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Abstract—The switching constrained optimization problem
is a new class of constrained optimization problem proposed
in recent years. However, its special constraints make the
commonly used constraint specifications unsatisfactory. For
this reason, the method for the sequential systems of linear
equations (SSLE) is applied to solve the problem. In each
iteration, the algorithm needs to solve a system of four linear
equations with the same coefficient matrices, which reduces the
amount of computation compared with the sequential quadratic
programming algorithm. Moreover, it is proven that the limit
point of the sequence generated by using the new algorithm
is the Karush-Kuhn-Tucker point of the problem. Finally, it
is shown through numerical results that the SSLE method is
feasible for dealing with this type of problem.

Index Terms—Switching constrained, Sequential systems of
linear equations, KKT point, Global convergence.

I. INTRODUCTION

IN this study, the following general nonlinear program-
ming problems are considered:

min f(x)

s.t. gi(x) ≤ 0, i = 1, ...p,

hj(x) = 0, j = 1, ...q,

Gt(x)Ht(x) = 0, t = 1, ...l.

For the convenience of description, I = {i|i = 1, ...p},
L = {j|j = 1, ...q}, and T = {t|t = 1, ...l}; where, the
functions f(x) : Rn → Rn are continuously differentiable
and gi(x), hj(x), Gt(x), Ht(x): Rn → Rn are also contin-
uously differentiable.

For any fixed t, at least one of Gt(x) and Ht(x) is zero.
This constraint is called the switching constraint and denoted
as the switching constrained optimization (mathematical
program with switching constraints, MPSC) problem. This
problem model was proposed and systematically studied by
Mehlitz. Further, Mehlitz [1] pointed out that problems such
as discretization of optimal control problems, either-or con-
straint optimization, 0-1 programming, and other problems
could be solved by transforming them into MPSC problems.
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However, owing to its special constraint conditions, the com-
monly used constraint norms, such as Linear Independence
Constraint Qualification (LICQ) and Mangasarian-Fromovitz
Constraint Qualification (MFCQ), are not satisfied at the
feasible point of the MPSC problem; thus, it cannot be
regarded as a general nonlinear programming operation [2–
4]. Luo et al. [5] proposed a relaxation method for solving
the MPSC. Achtziger et al. [6] studied the second-order op-
timality conditions of MPSC, modified the standard Abadie
constraint, and proved that the modified constraints could
hold under relatively weak assumptions. Liang and Ye [7]
presented research results on mathematical program with dis-
junctive constraints and optimality conditions, applied them
to the MPSC problems, and listed two types of sufficient
conditions for the local error bounds and exact penalty results
for MPSC. Luo et al. [8] proposed a Wolfe-type dyadic
model for the MPSC problem by using dyadic theory. Li
and Guo [9] proposed the weakest constraint condition for
Mordukhovich-stationarity of the MPSC problem at the local
minima, and finally discussed the relationship among the
MPSC customized constraints.

Sequential Quadratic Programming (SQP) algorithms ex-
hibit good superlinear convergence and are therefore con-
sidered to be one of the most effective methods for solving
nonlinear programming problems [10–12]. However, most
SQP algorithms bring forward two serious drawbacks: (1)
One or more quadratic programming sub-problems need to
be solved in each iteration to obtain the search direction. This
is computationally intensive and makes it difficult to utilize
good sparsity and symmetry in the computation of the sub-
problems. (2) The algorithm requires the sub-problems to be
solvable at each iteration [13, 14]. Therefore, the following
system of linear equations is utilized instead of the quadratic
programming sub-problems.

In 1988, Panier et al. [15] proposed a feasible QP-free
algorithm that was not able to solve quadratic programming
sub-problems; since then, extensive research efforts have
been devoted to the study on QP-free algorithms. These
algorithms overcome the difficulty of solving sub-problems
without solutions by replacing one or more quadratic pro-
grams in an SQP method with a number of systems of linear
equations having the same coefficient matrices. They take full
advantage of some of the benefits of solving systems of linear
equations. These algorithms offer the advantages of less
iteration time, smaller storage, and faster convergence, and
they can be used to solve large-scale nonlinear optimization
problems [16]. However, in addition to iteratively solving
two linear equations in each step, Panier’s algorithm also re-
quires solving a quadratic programming sub-problem, which
still requires a large amount of computation. Moreover, to
make the algorithm converge to the Karush-Kuhn-Tucker
(KKT) point, it must be further assumed that the number
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of stabilization points is limited. To overcome the above-
mentioned shortcomings, Gao Ziyou et al. [17] proposed a
new algorithm in 1994. This algorithm only needs to solve
three systems of linear equations with the same coefficients
in each iteration, which improves computational efficiency.
The one-step superlinear convergence of the algorithm is also
proven, which completely eliminates the difficulty of solving
quadratic programming sub-problems. Therefore, herein, it
is denoted as the Sequential Systems of Linear Equations
(SSLE).

This study improves on a prior algorithm from the lit-
erature [12], and proposes the SSLE algorithm for solving
switching constraints optimization problems. Compared with
the SQP algorithm, the new algorithm offers the following
advantages: (1) Each iteration only requires solving four sets
of linear equations with the same coefficients. Thus the new
algorithm is QP-free, and involves reduced computational
complexity. (2) The iteration points produced by the new
algorithm are valid. Based on this, global convergence and
the algorithm are proven to be benign. Finally, the algorithm
is feasible when combined with the results of numerical
experiments.

II. A NEW CLASS OF SSLE ALGORITHMS

The sequence {d0k} is formed from the subsequent linear
system:
Bkd

0
k +∇f(xk) +

p∑
i=1

λ0
k,i∇gi(xk) +

q∑
j=1

λ0
k,j∇hj(xk)

+
l∑

t=1

λ0
k,t(∇Gt(xk)Ht(xk) +∇Ht(xk)Gt(xk)) = 0, (1)

µk,i∇gi(xk)
Td0k + λ0

k,igi(xk) = 0, i ∈ I, (2)

∇hj(xk)
Td0k + hj(xk) = 0, j ∈ L, (3)

(∇Gt(xk)Ht(xk) +∇Ht(xk)Gt(xk))
Td0k

+Gt(xk)Ht(xk) = 0, t ∈ T, (4)

where Bk is an approximation of the Lagrangian function
L(x, λi, λj , λt),

L(x, λi, λj , λt) =f(x) +

p∑
i=1

λigi(x) +

q∑
j=1

λjhj(x)

+
l∑

t=1

λtGt(x)Ht(x).

Where xk is the estimated value of x∗, xk + d0k denotes
the next estimated value, µk represents the current estimate
of the multiplier vector related to x∗, while λ0

k denotes the
subsequent estimated value. According to the analysis in
Theorem 4.6 [15], the expression xk+1 = xk + d0k exhibits
superlinear convergence; therefore, d0k is chosen as the initial
direction. However, a negative number vi is added to the right
of system (2) since d0k may be zero in some iteration of KKT
points that are not MPSC problems. Moreover, to maintain
the convergence of {xk}, vi must approach zero faster than
d0k. Therefore, let vi = (λ0

k,i)
3 or 0, so that after obtaining

d0k, a new direction d1k can be obtained by solving the linear
system mentioned below.

The sequence {d1k} is formed from the subsequent linear
system:

Bkd
1
k +∇f(xk) +

p∑
i=1

λ1
k,i∇gi(xk) +

q∑
j=1

λ1
k,j∇hj(xk)

+
l∑

t=1

λ1
k,t(∇Gt(xk)Ht(xk) +∇Ht(xk)Gt(xk)) = 0,

(5a)

µk,i∇gi(xk)
Td1k + λ1

k,igi(xk) = µivk,i, (5b)

∇hj(xk)
Td1k + hj(xk) = 0, (5c)

(∇Gt(xk)Ht(xk) +∇Ht(xk)Gt(xk))
Td1k

+Gt(xk)Ht(xk) = 0, (5d)

The following Lemma 5 shows that d1k is a strict descent
direction of the penalty function Wr(x). However, if one
wants each of gi(x), hj(x), Gt(x), and Ht(x) to be very
close to 0, then the above-mentioned system makes d1k tend
toward the direction where the feasible set is tangent, as
follows:

X = {x | gi(x) ≤ 0, i ∈ I}.

This may lead to step size collapse due to the need for
feasibility of all iterations. Therefore, search direction dk is
used as follows.

The sequence {dk} is formed from the subsequent linear
system:
Bk(dk − d1k) +

p∑
i=1

(λk,i − λ1
k,i)∇gi(xk)

+
l∑

t=1

(λk,t − λ1
k,t)(∇Gt(xk)Ht(xk) +∇Ht(xk)Gt(xk))

+

q∑
j=1

(λk,j − λ1
k,j)∇hj(xk) = 0, (6a)

µk,i∇gi(xk)
T(dk − d1k) + (λk,i − λ1

k,i)gi(xk)

=− ρk∥d1k∥ηµk,i, (6b)

∇hj(xk)
T(dk − d1k) = 0, (6c)

(∇Gt(xk)Ht(xk) +∇Ht(xk)Gt(xk))
T(dk − d1k) = 0,

(6d)

where ρk is a specific positive number, and the basic
convergence of sequence {xk} remains unchanged by this
search direction. However, as shown in prior study [18] when
using exact penalty functions in line search SQP iterations,
the unit step size might fall short of being close enough to the
solution to be satisfactory. Therefore, to avoid this situation,
it is necessary to solve a new linear system.

The sequence {d̂k} is formed from the subsequent linear
system:

Bk(d̂k − dk) +

p∑
i=1

(λ̂k,i − λk,i)∇gi(xk)

+
l∑

t=1

(λ̂k,t − λk,t)(∇Gt(xk)Ht(xk) +∇Ht(xk)Gt(xk))

+

q∑
j=1

(λ̂k,j − λk,j)∇hj(xk) = 0, (7a)

µk,i∇gi(xk)
T(d̂k − dk) + (λ̂k,i − λk,i)gi(xk)

=− ϕk + µk,iqk,i, (7b)
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∇hj(xk)
T(d̂k − dk) + hj(xk + dk) = 0, (7c)

(∇Gt(xk)Ht(xk) +∇Ht(xk)Gt(xk))
T(d̂k − dk)

+Gk(xk + dk)Hk(xk + dk) = 0. (7d)

Where qk,i = gi(xk+dk) or 0; and ϕk is a positive number
that can ensure further bending of dk, thus obtaining the
feasibility of xk + dk. The algorithm, global convergence,
and numerical experiments are detailed below.

In this study, the symbols given below are used.

X = {x | gi(x) ≤ 0, i ∈ I},
G = diag[g1(x), ...gp(x), 0, ...0] ∈ E(p+q+l)×(p+q+l),

A = [∇g1(x), ...∇gp(x),∇h1(x), ...∇hq(x), (∇G1(x)H1(x)

+∇H1(x)G1(x)), ...(∇Gl(x)Hl(x) +∇Hl(x)Gl(x))],

gL(x) = (0, ...0, h1(x), ...hq(x), G1(x)H1(x), ...Gl(x)

Hl(x))
T ∈ E(p+q+l),

e1 = (1, ...1) ∈ Ep, e2 = (0, ...0) ∈ Eq+l,
then,

e =

(
e1
e2

)
∈ Ep+q+l.

The following penalty function is used:

Wr(x) = f(x) + r

q∑
j=1

|hj(x)|+ r
l∑

t=1

|Gt(x)Ht(x)|. (8)

Where r is the penalty parameter. A convex function
W r(x, d) about d is defined as follows:

W r(x) =f(x) +∇f(x)T d+ r

q∑
j=1

|hj(x) +∇hj(x)
T d|

+ r
l∑

t=1

|Gt(x)Ht(x) + (∇Gt(x)Ht(x)

+∇Ht(x)Gt(x))
T d|. (9)

Herein, a set on x is defined as follows: J0(x) =
{i|gi(x) = 0, i ∈ I}. In this article, || · || represents the
Euclidean norm. In prior study [2], it was pointed out that
the stationary point (KKT point) of the MPSC problem is:

∇f(x∗) +
∑
J0

λi∇gi(x∗) +
∑
j

λj∇hj(x
∗)

+
∑
t

λt(∇Gt(x
∗)Ht(x

∗) +∇Ht(x
∗)Gt(x

∗)),

λi ≥ 0, λi(x
∗)gi(x

∗) = 0,

hj(x
∗) = 0, Gt(x

∗)Ht(x
∗) = 0.

Algorithm SSLE
Input Set parameters α ∈ (0, 0.5), β ∈ (0, 1), θ ∈

(0, 1), η > 2, τ ∈ (2, 3), γ ∈ (0, 1), µ > 0, select initial
value x0 ∈ X, B0 ∈ En×n is a symmetric positive definite
matrix, 0 < µ0,i ≤ µ, k = 0;
Step 1 Computation of a search direction

1.1 Let (d0k, λ
0
k) be the solution of the following linear

equation:

F (xk, Bk, µk)

[
d
λ

]
= −

[
∇f(xk)
gL(xk)

]
,

where,

F (x,B, µ) =

[
B A

MAT G

]
, (10)

M = diag(µ1, ...µp, 1, ...1) ∈ E(p+q+l)×(p+q+l), (11)

If d0k = 0, and λ0
k,i ≥ 0, then stop.

1.2 Let (d1k, λ
1
k) be the solution of the following linear

equation:

F (xk, Bk, µk)

[
d
λ

]
=

[
−∇f(xk)

−gL(xk) +Mkvk

]
,

where,

vk = (vk,1, ...vk,p+q+l)
T, (12a)

vk,m =

{
(λ0

k,i)
3, if λ0

k,i ≤ 0,

0, otherwise.
(12b)

1.3 Let (dk, λk) be the solution of the following linear
equation:

F (xk, Bk, µk)

[
d− d1k
λ− λ1

k

]
= −ρk||d1k||η

[
0

Mke

]
,

where,

ρk =
[(θ − 1)(W r(xk; d

1
k)−W r(xk; 0))]

[|(λk)T e| · ||d1k||η + 1]
. (13)

Note: λk is the solution to the equation presented below.

F (xk, Bk, µk)

[
d
λ

]
=

[
−∇f(xk)

0

]
.

1.4 Let (d̂k, λ̂k) be the solution of the following linear
equation:

F (xk, Bk, µk)

[
d− dk
λ− λk

]
= −

[
0

ϕke+ qk

]
,

where,

qk = (qk,1, ...qk,p+q+l), (14a)

qk,m =


µk,igi(xk + dk), m ∈ Ik,

0, m ∈ I/Ik,

hj(xk + dk), m ∈ L,

Gt(xk + dk)Ht(xk + dk) m ∈ T.

(14b)

Ik = {i ∈ I | −λ0
k,i ≤ gi(xk)}, (15)

ϕk = max
{
||dk||τ ,max

{
|µk,i/λk,i−1|γ · ||dk||2

}}
(16)

If Ik = ∅ or ||d̂k − dk|| > ||dk||, set d̂k = dk.
Step 2 Let tk satisfy

Wr(xk + tdk + t2(d̂k − dk))

≤Wr(x) + αt[W r(xk; dk)−W r(xk; 0)], (17)

gi(xk + tdk + t2(d̂k − dk)) ≤ 0, (18)

Step 3 Let Bk+1 be a new approximation of Bk,

µk+1,i = min
{
max

{
λ0
k,i, ||dk||, µ

}}
,

xk+1 = xk + tkdk + t2k(d̂k − dk),

k = k + 1, return to Step 1.
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III. GLOBAL CONVERGENCE OF THE NEW SSLE
ALGORITHM

The following assumptions are made to prove the global
convergence of algorithm:

Assumption 1: X = {x|gi(x) ≤ 0, i ∈ I} is not empty
and compact.

Assumption 2: The functions f(x), gi(x), hj(x), Gt(x)
and Ht(x), are continuously differentiable.

Assumption 3: For ∀x ∈ X , the vectors∇gi(x), i ∈J0(x),
∇hj(x), j ∈ L, ∇Gt(x), t ∈ T, and ∇Ht(x), t ∈ T , are
linearly independent.

Assumption 4: There exists a constant κ > 0 such that
for all k and for all y ∈ En, the inequality (1/κ)||y||2 ≤
yTBky ≤ κ||y||2 holds.

Assumption 5: The sequences {λ0
k} and {λ1

k} are both
bounded, and the penalty parameter r is sufficiently large
to satisfy the following relationships:

r > sup
k
{max

j∈L

{
|2λ0

k,j − λ1
k,j |

}
},

r > sup
k
{max

t∈T

{
|2λ0

k,t − λ1
k,t|

}
};

r > sup
k
{max

j∈L

{
|λ0

k,j |
}
},

r > sup
k
{max
k∈T

{
|λ0

k,t|
}
}.

Lemma 1: Given any x ∈ X, any positive definite matrix
B and any non-negative vector µ ∈ Em, such that µi > 0,
for ∀i ∈ J0(x), then F (x,B, µ) is nonsingular and

F (x,B, µ)−1 =

[
P Z

MZT −D−1

]
,

where,

D = MATB−1A−G,

Z = B−1AD−1,

P = B−1 −B−1AMZT.

Lemma 2: Let xk ∈ X for k ∈ N+, and assume that
for some subsets K, {xk}K → x∗. Let µk ∈ Em, µk >
0, {µk}K → µ∗ and µ∗

i > 0,∀i ∈ J0(x). If {Bk}K is
a positive definite matrix that satisfies Assumption 4, then
{||F (xk, Bk, µk)

−1||}K is bounded.
Lemma 3: Assume x ∈ X, and B be a positive definite

matrix. If µ > 0, then M−1D = ATB−1A − M−1G is
positively definite, and yTPy ≥ ||H1/2Py||2 holds for ∀y ∈
En.

From Lemma 1, if µk > 0 holds for each k, (LS1)-(LS4)
have unique solutions. Thus, it follows from (LS1) to (LS3)
that

d0k = −Pk∇f(xk)− Zkg
L(xk),

λ0
k = −MkZ

T
k ∇f(xk) +D−1

k gL(xk). (19)

d1k = d0k + ZkMkvk, λ
1
k = λ0

k −D−1
k Mkvk. (20)

dk = d1k − ρk||d1k||ηZkMke,

λk = λ1
k + ρk||d1k||ηD−1

k Mke. (21)

λk = −MkZ
T
k ∇f(xk). (22)

Lemma 4: If Algorithm stops at a point xk ∈ X such that
d0k = 0, λ0

k,i ≥ 0, i ∈ I , xk is the KKT point of the MPSC
problem.

Lemma 5: If xk ∈ X is not a KKT point and µk > 0,
then d1k satisfies

1) W r(xk; d
1
k)−W r(xk; 0) < 0,

2) ∇gi(xk)
Td1k ≤ 0, i ∈ J0(xk).

Proof.

1) From (9) and (LS2), we have

W r(xk; d
1
k)

= f(xk) +∇f(xk)
Td1k + r

q∑
j=1

|hj(xk)

+∇hj(xk)
Td1k|+ r

l∑
t=1

|Gt(xk)Ht(xk)

+∇(Gt(xk)Ht(xk) +∇Ht(xk)Gt(xk))
Td1k|.

W r(xk; 0)

= f(xk) + r

q∑
j=1

|hj(xk)|+ r
l∑

t=1

|Gt(xk)Ht(xk)|.

Therefore,

W r(xk; d
1
k)−W r(xk; 0)

= ∇f(xk)
Td1k + r

q∑
j=1

|∇hj(xk)
T
d1k|

+ r
l∑

t=1

|(∇Gt(xk)Ht(xk) +Gt(xk)∇Ht(xk))
T
d1k|

= ∇f(xk)
Td1k − r

q∑
j=1

|hj(xk)|

+ r
l∑

t=1

|Gt(xk)Ht(xk)|. (23)

Equations (19)-(21) show that

W r(xk; d
1
k)−W r(xk; 0)

= ∇f(xk)
Td0k +∇f(xk)

TZkMkvk − r

q∑
j=1

|hj(xk)|

− r
l∑

t=1

|Gt(xk)Ht(xk)|

= −(d0k)TBkd
0
k − (λ0

k)
TAT

k d
0
k + (−λ0

k +D−1
k gL(xk))

T

vk − r

q∑
j=1

|hj(xk)| − r
l∑

t=1

|Gt(xk)Ht(xk)|

= −(d0k)TBkd
0
k − (λ0

k)
T(−M−1

k gL(xk)

−M−1
k Gkλ

0
k) + (−λ0

k +D−1
k gL(xk))

Tvk

− r

q∑
j=1

|hj(xk)| − r
l∑

t=1

|Gt(xk)Ht(xk)|.

Since Mkg
L(xk) = gL(xk) and M−1

k Gk is negative
definite, then from (20) and Assumptions 4 and 5, it
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can be obtained that

W r(xk; d
1
k)−W r(xk; 0)

≤ −(1/κ)||d0k||2 + (λ0
k)

TgL(xk)

− (λ0
k)

Tvk + (gL(xk))
TMkD

−T
k vk

− r

q∑
j=1

|hj(xk)| − r
l∑

t=1

|Gt(xk)Ht(xk)|

= −(1/κ)||d0k||2 − (λ0
k)

Tvk

+ (gL(xk))
T(λ0

k +MkD
−T
k vk)

− r

q∑
j=1

|hj(xk)| − r
l∑

t=1

|Gt(xk)Ht(xk)|

= −(1/κ)||d0k||2 − (λ0
k)

Tvk + (gL(xk))
T(2λ0

k − λ1
k)

− r

q∑
j=1

|hj(xk)| − r
l∑

t=1

|Gt(xk)Ht(xk)|

≤ −(1/κ)||d0k||2 −
∑

i∈I,λ0
k,i≤0

(λ0
k,i)

4

− (r −max{|2λ0
k,j − λ1

k,j |})(
q∑

j=1

|hj(xk)|)

− (r −max{|2λ0
k,t − λ1

k,t|})(
l∑

t=1

|Gt(xk)Ht(xk)|)

< 0. (24)

2) From (LS2), when i ∈ J0(xk), then

∇gi(xk)
Td1k = −(λ1

k,i/µk,i)gi(xk) + vk,i ≤ 0. (25)

□
Lemma 6: If xk ∈ X is not the KKT point of the MPSC

problem, µk > 0, then dk satisfies

1) W r(xk; dk)−W r(xk; 0) ≤ θ(W r(xk; d
1
k)−

W r(xk; 0)) < 0.
2) ∇gi(xk)

Tdk < 0, i ∈ J0(xk).
3) dk ̸= 0, µk+1 > 0.

Proof.
1) From Equations (9), (21), and (23), since (∇Gt(xk)

Ht(xk) +Gt(xk)∇Ht(xk))
T(dk − d1k) = 0,

(∇hj(xk))
T(dk − d1k) = 0, then

W r(xk; dk)−W r(xk; 0)

= ∇f(xk)
Tdk − r

q∑
j=1

|hj(xk)| − r
l∑

t=1

|Gt(xk)Ht(xk)|

= ∇f(xk)
Td1k − r

q∑
j=1

|hj(xk)| − r
l∑

t=1

|Gt(xk)Ht(xk)|

− ρk||d1k||η∇f(xk)
TZkMke

= W r(xk; d
1
k)−W r(xk; 0)

− ρk||d1k||η∇f(xk)
TZkMke. (26)

According to the definitions of λk and ρk,

− ρk||d1k||η∇f(xk)
TZkMke

≤ (θ − 1)(W r(xk; d
1
k)−W r(xk; 0)).

Therefore,

W r(xk; dk)−W r(xk; 0)

≤W r(xk; d
1
k)−W r(xk; 0) + (θ − 1)W r(xk; d

1
k)

− (θ − 1)W r(xk; 0)

≤ θ(W r(xk; d
1
k)−W r(xk; 0)) < 0. (27)

2) From (LS3), it can be obtained that

MkA
T
k

(
dk − d1k

)
+Gk

(
λk − λ1

k

)
= −ρk||d1k||ηMke.

Therefore,

MkA
T
k dk = MkA

T
k d

1
k−Gk

(
λk − λ1

k

)
−ρk||d1k||ηMke,

that is,

AT
k dk = AT

k d
1
k −M−1

k Gk

(
λk − λ1

k

)
− ρk||d1k||ηe.

Therefore,

µk,i∇gi(xk)
T(dk−d1k) = −(λk,i−λ1

k,i)gi(xk)−ρk||d1k||ηµk,i.

∇gi(xk)
T(d−k d

1
k) =

−(λk,i − λ1
k,i)

µk,i
gi(xk)−ρk||d1k||η.

and from (25), it can be known that

∇gi(xk)
Tdk = ∇gi(xk)

Td1k − ρk||d1k||η. (28)

For ∀i ∈ J0(xk), ∇gi(xk)
Tdk < 0, i ∈ J0(xk) .

3) Herein, it can be derived from (2) and the definitions
of µk+1.

□
Lemma 7: Algorithm is well defined.

Proof. Given a constant k such that 0 < t < 1 let ϖk =
xk + tdk + t2(d̂k − dk), it follows that

Wr(ϖk)−Wr(xk)

= f(ϖk) + r

q∑
j=1

|hj(ϖk)|+ r
l∑

t=1

|Gt(ϖk)Ht(ϖk)|

− f(xk)− r

q∑
j=1

|hj(xk)| − r
l∑

t=1

|Gt(xk)Ht(xk)|

= f(ϖk)− f(xk) + r

q∑
j=1

(|hj(ϖk)| − |hj(xk)|)

+ r
l∑

t=1

(|Gt(ϖk)Ht(ϖk)| − |Gt(xk)Ht(xk)|)

= f(xk) +∇f(xk)
T(ϖk)− f(xk)

+ r

q∑
j=1

(|hj(xk) +∇hj(xk)
T
(ϖk)| − |hj(xk)|)

+ r
l∑

t=1

(|Gt(xk)Ht(xk) + (∇Gt(xk)Ht(xk)

+Gt(xk)∇Ht(xk))
T(ϖk)|)− |Gt(xk)Ht(xk)|)

= t∇f(xk)
Tdk + r

q∑
j=1

(|hj(xk) + t∇hj(xk)
T
dk|

− |hj(xk)|) + r
l∑

t=1

(|Gt(xk)Ht(xk)

+Gt(xk)∇Ht(xk))
Tdk| − |Gt(xk)Ht(xk)|) + o(t)

= (W r(xk; tdk)−W r(xk; 0)) + o(t). (29)
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Moreover, since W r(xk; d) is a convex function about d,
it follows that

W r(xk; tdk)−W r(xk; 0) ≤ t(W r(xk; dk)−W r(xk; 0)).
(30)

From (27), when t is small enough, then

Wr(xk + tdk + t2(d̂k − dk))−Wr(xk)

≤ αt(W r(xk; dk)−Wr(xk; 0)).

Moreover, by Lemma 6 (2), (18) always holds when t is
small enough, and the conclusion is thus proven.

□
Lemma 8: The sequences {xk} and {d0k} are bounded.

Proof. The boundedness of {xk} follows directly from
Assumption 1. Following (LS1), Assumptions 4 and 5, and
M−1

k Gk is negative definite:

(1/κ)||d0k||2 − ||∇f(xk)|| · ||d0k||

≤
(
d0k

)T
Bkd

0
k +∇f(xk)

Td0k

= −(λ0
k)

TAT
k d

0
k

= (λ0
k)

TM−1
k (Gkλ

0
k + gL(xk))

≤
q∑

j=1

λ0
k,jhj(xk)+

l∑
t=1

λ0
k,tGt(xk)Ht(xk)

≤ r

q∑
j=1

|hj(xk)|+
l∑

t=1

|Gt(xk)Ht(xk)|.

Thus, {d0k} is bounded.
□

Lemma 9: Let x∗ be the limit point of the sequence
{xk} generated by Algorithm, which is {xk}K → x∗. If
{dk}K → 0, then x∗ is the KKT point of the MPSC
problem, and {λ0

k}K → λ∗, where λ∗ denotes the unique
Lagrange multiplier vector related to x∗. Furthermore, if
λ∗
i ≤ µ̄, i ∈ I , there is {µk+1,i}K → λ∗

i , i ∈ I .
Proof. From (24) and (27):

0←W r(xk; dk)−W r(xk; 0)

≤ θ(W r(xk; d
1
k)−W r(xk; 0))

≤ θ(− 1

κ
||d0k||2 −

∑
λ0
k,i≤0

(λ0
k,i)

4

− (r −max{|2λ0
k,j − λ1

k,j |})(
∑
|hj(xk)|)

− (r −max{|2λ0
k,t − λ1

k,t|})(
∑
|Gt(xk)Ht(xk)|))

< 0

for k ∈ K, k →∞. □
Lemma 10: Let x∗ be the limit point of the sequence
{xk}, which is {xk}K → x∗. If inf {||dk−1||}K = 0, then
x∗ is the KKT point of the MPSC problem.

Lemma 11: If {xk}K → x∗, {µk}K → µ∗, and µ∗
i > 0

, hold for ∀i ∈ J0(x), then {d1k}K and {d̂k − dk}K are all
bounded.
Proof. Similar to Lemma 8, it can be concluded that {d1k}K
is bounded, and from Step 1.4 of Algorithm, it can be
inferred that {d̂k − dk}K is bounded.

□
Lemma 12: Let x∗ be the limit point of the sequence
{xk} generated by Algorithm, which is {xk}K → x∗, if
inf {||dk−1||}K > 0, then {d0k}K → 0.

Proof. Assuming there exists a d̄ > 0 such that

xk → x∗, k ∈ K, k →∞.

||d0k|| ≥ d̄,∀k ∈ K.

Then, from (24), it is ensured that there exists a number
d > 0, an infinite subset K ′ ⊂ K such that

||d1k|| ≥ d,∀k ∈ K ′.

For ∀d > 0, if there is a k that makes ||d1k|| < d, then there
exists a subset K ′′ ⊂ K that makes {d0k}K′′ → 0. Then, as
shown in (24), {d0k}K′′ → 0 contradicts the hypothesis.

From the boundedness of {||Bk||} and {µk}, it can be
assumed that

{Bk}K′ → B∗, {µk}K′ → µ∗.

Based on the definition of µk+1, the assumptions stated
in the Lemma, it follows that all the components of µ∗ are
strictly positive. Therefore, it follows from Lemma 2 and 11
that {dk}K′ is bounded.

Next, it must first be proven that step tk and k ∈ K ′

obtained from line search are bounded away from zero; that
is,

∃t̄ > 0, s.t. tk ≥ t̄, ∀k ∈ K ′. (31)

Since (dk, λk) and (d1k, λ
1
k) are solutions of (LS2) and

(LS3), respectively,
thus,

AT
k dk = AT

k d
1
k −M−1

k Gk

(
λk − λ1

k

)
− ρk||d1k||ηe

= vk −M−1
k gL(xk)−M−1

k Gkλk − ρk||d1k||ηe.
(32)

Therefore, for ∀i ∈ I , it follows that

∇gi(xk)
Tdk

= vk,i − µ−1
k,igi(xk)λk,i − ρk||d1k||η

= vk,i − µ−1
k,igi(xk)λk,i

− { (θ − 1)(W̄r(xk; d
1
k)− W̄r(xk; 0))

[|(λ̄k)
T
e| · ||d1k||η + 1]

}||d1k||η. (33)

Moreover, |(λ̄k)
Te| = |∇f(xk)ZkMke| and {d1k}K′ are

bounded.
Thus, it follows from (24) that

W r(xk; d
1
k)−W r(xk; 0) ≤ −(1/κ)d̄2 < 0. (34)

Therefore, according to the definition of vk, there exists δ1 >
0, with the following inequalities:

∇gi(xk)
Tdk ≤ −δ1, i ∈ J0(x

∗), (35)

gi(xk) ≤ −δ1, i ∈ I\J0(x∗), (36)

which hold for all sufficiently large k ∈ K ′.
Then, let ϖk = xk + tdk + t2(d̂k− dk), from the constant

equation

gi(ϖk) = gi(xk) +

∫ 1

0

t∇(gi(xk + tξdk + t2ξ2(d̂k − dk)))
T

(dk + 2tξ(d̂k − dk))dξ.
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It can be seen that, when k is large enough, k ∈ K ′, and
i ∈ J0(x

∗), ξk = xk + tξdk + t2ξ2(d̂k − dk)

gi(ϖk)− gi(xk)

= t(

∫ 1

0

[∇giξkT(dk + 2tξ(d̂k − dk))−∇gi(xk)
T
]dξ

+∇gi(xk)
Tdk)

≤ t( sup
0≤ξ≤1

{||∇gi(ξk))−∇gi(xk)|| · ||dk||}

+ 2t sup
0≤ξ≤1

{
||∇gi(ξk))|| · ||d̂k − dk||

}
− δ1).

Since gi(x) ∈ C1, the existence of tj > 0, which is
independent of k, makes k large enough for, t ∈ [0, tj ],
k ∈ K ′, and

gi(xk + tdk + t2(d̂k − dk)) ≤ 0, i ∈ J0(x
∗).

Simultaneously, gi(x) is continuous, and the existence of
tj > 0, independent of k, makes k large enough for,
t ∈ [0, tj ], k ∈ K ′, and

gi(xk + tdk + t2(d̂k − dk)) ≤ −δ1/2, i ∈ I\J0(x∗).

Furthermore, it follows from (29) that

Wr(xk + tdk + t2(d̂k − dk))−Wr(xk)

= (W r(xk; tdk)−W r(xk; 0)) + o(t2 · ||d̂k − dk||)
+ o(t2 · ||dk + t(d̂k − dk)||2).

Since |(λ̄k)
Te|, {d1k}K′ , and {dk}K′ are bounded, for any

point t ∈ [0, 1] , it follows from Lemma 11 that both ||dk +
t(d̂k−dk)|| and ||d̂k−dk|| are bounded. Moreover, based on
(27), (30) and (34) we can conclude that there is a t0 > 0,
such that for t ∈ [0, t0] , k ∈ K ′, and sufficiently large k, it
follows that

Wr(xk + tdk + t2(d̂k − dk))

≤Wr(xk) + αt
[
W r(xk; dk)−W r(xk; 0)

]
.

The proof of Equation (31) is thus completed.
Let t̄ = min {t0, ti} , for k ∈ K ′, when k is large enough,

there is

Wr(xk+1) ≤Wr(xk)− (1/κ) θαt̄d̄2. (37)

Moreover, since {Wr(xk)} is monotonically decreasing
sequence and Wr(x) is continuous, it follows that Wr(xk)→
Wr(x

∗), k →∞. Thus, the assumption does not hold, which
contradicts Equation (37); that is, Lemma 12 is proven.

□
Theorem 1: If the algorithm stops at the KKT point of the

MPSC problem or generates an infinite sequence {xk}, then
its limit point is the KKT point of the MPSC problem.
Proof. Assuming that {xk} represents an infinite sequence
and {xk}K → x∗. From Lemma 10, only the following situ-
ation needs to be considered, which is inf {||dk−1||}K > 0.

At this point, from Lemma 12, {d0k}K → 0,
{hj(xk)}K → 0, j ∈ L and {Gt(xk)Ht(xk)}K → 0, t ∈ T
from (LS1). According to Lemma 12, it can be assumed that
all components of {Bk}K → B∗, {µk}K → µ∗ and µ∗ are
strictly positive.

First, if {W r(xk; d
1
k)−W r(xk; 0)}K → 0, then, due to

{d0k}K → 0, {|hj(xk)|}K → 0, and {|Gt(xk)Ht(xk)|}K →
0, it is available from (LS1) that∑

i∈I,λ0
k,i≤0

(λ0
k,i)

4 → 0.

Therefore, from Lemma 8, there exists some infinite subset
K ′ ⊆ K such that for ∀i ∈ I ,

{λ0
k,i}K′ → λ∗

i ≥ 0. (38)

Then, from (LS1), it follows that

∇f(x∗) +
∑
J0

λi∇gi(x∗) +
∑
j

λj∇hj(x
∗)

+
∑
t

λt(∇Gt(x
∗)Ht(x

∗) +∇Ht(x
∗)Gt(x

∗)),

λi ≥ 0, λi(x
∗)gi(x

∗) = 0,

hj(x
∗) = 0, Gt(x

∗)Ht(x
∗) = 0.

Then, x∗ is the KKT point of the MPSC problem.
Now suppose there exists a positive number ξ1 > 0 such

that,

W r(xk; d
1
k)−W r(xk; 0) ≤ −ξ1 < 0, ||d1k|| ≥ ξ1 > 0,

hold for k ∈ K.
Through a method comparable to that found in Lemma

12, there exists a t such that for k ∈ K, when k is large
enough,

Wr(xk+1) ≤Wr(xk)− θαtξ1.

This contradicts monotonic decrease in Wr(xk) and
Wr(xk)→Wr(x

∗), and thus the theorem is proven.
□

IV. NUMERICAL RESULTS

This study uses Python as the main processing tool during
the numerical experiment, and the testing environment is In-
tel (R) Pentium (R) Silver N5000 CPU @ 1.10GHz 1.10GHz.
The experimental parameters used are:
α = 1/10, r = 10000, β = 1/2, θ = 0.99, τ = 2.99, η =
2.1, µ̄ = 1, γ = 1/10,

The following examples aid in analyzing the results of
numerical experiments on the algorithm of the system of
sequential equations via using three optimization problems
with switching constraints.

Example 1

min (x1 − 2)
2
+ (x2 − 1)

2
+ (x3 − 2)2,

s.t. x2
1+ x2

2 + x2
3 ≤ 3,
x3 ≤ 1,

(x1 − x2
2) (x2 − x2

1) = 0.

Among them, (1,1,1) is the global optimal solution.
Example 2

min x1 + x2
2,

s.t. −x1+ x2 ≤ 0,
x1x2 = 0.

Among them, (0,0) is the global optimal solution.
Example 3

min x1 + x2,
s.t. x2

1− x2 ≤ 0,
x1x2 = 0.
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TABLE I: Experimental Results of MPSC Problems

example x∗ NF x′ NF′ NI
1 (1,1,1) 2 ( 1.000 002 69 , 0.999 983 12 , 0.999 999 98 ) 1.999 994 66 12
2 (0,0) 0 (9.793× 10−7, 0) 9.793× 10−7 16
3 (0,0) 0 (9.255× 10−7, 0) 9.255× 10−7 15

Among them, (0,0) is the global optimal solution.
Numerical experiments were conducted on the above-

mentioned examples, and the corresponding results are listed
in Table 1. In Table 1, the first column represents each
example, x∗ represents the exact solution of the problem,
NF represents the function calculations, x′ represents the
approximate solution of the problem, NF′ indicates the
approximate value of the problem, and NI represents the
number of iterations.

Table 1 demonstrates that the approximate solution of
the problem could be successfully obtained through the
sequence equation system algorithm. It indicates that the
sequence systems of linear equations algorithm are feasible
for addressing MPSC problems.

V. CONCLUSIONS

In this study, the methods for solving optimization prob-
lems with switching constraints were studied. First, based on
the algorithm in a literature report, the SSLE algorithm for
the MPSC problem was designed. In each iteration, only four
equations with the same coefficient matrix were solved to
generate the main search direction. Then, by using reasonable
assumptions, the global convergence of the new algorithm
was proven. The limit point of the sequence generated by the
new algorithm was the KKT point of the problem. Finally,
the results of numerical experiments indicate that the newly
proposed algorithm effectively solves MPSC problems. This
study provides a new approach for solving MPSC problems.
However, whether the corresponding conclusions and con-
vergence effects can be obtained under weaker conditions
remains an area for further investigation.
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