infected human populations Ih and the number of
cercaria populations Ce both decreased with the decrease
of α. It can be seen that the value of α has a significant
impact on the extinction of cercariae and the reduction
of the number of infected individuals.

As can be seen from the expression in (3.2), R0 is a strict-
ly increasing function for the parameters βh, βb and α,
and a strictly decreasing function with respect to param-
eter γ. In Fig.6, we present some figures to show how
the basic reproduction number R0 changes in terms of
various values of some parameters. In Fig.6(i), we take
βh ∈ (0, 1), the other parameters are the same as in
Fig.3(i), we observe that the value of R0 rapidly exceeds
1 as the parameter βh increases. But in Fig.6(ii) we ob-
serve that R0 never falls below 1 no matter how βb varies
between 0 and 1 when the other parameters are the same
as in Fig.3(ii). Thus, the single decreasing of contact rate
is insufficient for the complete control of schistosomiasis
transmission. In Fig.6(iii), we observe that as the val-
ue of the parameter α increases, the value of R0 rapidly
exceeds 1, and in Fig.6(iv) we observe that R0 decreas-
es as γ increase, whereas it is only when γ is very close
to 1 that R0 is less than 1. This means that simply im-
proving the recovery rate of the human population is also
not enough to control of schistosomiasis transmission. As
shown in Fig.6(v) and (vi), when we simultaneously re-
duce the contact rate and improve the recovery rate γ or
decrease the hatch rate α, R0 can quickly decrease to less
than 1.

From the above numerical analysis, it can be seen that the
effective contact rate βh, βb, hatching rate α and recovery
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Fig. 2: Sensitivity analysis of the parameters associated with the existence of Ih, Ib, Iv, Ce for R0 > 1.
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Fig. 3: Ih, Ib, Iv, Ce extinction when R0 < 1 and existence when R0 > 1, respectively.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2316-2329

 
______________________________________________________________________________________ 



0 100 200 300 400 500

Effective contact rate 
h

0

200

400

600

800

1000

In
fe

ct
ed

 b
ov

in
e 

po
pu

la
tio

n 
I h

I
h
, 

h
=0.005

I
h
, 

h
=0.006

I
h
, 

h
=0.007

I
h
, 

h
=0.008

(i) βh influence on Ih

0 100 200 300 400 500

Effective contact rate 
h

20

25

30

35

40

45

In
fe

ct
ed

 b
ov

in
e 

po
pu

la
tio

n 
I b

I
b
, 

h
=0.005

I
b
, 

h
=0.006

I
b
, 

h
=0.007

I
b
, 

h
=0.008

(ii) βh influence on Ib

0 100 200 300 400 500

Effective contact rate 
h

0

100

200

300

400

500

600

In
fe

ct
ed

 s
na

il 
po

pu
la

tio
n 

I v

I
v
, 

h
=0.005

I
v
, 

h
=0.006

I
v
, 

h
=0.007

I
v
, 

h
=0.008

140 160 180
520

540

560

580

(iii) βh influence on Iv

0 100 200 300 400 500

Contact rate 
b

0

100

200

300

400

500

600

700

In
fe

ct
ed

 h
um

an
 p

op
ul

at
io

n 
I h

I
h
,

b
=0.001

I
h
,

b
=0.002

I
h
,

b
=0.003

I
h
,

b
=0.004

170 180 190

680

700

(iv) βb influence on Ih

0 100 200 300 400 500

Contact rate 
b

10

20

30

40

50

60

70

80

In
fe

ct
ed

 h
um

an
 p

op
ul

at
io

n 
I b I

b
,

b
=0.001

I
b
,

b
=0.002

I
b
,

b
=0.003

I
b
,

b
=0.004

(v) βb influence on Ib

0 100 200 300 400 500

Contact rate 
b

0

100

200

300

400

500

600

In
fe

ct
ed

 s
na

il 
po

pu
la

tio
n 

I v

I
v
,

b
=0.001

I
v
,

b
=0.002

I
v
,

b
=0.003

I
v
,

b
=0.004

170 175 180

530
535
540

(vi) βb influence on Iv

Fig. 5: The impact of contact rate on disease transmission
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Fig. 6: Changes of R0
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Fig. 7: Influence of α on the Ce and Ih

rate of infected humans γ are key parameters for control-
ling the spread of schistosomiasis. Therefore, reducing
the hatching rate of cercariae, reducing the effective con-
tact rate between humans and cattle with cercariae, and
improving the cure rate of humans are effective measures
to control the spread of schistosomiasis. However, simply
improving the cure rate of humans is not enough, and it
needs to be combined with other intervention measures.
In fact, due to the fact that the only drug currently avail-
able for treating schistosomiasis infection is praziquantel,
which has its limitations as it cannot prevent reinfection
and continuous use may lead to parasite resistance [27],
we also need to combine other measures to control the
spread of schistosomiasis. Therefore, in epidemic areas,
measures such as increasing hygiene and health educa-
tion on schistosomiasis, establishing grazing prohibition
areas, effectively avoiding contact between humans and
livestock with freshwater infected with cercariae, concen-
trating the treatment of human and animal feces, effec-
tively eliminating the eggs produced by schistosomiasis,
and preventing the hatching and reproduction of eggs
through medication can be taken to control the spread
of schistosomiasis.

5 Conclusions and Future Work

In this paper, we formulate a dynamical model to study
the transmission dynamics of schistosomiasis with multi-
host. The results from our numerical simulations align
with those from our theoretical analysis. The transmis-
sion of schistosomiasis can be controlled by avoiding con-
tact with infected water and decreasing the hatching rate
of cercaria. By the sensitivity analysis of the model pa-
rameters, we obtain that the infected bovines play an

important role in the spread of schistosomiasis among
humans, and killing the infected bovines will be useful to
suppress transmission of schistosomiasis among humans.
In addition, improving the cure rate of infected individu-
als is also very helpful in controlling the spread of infected
cases. However, relying solely on one of these two mea-
sures is not enough to completely eradicate schistosomi-
asis, and it needs to be combined with other intervention
measures. Because schistosomiasis has a certain laten-
cy, the incubation period is very important to control
the prevalence of schistosomiasis, and a longer incuba-
tion period is more conducive to the prevention and con-
trol of schistosomiasis. Thus, it is important to consider
whether to incorporate the latency of schistosomiasis into
a time-delay model, as this could introduce new dynamic
behaviors that worthy further investigation.
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