
 

  

Abstract—Scientific and effective classification of gas wells is 

conducive to mastering production characteristics of wells and 

establishing reasonable production measures. Therefore, based 

on the similarity of time series, and in conjunction with spectral 

clustering, this paper proposes a new classification model for 

tight sandstone gas wells: the KF-SDTW-Spectral model. The 

research results show that the 61 tight sandstone gas wells can 

be divided into clusters using different classification indicators: 

two clusters based on monthly gas production, three clusters 

based on monthly water production, and three clusters based on 

oil pressure. The model exhibits high clustering quality, 

surpassing traditional clustering methods. By using this model, 

the production characteristics of high-yield and low-yield wells 

are analyzed and corresponding production measures are 

proposed. This paper provides a new approach on the 

classification of tight sandstone gas wells, offering valuable 

guidance for the formulation of production measures in the gas 

field. 

 
Index Terms—kalman filtering, SDTW, spectral clustering, 

classification of gas wells 

 

I. INTRODUCTION 

n recent years, with the rapid development of China’s 

economy, the demand for energy has been increasing. 

Conventional natural gas resources are no longer sufficient to 

meet domestic market demands, which has led to a focus on 

the exploration and development of unconventional natural 

gas. Tight sandstone gas, also known as tight gas, is one type 

of unconventional natural gas[1]. China boasts rich reserves 

of tight sandstone gas, but these are characterized by poor 

reservoir properties, low production per well, and unstable 

yield capabilities. To achieve efficient development, 

large-scale well layout operations are necessary. However, 

within the same region, the production characteristics vary 

from one gas well to another. Conducting a reasonable, 

accurate, and efficient classification of gas wells is beneficial 

for enhancing the understanding of production patterns and 

for formulating appropriate production measures. 

Currently, the commonly used methods for classifying gas 

wells include the unimpeded flow method, the reservoir 

parameter method, and the daily gas production method[2]. 
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However, these methods have some limitations. As gas well 

production continues, the evaluation results of the unimpeded 

flow may not correspond with the actual output; the reservoir 

parameter method mainly classifies gas wells based on 

effective reservoir thickness, which cannot dynamically 

reflect the actual production capacity of gas wells; the daily 

gas production method does not take into account the impact 

of production time on gas production capability. 

A time series is a set of records identified by time[3], 

widely used in various fields such as scientific research and 

economic analysis. In recent years, time series data mining 

has attracted significant attention and research. Most data 

mining applications for time series require similarity measure. 

Numerous methods have been proposed to measure the 

similarity of time series, broadly categorized into time-rigid 

measures (Euclidean distance)[4], time-flexible measures 

(Dynamic Time Warping) [5],  feature-based measures 

(Fourier coefficients) [6], and model-based measures 

(auto-regression[7] and moving average model[8]). 

Euclidean distance is widely used due to its simple 

calculation, but it can only handle time series of the same 

length. Dynamic Time Warping (DTW) is a method for 

measuring the similarity between time series of different 

lengths, initially developed for speech recognition[9]. 

Additionally, DTW can optimally handle contractions, 

expansions, and shifts in time series[10]. The flexibility and 

effectiveness of DTW have led to its widespread application 

in various fields, such as gesture recognition[11], 

biometrics[12], and astronomy[13]. Despite DTW being 

successfully applied across multiple fields, it still has certain 

shortcomings. The “singularity” problem is one of the more 

serious ones[14]. Simply put, a singularity refers to a point in 

a time series that continuously maps to a large region of 

another time series, resulting in inaccurate DTW distance 

calculations. Singularities occur because DTW, when 

calculating local distances, only considers the point values of 

the time series (i.e., the spatial dimension), and ignores 

information on the time dimension. Therefore, many scholars 

solve the singularity problem by adding information in the 

time dimension, specifically derivatives. Keogh and 

Pazzani[14] proposed a method called Derivative Dynamic 

Time Warping (DDTW), which uses derivate feature instead 

of point value feature to calculate local distances. However, 

DDTW only considers the derivatives information of time 

series and completely ignores the point values information. 

Therefore, DDTW still cannot adequately measure the 

similarity between time series. Benedikt, Kajic, Cosker, 

Rosin, and Marshall[15] proposed a local distance metric that 

takes a weighted sum of point-to-point distance and 

derivative-to-derivative distance, called Weighted Derivative 

Dynamic Time Warping (WDDTW). However, this 
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algorithm introduces extra weighting parameters, which 

increases the computational complexity and decreases the 

robustness of the algorithm. Addressing the shortcomings of 

DDTW and WDDTW, Shen, Zhu, Huang, and Liang[16] 

proposed Summation Dynamic Time Warping (SDTW), 

which considers both point values and derivative features 

simultaneously, and does not require additional weighted 

parameters. This approach can effectively solve the 

singularity problem and improve the accuracy of time series 

similarity measure. 

During the production of tight sandstone gas wells, the 

values of each production parameter are recorded in time 

sequence. The production parameter data, presented in the 

form of time series, depict the change process of tight 

sandstone gas wells over time. To analyze the production 

characteristics during the production process of tight 

sandstone gas wells, this paper focuses on 61 tight sandstone 

gas wells in a certain gas field in Southwest China as research 

subjects. Based on time series similarity and incorporating 

spectral clustering, a new gas well classification model is 

proposed. Subsequently, corresponding production measures 

are proposed based on the classification results. 

The remainder of this paper is organized as follows: 

Section II introduces relevant methods. Section III outlines 

the construction of a classification model for tight sandstone 

gas wells. Section IV presents the conducted experiments and 

results. Finally, Section V summarizes the entire paper. 

II. METHODOLOGY 

A. Kalman Filtering 

Kalman filtering is a data processing technique used to 

remove noise and restore true data. It is based on the principle 

of minimizing the mean square error and is used for the 

optimal estimation of data sequences. In most cases, the 

Kalman filtering of discrete system is mainly used, and its 

mathematical model is composed of state equation and 

observation equation, which can be expressed as[17] 

1 1k k kX AX W− −= +                      (1) 

  
k k kZ CX V= +                         (2) 

Where 
kX  is an 1n  order state vector, 

kZ  is an 1m  

order observation vector, A  is an n n  order state transition 

matrix, 
1kW −
 is an 1n  order process noise, 

kV  is an 1m  

order observation noise, and C  is an m n  order observation 

matrix. 

Based on the principle of least squares, the recursive 

algorithm for Kalman filtering in discrete systems is 

illustrated in Fig.1. 

prediction
^ ^

1kkX A X−
−=One-step prediction value：

Covariance matrix of one-

step prediction value： 1

T

k kP AP A Q−

−= +

updating

Filter gain matrix： 1( )T T

k k kJ P H HP H R− − −= +

Estimated state vector：
^ ^^

(Z )k k k k kX X J H X− −= + −

The variance matrix of

the estimated state vector： ( )k k kP I J H P−= −

 
Fig .1. Recursive algorithm for the Kalman filtering 

R  is the observation noise covariance matrix, and Q  is the 

process noise covariance matrix. The aforementioned 

recursive algorithm requires initial conditions for starting, 

denoted as 
^

(0)X  and (0)P . 
^

(0)X  is commonly set to zero 

or any other value obtainable from prior information, while 

(0)P  can be set as a factor of the identity matrix. These initial 

conditions are then substituted into the recursive algorithm 

for iteration, with continual prediction and updating until 

convergence is reached. This process yields the optimal 

estimation, denoted as the state estimation at time k , 

represented as 
^

kX , ( )  1, 2,3,k = ,achieving the filtering 

effect and effectively eliminating random interference noise. 

 

B. Dynamic Time Warping(DTW) 

Dynamic Time Warping (DTW) is a method used to 

calculate the optimal mapping between two time series 

through dynamic programming, thereby representing the 

similarity between the two series. Suppose there are two time 

series, ( )x i , 1,2, ,i m=  and ( )y j , 1,2, ,j n=  . To 

calculate the DTW distance of these two series , we first 

calculate an m n  order distance matrix D , where the 

( )  ,th thi j element is represented by ( ) ( )( )
2

locald x i y j= − . 

locald  is called local distance, that is, the distance between 

two time points in two time series [16]. 

Define a warping path W  to represent an alignment or 

mapping of the series x  and y , 

( )
, 1,2,..., ,

( )

x

y

w k
W k p

w k

 
= = 

 

 (3) 

Where ( )xw k  and ( )yw k  respectively represent the 

subscripts of elements in series x  and series y , and p  

represents the length of the warping path W , satisfying 

( ), , 1p max m n m n + −   .
( )

( )

x

y

w k

w k

 
 
 

means that the ( )xw k  

element in series x  maps to the ( )yw k  element in series y . 

Meanwhile the warping path W  must satisfy the following 

three constraints: 

Boundary condition: The warping path  W  must begin at 

( )1 1,1w =  and end at ( ),kw m n= . That is, the selected 

warping path must start from the lower left corner and end at 

the upper right corner. 

Continuity: The adjacent elements ( )  ,kw a b=  and 

( )1  ', 'kw a b− =  in the warping path W  must satisfy ’ 1a a−   

and ’ 1b b−  . 

Monotonicity: The adjacent elements ( )  ,kw a b=  and 

( )1  ', 'kw a b− =  in the warping path W  must satisfy ’ 0a a−   

and ’ 0b b−  . 

There are many possible warping paths that satisfy the 

three constraints mentioned above, and DTW aims to find the 

optimal path among these warping paths such that the 

cumulative sum of the local distances along that path is 
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minimized. Hence, ( ),  DTW x y  is used to represent the 

shortest distance between time series x  and y  — that is, the 

distance corresponding to the optimal warping path among 

all possible warping paths W . Computing the shortest 

distance ( ),  DTW x y  and the optimal warping path is a 

dynamic programming problem that adheres to the three 

constraints mentioned above. 

( , ) ( , ) min{ ( 1, 1), ( 1, ), ( , 1)}

( , ) min{ ( , )}

r i j d i j r i j r i j r i j

DTW x y r m n

= + − − − −


=

 (4) 

The ( ),r i j  represents the cumulative distance of the local 

distances along the path from ( )1,1  to ( ),i j  in the distance 

matrix D . Fig.2 illustrates the warping path for the series x  

and y . 

 
Fig .2. The warping path of DTW 

C. Modified DTW-Summation Dynamic Time 

Warping(SDTW) 

SDTW[16] first defines the feature ( )( )Fs x i  as 

( ) ( 1)
( ( )) (1 ) ( ),1 ,

max(| |)
s

x i x i
F x i x i i m

x

− −
= +   


 (5) 

Where max(| |)x represents the maximum derivative of 

all time points in the series ( )x i . Here, the derivative of a 

point is calculated by taking the difference between two 

adjacent points, i.e., using ( ) ( )  1x i x i− −  to represent the 

derivative of ( )x i . The purpose of max(| |)x  is to constrain 

the derivatives to the range  1,  1− , thereby incorporating 

derivative information into the features in a ratio form. 

Thus, the local distance  ( )locald  can be expressed as: 

2( , ) ( ( ( )) ( ( )))local s sd i j F x i F y j= −  (6) 

From (5), it is apparent that the feature ( )( )Fs x i contains 

both point values information and derivatives information, 

with the derivatives information being merged into the 

feature in the form of a ratio. Therefore, it can effectively 

address the problem of singularity. 

D. Spectral Clustering 

D.1. Algorithm Flow 

Spectral clustering is an unsupervised classification 

method that utilizes the concept of graphs for clustering.  It 

views all the samples in a dataset as points in space, and then 

connects any two points with an edge, representing the 

original dataset in the form of an undirected graph.  Finally, it 

sets a criterion for cutting the undirected graph so that, under 

this criterion, the resulting divisions have strong connections 

between data points within the same cluster and weaker 

connections between data points in different clusters[18]. 

Given a set of samples
1 2, , , )nX x x x（ , define the weights 

of the edges connecting each sample as 
ijW , calculated using 

the Gaussian kernel function. The adjacency matrix W  is 

then equal to the similarity matrix S : 
2

2

|| ||
exp( )

2

i j

ij ij

x x
W S



−
= = −  (7) 

The sum of the weights of all edges connected to a sample 

point in the graph is defined as the degree id  of that point:              

1

n

i ij

j

d W
=

=   (8) 

The degree matrix is expressed as: 

1

2

n

d

d
D

d

 
 
 =
 
 
 

 (9) 

Define the Laplacian matrix L  as: 

L D S= −  (10) 

Then the standardized Laplace matrix 'L  is constructed by 

the following formula: 
1 1

2 2'L D LD
− −

=  (11) 

Subsequently, compute the K  smallest eigenvalues 

1 2( , , , )k    and their corresponding 

eigenvectors 1 2V( , , )kv v v  of the standardized Laplacian 

matrix 'L . Finally, perform K-means clustering on the 

eigenvectors   V    to   obtain     classifications  

1 2, , ., kC C C
 

D.2. Determine the Parameter σ of the Gaussian Kernel 

Function 

When computing the adjacency matrix, the Gaussian 

kernel function is utilized, and the parameter   of the 

Gaussian kernel function can be calculated using the 

Adaptive Scale method [19]. This method principally sets a 

scale parameter i  for each sample point ix  based on the 

concept of local density to adjust the dissimilarity between 

two sample points.  Consequently, the dissimilarity between 

two sample points ix  and jx  is represented as follows: 

( , )i j

ij

i

d x x
s


=  (12) 

The dissimilarity from jx to ix  is: 

( , )j i

ji

j

d x x
s


=  (13) 

Based on the fact that ( ) ( ),    ,  i j j id x x d x x= , we can 

define a similarity function with an adaptive scale parameter 

 : 
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2( , )
exp( )

i j

ij

i j

d x x
A

 
= −  (14) 

Where  ( ) ,  i i kd x x =  represents the distance between 

point ix  and its k th−  nearest neighbor, the magnitude of 

i reflects the density around that point: the larger the i , 

the further the nearby points are from sample point ix ; 

conversely, the smaller the i , the closer they are. 

D.3. Determining the Optimal Number of Clusters k in 

Spectral Clustering 

Spectral clustering is an unsupervised clustering algorithm 

that requires us to specify the number of clusters k . 

Determining the optimal number of clusters k  is an 

important issue in spectral clustering, and the Gap Statistic 

can be used for this purpose. 

The Gap Statistic, proposed by Tibshirani et al. [20], helps 

determine the optimal number of clusters by computing the 

Gap Statistic corresponding to different numbers of clusters. 

The Gap Statistic uses the output from any clustering 

algorithm and compares the change in within-cluster 

dispersion with the expected change under a null reference 

distribution. The optimal number is found by maximizing the 

Gap Statistic. 

In practice, we select the first k  eigenvectors of the 

Laplacian matrix as input, apply the K-Means clustering 

algorithm for clustering, and compute the Gap Statistic. 

Subsequently, we plot a curve graph with the number of 

clusters k  on the horizontal axis and the Gap Statistic on the 

vertical axis, allowing us to observe the change in the Gap 

Statistic. The optimal number of clusters is thus determined 

by selecting the number for which the Gap Statistic is 

maximal. 

III. CLASSIFICATION MODEL OF TIGHT SANDSTONE GAS 

WELLS 

A. Model Concept 

Although research on gas well classification methods such 

as the unimpeded flow method, the reservoir parameter 

method, and the daily gas production method is relatively 

comprehensive, these methods, though simple and feasible, 

have limitations. They often fail to fully consider the 

production status of gas wells and can be subjective. During 

the production period of gas wells, all production parameter 

values are represented as time series data. Based on the 

similarity of time series, a new approach for the classification 

of tight sandstone gas wells is proposed. DTW is a method 

capable of measuring the similarity between time series of 

different lengths. The construction ideas for a tight sandstone 

gas well classification model based on the similarity of time 

series are as follows: First, preprocess the production 

parameter data; then use the DTW to calculate the parameter 

series distance matrix between each tight sandstone gas well 

within each production parameter; next, use the spectral 

clustering  to classify tight sandstone gas wells within each 

production parameter; and finally, select the time series 

curves of three representative gas wells in each class of gas 

wells for analysis within each production parameter. This 

model is named the DTW-Spectral model. 

However, the problem of singularity in DTW can result in 

inaccurate DTW distances, thus affecting the accuracy of 

time series similarity measure. To tackle this singularity 

problem, a modified version of DTW, called SDTW, is 

employed to measure time series similarity, with the aim of 

enhancing accuracy. Consequently, the DTW-Spectral model 

is optimized by substituting DTW with SDTW. The 

optimized model is named the SDTW-Spectral model. 

Taking into account that time series data often contain 

noise, further optimization of the SDTW-Spectral model is 

performed: the preprocessed production parameter data 

undergo Kalman filtering before SDTW and spectral 

clustering are applied. The optimized model is named the 

KF-SDTW-Spectral model. 

B. Model Construction steps 

To classify tight sandstone gas wells, this paper proposes a 

classification model based on time series similarity: the 

KF-SDTW-Spectral model. The construction of this model 

consists of five main steps, as depicted in Fig.7. The 

workflow of the model is illustrated in Fig. 8. 

B.1. Data Preprocessing 

The various time series may have missing values at 

different time points, which can occur due to well shut-ins or 

incomplete data recording. These missing values do not 

reflect the true characteristics of the time series and disrupt 

the continuity of the entire dynamic process. Filling in 

missing values in time series with data does not have a 

special effect on subsequent similarity measure between time 

series using SDTW; therefore, in this case, the missing values 

are directly eliminated from the time series. Fig.3 and Fig.4 

show the original monthly gas production time series of well 

W1 and the monthly gas production time series after the 

removal of missing values, respectively. It is evident that the 

elimination of missing values results in a continuous monthly 

gas production time series. Although the length of the time 

series has been reduced, the overall characteristics have not 

changed significantly. 

Due to differences in resource abundance and production 

parameter magnitudes across various gas wells, it is possible 

for two time series with very similar production patterns to 

exhibit a great distance from each other, resulting in a low 

similarity between the time series. To ensure that each pair of 

time series is compared for similarity on the same scale, the 

min-max normalization method is employed here. This 

method maps all the values of each production parameter’s 

time series into a range between 0 and 1. Additionally, the 

normalized time series maintain the same curve shape as the 

original series. The data normalization process is shown in 

(15). Fig.5 presents the result of normalizing the monthly gas 

production time series for well W1. 

' min

max min

t
t

X X
X

X X

−
=

−
 (15) 

Where, 
tX  represents the recorded value of the time series 

at time  t , ’tX represents the normalized value of 
tX , and 

maxX  and 
minX  respectively represent the maximum and 

minimum values of the data in the time series. 
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B.2. Kalman Filtering 

The normalized time series is then subjected to Kalman 

filtering, which improves the smoothness of the time series 

and reduces the influence of noise. Fig.6 illustrates the 

monthly gas production time series for well W1 after 

undergoing Kalman filtering. 

 
Fig. 3. Original monthly gas production time series of well W1 

 

 
Fig .4. Monthly gas production time series of well W1 after removing 

missing values 

 

Fig .5. Normalized monthly gas production time series of well W1 after 

removing missing values 

 
Fig.6. Monthly gas production time series of well W1 after Kalman filtering 

 

 

B.3. Calculate the SDTW Distance Matrix 

After removing missing values, normalization, and 

Kalman filter processing of each production parameter time 

series, the parameter series distances between tight sandstone 

gas wells are calculated using SDTW for each parameter. The 

distances between all wells under this parameter condition 

are then orderly stored as an inter-well series distance matrix. 

It is evident that this distance matrix is symmetric. 

 

B.4. Spectral Clustering 

The spectral clustering is used to transform the obtained 

distance matrix into an adjacency matrix. Subsequently, the 

Laplacian matrix is computed and normalized. The 

eigenvalues and eigenvectors of the normalized Laplacian 

matrix are then calculated. The Gap Statistic is employed to 

determine the optimal number of clusters in spectral 

clustering, which allows for the classification of tight 

sandstone gas wells based on each production parameter. 

 

B.5. Time Series Curve Analysis 

Since each class of gas wells for each production 

parameter has a large number, corresponding to numerous 

time series with fluctuating changes and varying lengths, 

displaying all time series of each class of wells on one chart 

would appear cluttered and chaotic, making it impossible to 

discern the characteristics of the time series curves. Therefore, 

in this paper, within each class of wells, the time series curves 

for three representative wells are selected to display, and a 

detailed analysis of these selected time series curves is 

conducted.
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X X

−
=
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/ 1 1 1 1k k k k k kX F X G W− − − −= +

k k k kL H X V= +
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( ) ( 1)
( ( )) (1 ) ( )

max (| |)
s

x i x i
F x i x i

x

− −
= + 


Local distance：
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1,1 1,2 1,3 1,61

2,1 2,2 2,3 2,61

61,1 61,2 61,3 61,61

d d d d

d d d d

d d d d

   
 

 
 
 

  

Distance matrixGaussian kernel function
2

2

|| ||
exp( )

2

i jx x



−
−

Adaptive scale

determination

parameter σ

Adjacency matrix W

1,1 1,2 1,3 1,61

2,1 2,2 2,3 2,61

61,1 61,2 61,3 61,61

w w w w

w w w w
W

w w w w

   
 

 =
 
 

  

1

n

i ij

j

d W
=

= 

1

2

n

d

d
D

d

 
 
 =
 
 
 

Degree matrix  D

L D W= −
1,1 1,2 1,3 1,61

2,1 2,2 2,3 2,61

61,1 61,2 61,3 61,61

l l l l

l l l l
L

l l l l

   
 

 =
 
 

  

Laplacian matrix  L

1 1

2 2'L D LD
− −

=

1,1 1,2 1,3 1,61

2,1 2,2 2,3 2,61

61,1 61,2 61,3 61,61

' ' ' '

' ' ' '
'

' ' ' '

l l l l

l l l l
L

l l l l

   
 

 =
 
 

  

Laplacian matrix normalization  L’

Eigenvalues and eigenvectors

1 2( , , , )k   

1 2V( , , )kv v v

Determining the

number of

clusters k using

the Gap Statistic
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Fig.7.KF-SDTW-Spectral model structure 
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Fig.8.Flowchart of the KF-SDTW-Spectral model 
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IV. CASE ANALYSIS 

A. Classification of Tight Sandstone Gas Wells - Monthly 

Gas Production 

In this paper, spectral clustering is performed based on the 

distances between the monthly gas production series of tight 

sandstone gas wells, which have been calculated using 

SDTW after Kalman filtering. The Gap Statistic is illustrated 

in Fig.12. As the Gap Statistic reaches its maximum when the 

number of clusters is two, the 61 tight sandstone gas wells are 

divided into two clusters. These clusters are defined as the 

gradual decline-trailing pattern and the slow rise-rapid 

decline-trailing pattern, with 29 wells in the gradual 

decline-trailing pattern and 32 wells in the slow rise-rapid 

decline-trailing pattern. In this paper, three representative 

wells from each of the two patterns are selected, and their 

monthly gas production curves are presented in Fig.13 and 

Fig.14, respectively. 

 
Fig.12.Gap Statistic 

 
Fig.13. Monthly gas production curve of tight sandstone gas wells in the 

gradual decline-trailing pattern 
 

As shown in Fig.13, the monthly gas production of tight 

sandstone gas wells in the gradual decline-trailing pattern 

rapidly increases to a peak within a short period, then 

fluctuates downward to lower values. Subsequently, it 

increases again to about one-third of the peak, followed by 

relatively minor fluctuations at around one-third of the peak 

for approximately half of the production period until 

production ceases. The peak values of monthly gas 

production for wells in this pattern typically occur within the 

first 20% of the entire gas production phase. 

 
Fig.14.Monthly gas production curve of tight sandstone gas wells in the slow 

rise-rapid decline- trailing pattern 

 

As shown in Fig.14, the monthly gas production of tight 

sandstone gas wells in the slow rise-rapid decline-trailing 

pattern gradually increases from lower values to a peak, then 

fluctuates downward to lower values. Subsequently, it 

fluctuates within a relatively small range around these lower 

values for about half of the production time until production 

ceases. The peak values of monthly gas production for wells 

in this pattern typically occur within the first 30% of the 

entire gas production phase. 

B. Classification of Tight Sandstone Gas Wells - Monthly 

Water Production 

In this paper, spectral clustering is performed based on the 

distances between the monthly water production series of 

tight sandstone gas wells, which have been calculated using 

SDTW after Kalman filtering. The Gap Statistic is illustrated 

in Fig.15. As the Gap Statistic reaches its maximum when the 

number of clusters is three, the 61 tight sandstone gas wells 

are divided into three clusters. These clusters are defined as 

the rapid decline-trailing pattern, the fluctuating multi-peak 

pattern, and the rapid decline-stable pattern, with 19 wells in 

the rapid decline-trailing pattern,36 wells in the fluctuating 

multi-peak pattern, and 6 wells in the rapid decline-stable 

pattern. In this paper, three representative wells from each of 

the three patterns are selected, and their monthly water 

production curves are presented in Fig.16, 17, and 18, 

respectively. 

 
Fig.15. Gap Statistic 
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Fig.16. Monthly water production curve of tight sandstone gas wells in the 

rapid decline- trailing pattern 

 

As shown in Fig.16, the monthly water production of tight 

sandstone gas wells in the rapid decline-trailing pattern 

rapidly increases from high values to a peak, then rapidly 

decreases to higher values. Subsequently, the monthly water 

production fluctuates with significant variations, followed by 

continuing fluctuations within a lower range for about half of 

the production time until production ceases, with smaller 

variations compared to the first half of the period. The peak 

values of monthly water production for wells in this pattern 

typically occur within the first 10% of the entire water 

production phase. 

 

 
Fig.17. Monthly water production curve of tight sandstone gas wells in the 

fluctuating multi-peak pattern 

 

As shown in Fig.17, the monthly water production of tight 

sandstone gas wells in the fluctuating multi-peak pattern 

rapidly increases to high values, then rapidly decreases to 

higher values. Subsequently, it fluctuates upwards to high 

values, then fluctuates downwards, and then continues to 

fluctuate upwards to higher values, followed by fluctuating 

downwards again, continuing these fluctuations until 

production ceases. The monthly water production undergoes 

frequent and large variations, with multiple local peaks 

throughout the entire water production phase. The peak 

values of monthly water production for wells in this pattern 

typically occur within the first 10% of the entire water 

production phase. 

 

 
Fig.18. Monthly water production curve of tight sandstone gas wells in the 

rapid decline-stable pattern 

 

As shown in Fig.18, the monthly water production of tight 

sandstone gas wells in the rapid decline-stable pattern 

decreases from peak values at a relatively fast rate to low 

values, after which it remains stable within this low range for 

approximately 6/7 of the production time until production 

ceases. The peak values of monthly water production for 

wells in this pattern occur at the beginning of the entire 

production phase. 

C. Classification of Tight Sandstone Gas Wells - Oil 

Pressure 

In this paper, spectral clustering is performed based on the 

distances between the oil pressure series of tight sandstone 

gas wells, which have been calculated using SDTW after 

Kalman filtering. The Gap Statistic is illustrated in Fig.19. As 

the Gap Statistic reaches its maximum when the number of 

clusters is three, the 61 tight sandstone gas wells are divided 

into three clusters. These clusters are defined as the gradual 

decline-trailing pattern, the gradual decline-stable-trailing 

pattern, and the gradual decline-fluctuating-trailing pattern, 

with 9 wells in the gradual decline-trailing pattern,25 wells in 

the gradual decline-stable-trailing pattern, and 27 wells in the 

gradual decline-fluctuating-trailing pattern. In this paper, 

three representative wells from each of the three patterns are 

selected, and their oil pressure curves are presented in Fig.20, 

21, and 22, respectively. 

 

 
Fig.19. Gap Statistic 
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Fig.20. Oil pressure curve of tight sandstone gas wells in the gradual 

decline-trailing pattern 
 

As shown in Fig. 20, the oil pressure of tight sandstone gas 

wells in the gradual decline-trailing pattern decreases from 

peak values with relatively small fluctuations to lower values, 

then rapidly increases to higher values, followed by a rapid 

decrease to lower values. Subsequently, for approximately 

half of the production time, the oil pressure fluctuates within 

this lower range with relatively small amplitudes until 

production ceases. The peak values of oil pressure for wells 

in this pattern occur at the beginning of the entire production 

phase. 

 

 

 
Fig.21. Oil pressure curve of tight sandstone gas wells in the gradual 

decline-stable-trailing pattern 

 

As shown in Fig. 21, the oil pressure of tight sandstone gas 

wells in the gradual decline-stable-trailing pattern decreases 

gradually from peak values to lower values, then fluctuates 

within this lower range with relatively small amplitudes. 

Subsequently, the pressure fluctuates downward to a low 

value, and then remains relatively stable within this low 

range for approximately one-fourth of the production time 

until production ceases. The peak values of oil pressure for 

wells in this pattern occur at the beginning of the entire 

production phase. 

 

 

 
Fig.22.Oil pressure curve of tight sandstone gas wells in the gradual 

decline-fluctuating-trailing pattern 

 

As shown in Fig.22, the oil pressure of tight sandstone gas 

wells in the gradual decline-fluctuating-trailing pattern 

rapidly decreases from high values to lower values, then 

quickly increases to high values again, followed by a 

fluctuation downward to lower values. Subsequently, it 

fluctuates within this lower range with relatively small 

amplitudes, then fluctuates downward again to a low value. 

Afterward, the pressure remains relatively stable within this 

low range for approximately two-sevenths of the production 

time until production ceases. The peak values of oil pressure 

for wells in this pattern typically occur within the first 10% of 

the entire production phase. 

To summarize, based on monthly gas production as a 

classification indicator, the 61 tight sandstone gas wells are 

divided into two clusters: the gradual decline-trailing pattern 

and the slow rise-rapid decline-trailing pattern. The monthly 

gas production curves of these two patterns of wells exhibit 

distinct differences. The overall trend of the monthly gas 

production curve of the gradual decline-trailing pattern wells 

is rising-declining- stabilizing. The overall trend of the slow 

rise-rapid decline-trailing pattern wells is 

rising-declining-stabilizing-declining-stabilizing. 

Based on monthly water production as a classification 

indicator, the 61 tight sandstone gas wells are divided into 

three clusters: the rapid decline-trailing pattern, the 

fluctuating multi-peak pattern, and the rapid decline-stable 

pattern. The monthly water production curves of these three 

patterns of wells exhibit distinct differences. The overall 

trend of the monthly water production curve of the rapid 

decline-trailing pattern wells is rising-declining- 

rising-declining-stabilizing. The overall trend of the 

fluctuating multi-peak pattern wells is alternating 

rising-declining. The overall trend of the rapid decline-stable 

pattern wells is declining- stabilizing. 

Based on oil pressure as a classification indicator, the 61 

tight sandstone gas wells are divided into three clusters: the 

gradual decline-trailing pattern, the gradual 

decline-stable-trailing pattern, and the gradual 

decline-fluctuating-trailing pattern. The oil pressure curves 

of these three patterns of wells exhibit distinct differences. 

The overall trend of the oil pressure curve of the gradual 

decline-trailing pattern wells is declining- 

rising-declining-stabilizing. The overall trend of the gradual 

decline-stable-trailing pattern wells is declining-stabilizing- 
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declining-stabilizing. The overall trend of the gradual 

decline-fluctuating-trailing pattern wells is 

declining-rising-declining stabilizing-declining- stabilizing. 

D. Model Evaluation Index 

The primary goal of clustering is to divide a set of data 

samples into multiple classes such that there is a high 

resemblance within each class and a low similarity between 

different classes[21]. In other words, the smaller the 

intra-class distance and the larger the inter-class distance, the 

higher the quality of the clustering. Therefore, this paper 

adopts the ratio of intra-class distance to inter-class distance 

as an indicator for evaluating the quality of clustering. 

D.1. Intra-Class Distance 

In this paper, the minimum value of the average distance 

between each object in a class and all other objects in the 

same class is taken as the intra-class distance for that class, 

while the intra-class distance of the entire sample data is the 

maximum value among all classes’ intra-class distances. This 

intra-class distance of the entire sample data is denoted as 

( )intra k . 

| |

1 | |1
1,

1
intra(k) max{ min { || ||}}

| | 1

i

i

C

j p
j Ci k

p p ji

x x
C  

= 

= −
−

  (16) 

Where: k  is the number of clusters, ( )intra k  represents 

the intra-class distance of the entire sample data;   iC  is the 

number of objects in class 
iC ; jx  and px  are objects 

belonging to class 
iC . 

The smaller the value of ( )intra k , the more similar the 

data samples within the class are, and the better the clustering 

effect. Therefore, if the class with the maximum intra-class 

distance already meets the requirement for intra-class 

similarity, then it is certain that the other classes also meet 

this requirement. For this reason, this paper takes the 

maximum intra-class distance among all classes as the 

intra-class distance for the entire sample data. 

D.2. Inter-Class Distance 

In this paper, the distance between two classes is defined 

as the minimum value among the distances between objects 

in those two classes, and the inter-class distance of the entire 

sample data is the minimum value among all distances 

between any two classes. The inter-class distance of the 

entire sample data is denoted as ( )inter k . 

, ,
inter(k) min || ||

p i q j
p q

x C x C i j
x x

  
= −  (17) 

Where: k  is the number of clusters, 1,2, ,i k=  ; 

1,2, ,j k=  ; and i j . px and qx  are objects within 

clusters 
iC and 

jC , respectively. 

The larger the value of ( )inter k , the less similar the data 

samples between different classes are, and the better the 

clustering effect. Therefore, if the minimum distance 

between two classes already meets the requirement of being 

sufficiently dissimilar, then it is certain that all other pairs of 

classes also meet this requirement. For this reason, this paper 

takes the minimum distance between any two classes as the 

inter-class distance for the entire sample data. 

D.3. Cluster Validity Evaluation Index 

inter(k)
C(k)

intra(k)
=  (18) 

k  is the number of clusters, and the smaller the evaluation 

index ( )C k , the higher the cluster quality. 

E. Comparative Analysis of Experimental Results 

To assess whether the clustering quality of the 

KF-SDTW-Spectral model has improved, the study 

continues using monthly gas production, monthly water 

production, and oil pressure as classification indicators. The 

SDTW-Spectral and DTW-Spectral models were applied to 

classify tight sandstone gas wells. Additionally, traditional 

clustering methods were utilized to classify tight sandstone 

gas wells. This paper selected three traditional clustering 

methods: k-means clustering[22],hierarchical clustering[23], 

and DBSCAN[24].However, the k-means method is not 

suitable for directly processing time series data of unequal 

lengths because it requires calculating Euclidean distances 

between all time series, which in turn requires that all time 

series have the same length. Therefore, the study initially 

calculates the DTW distances between all time series to 

obtain a DTW distance matrix. Subsequently, the smallest k  

eigenvalues from the distance matrix, along with their 

corresponding eigenvectors, are identified. The eigenvectors 

are then clustered using k-means, thus classifying the tight 

sandstone gas wells. This model is named the DTW-k-means 

model. After the DTW distances between all time series are 

computed by DTW, hierarchical clustering is used to classify 

the tight sandstone gas wells. This model is named the 

DTW-Hierarchical model. The parameters of DBSCAN, 

namely the neighborhood radius and minimum number of 

samples, can affect the clustering results. Therefore, after 

computing the DTW distances between all time series, we 

employ grid search[25] to find the optimal parameters for 

DBSCAN. Subsequently, we utilize DBSCAN to classify the 

tight sandstone gas wells. This model is named the 

DTW-DBSCAN model. The cluster validity evaluation index 

( )C k  for all models is obtained and compared. The 

experimental results are shown in Table Ⅰ. 
TABLE Ⅰ 

COMPARISON OF MODEL EVALUATION INDEX 

 Classification indicators 

Models Monthly gas 

production 

Monthly water 

production 

Oil pressure 

DTW- Hierarchical 

DTW-K-means 

DTW-DBSCAN 

DTW- Spectral 

SDTW-Spectral 

KF-SDTW-Spectral 

7.97 

7.85 

6.89 

5.01 

3.33 

2.66 

8.13 

7.73 

7.51 

7.04 

6.37 

4.43 

9.90 

11.31 

9.78 

9.42 

8.31 

6.59 
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TABLE Ⅱ 
GAS WELL CLASSIFICATION RESULTS 

Well number 

Monthly gas production 

/104 m3 

Monthly water production 

/104 m3 

Oil pressure 

/MPa 

Type 

W1 slow rise-rapid decline-trailing pattern rapid decline-trailing pattern gradual decline-trailing pattern low-yield well 

W2 slow rise-rapid decline-trailing pattern fluctuating multi-peak pattern gradual decline-fluctuating-trailing pattern low-yield well 

W3 slow rise-rapid decline-trailing pattern fluctuating multi-peak pattern gradual decline-trailing pattern high-yield well 

W4 gradual decline-trailing pattern rapid decline-trailing pattern gradual decline-stable-trailing pattern high-yield well 

… 

W58 slow rise-rapid decline-trailing pattern rapid decline-stable pattern gradual decline-stable-trailing pattern low-yield well 

W59 gradual decline-trailing pattern rapid decline-trailing pattern gradual decline-fluctuating-trailing pattern high-yield well 

W60 slow rise-rapid decline-trailing pattern rapid decline-stable pattern gradual decline-trailing pattern high-yield well 

W61 gradual decline-trailing pattern fluctuating multi-peak pattern gradual decline-stable-trailing pattern low-yield well 
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Fig.23. Production characteristics of high-yield wells 

 
 

Based on monthly gas production as a classification 

indicator, tight sandstone gas wells are divided into two 

clusters. The clustering quality of DTW-Spectral, 

SDTW-Spectral, and KF-SDTW-Spectral models are all 

superior  to  that  of  traditional  clustering  methods. Among 

them, the KF-SDTW-Spectral model has the highest 

clustering quality. 

Based on monthly water production as a classification 

indicator, tight sandstone gas wells are divided into three 

clusters. The clustering quality of DTW-Spectral, 

SDTW-Spectral, and KF-SDTW-Spectral models are all 

superior to that of traditional clustering methods. Among 

them, the KF-SDTW-Spectral model has the highest 

clustering quality. 

Based on oil pressure as a classification indicator, tight 

sandstone gas wells are divided into three clusters. The 

clustering quality of DTW-Spectral, SDTW-Spectral, and 

KF-SDTW-Spectral models are all superior to that of 

traditional clustering methods. Among them, the 

KF-SDTW-Spectral model has the highest clustering quality. 

 

 

To summarize, compared to traditional clustering methods, 

the DTW-Spectral, SDTW-Spectral, and KF-SDTW-Spectral 

models proposed in this paper have higher clustering quality. 

Among these, the KF-SDTW-Spectral model exhibits the 

highest clustering quality, making the classification of tight 

sandstone gas wells more scientific and rational. 

 

F. Gas Well Production Characteristics and Production 

Measures 

Based on the actual production situation of the gas field, 

this paper classifies 61 tight sandstone gas wells into 

high-yield and low-yield wells according to their cumulative 

gas production. Gas wells with a cumulative gas production 

of not less than 320 million cubic meters are considered 

high-yield wells, while those with a cumulative gas 

production of less than 320 million cubic meters are 

considered low-yield wells. Then, according to the clustering 

results of the KF-SDTW-Spectral model, the classification of 

the 61 gas wells is shown in Table Ⅱ. 
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Fig.24. Production characteristics of low-yield wells 
 

TABLE Ⅲ 

GAS WELL PRODUCTION MEASURES 

Type 

Monthly gas production 

/104 m3 

Monthly water production 

/104 m3 

Oil pressure 

/MPa 

Production measures 

High-yield wells slow rise-rapid decline-trailing pattern fluctuating multi-peak pattern gradual decline-trailing pattern Ⅰ 

Low-yield wells slow rise-rapid decline-trailing pattern fluctuating multi-peak pattern gradual decline-stable-trailing pattern Ⅱ 

Low-yield wells gradual decline-trailing pattern fluctuating multi-peak pattern gradual decline-stable-trailing pattern Ⅲ 

 

From Fig.23, it can be observed that the monthly gas 

production of high-yield wells exhibits two patterns, with 

each pattern accounting for 50% of the wells. This indicates 

that the monthly gas production of high-yield wells follows 

either the gradual decline-trailing pattern or the slow 

rise-rapid decline-trailing pattern. The monthly water 

production of high-yield wells shows three patterns, with the 

fluctuating multi-peak pattern being the most prevalent, at 

nearly 70%. It is followed by the rapid decline-trailing 

pattern, which accounts for close to 30%, and the rapid 

decline-stable pattern, making up about 5%. This indicates 

that monthly water production in high-yield wells is 

predominantly characterized by the fluctuating multi-peak 

pattern, followed by the rapid decline-trailing pattern. The oil 

pressure of high-yield wells also exhibits three patterns: the 

gradual decline-fluctuating-trailing pattern accounts for over 

40%, the gradual decline-trailing pattern for over 30%, and 

the gradual decline-stable-trailing pattern for less than 30%. 

This indicates that oil pressure in high-yield wells is mainly 

characterized by the gradual decline-fluctuating-trailing 

pattern, followed by the gradual decline-trailing pattern and 

the gradual decline-stable-trailing pattern. 

From Fig. 24, it can be observed that the monthly gas 

production of low-yield wells exhibits two patterns, with 

each pattern roughly accounting for 50%. This indicates that 

the monthly gas production of low-yield wells follows either 

the gradual decline-trailing pattern or the slow rise-rapid 

decline-trailing pattern. The monthly water production of 

low-yield wells shows three patterns: the fluctuating 

multi-peak pattern comprises more than 50%, the rapid 

decline-trailing pattern accounts for over 30%, and the rapid 

decline-stable pattern is the least common, at only 13%. This 

indicates that the primary pattern for monthly water 

production in low-yield wells is the fluctuating multi-peak 

pattern, followed by the rapid decline-trailing pattern. The oil 

 

pressure of low-yield wells also exhibits three patterns: the 

gradual decline-stable-trailing pattern and the gradual 

decline-fluctuating-trailing pattern each account for more 

than 40%, whereas the gradual decline-trailing pattern is at a 

mere 5%. This indicates that the oil pressure in low-yield 

wells is primarily characterized by either the gradual 

decline-stable-trailing pattern or the gradual 

decline-fluctuating-trailing pattern. 

Based on the production characteristics of high-yield and 

low-yield wells, appropriate production measures can be 

determined. For high-yield wells, the monthly gas production 

follows either the gradual decline-trailing pattern or the slow 

rise-rapid decline-trailing pattern, with the monthly water 

production displaying the fluctuating multi-peak pattern, and 

the oil pressure exhibiting either the gradual 

decline-fluctuating-trailing pattern or the gradual 

decline-trailing pattern. For low-yield wells, the monthly gas 

production follows either the gradual decline-trailing pattern 

or the slow rise-rapid decline-trailing pattern, with the 

monthly water production also in the fluctuating multi-peak 

pattern, and the oil pressure characterized by either the 

gradual decline-stable-trailing pattern or the gradual 

decline-fluctuating-trailing pattern. The corresponding 

production measures are shown in Table III, contingent upon 

the actual situation. 

From Table III, it is evident that high-yield wells 

correspond to production measure I, while low-yield wells 

correspond to production measures II and III. In other words, 

production measure I is intended for high-yield wells, 

whereas production measures II or III are intended for 

low-yield wells. According to Table II, there are 6 gas wells 

with production measure I, out of which 5 are high-yield 

wells, resulting in an accuracy rate of 83.3%. There are 3 gas 

wells with production measure II, all of which are low-yield 

wells, resulting in a 100% accuracy rate. There are 8 gas 
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wells with production measure III, out of which 6 are 

low-yield wells, leading to a 75% accuracy rate. 

To summarize, for a certain gas field in Southwest China, 

if the aim is to ultimately achieve high-yield wells, it is 

advisable to adopt production measure I, as the probability of 

obtaining high-yield wells through this measure is high. 

Conversely, if the goal is to achieve low-yield wells, 

production measures II or III can be employed. There is also a 

high probability of achieving low-yield wells through these 

two measures. 

 

V. CONCLUSION 

This paper presents a classification model for tight 

sandstone gas wells based on time series similarity: the 

KF-SDTW-Spectral model. This model classifies the tight 

sandstone gas wells in a certain gas field in Southwest China 

scientifically and reasonably. By utilizing this model, the 

production characteristics of high-yield and low-yield wells 

are analyzed, and corresponding production measures are 

proposed, offering valuable references for gas well 

management. The research subjects of this paper include 61 

tight sandstone gas wells, leading to the following 

conclusions. 

(1) The 61 tight sandstone gas wells are divided into two 

clusters based on monthly gas production as a classification 

indicator, three clusters based on monthly water production, 

and three clusters based on oil pressure. 

(2) According to the cluster validity assessment index, the 

KF-SDTW-Spectral model demonstrated the highest 

clustering quality and outperformed traditional clustering 

methods. 

(3) The production characteristics of high-yield and 

low-yield wells have been summarized. For high-yield wells, 

production measure I is proposed, while for low-yield wells, 

production measures II and III are proposed. 

To summarize, the model demonstrates high-quality 

clustering, offering a novel approach for the classification of 

tight sandstone gas wells, which holds significant reference 

value for guiding the development of the gas field. 
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