
 

Abstract— The most common scenario of admission and 

discharge in a nurse station which includes patients nurses and 

HR (Human Resource Personnel) is considered for the model 

under study.  In this study, the Quasi-birth-and-death (QBD) 

process is applied to optimize nurse, nurse-assistant interactions 

in hospital settings.  By modeling the system as a finite state 

machine within a hidden Markov model, with states defined as 

{discharge, admission}, we capture the sequential pattern of 

events during a single shift. This model is further elucidated 

through numerical illustrations utilizing the Viterbi algorithm 

to determine optimal paths for patient navigation. To enhance 

system efficiency, cost optimization techniques such as genetic 

algorithms and ant colony optimization are employed. The 

workflow of a hospital with four stations is modeled as a 

queueing system and analyzed as a continuous-time Markov 

chain, revealing steady-state probabilities. Additionally, the 

study examines patient, nurse-assistant dynamics, emphasizing 

the diversities within the nursing unit. The interconnectedness 

of these methodologies demonstrates the comprehensive 

approach taken: from QBD process modeling to Markov model 

application and case study validation. Through simulation 

results and optimal path analysis, heuristic algorithm-based cost 

optimization, and detailed modeling of multi-station nurse 

workflows are explained. This thorough analysis culminates in 

a discussion of system constraints and potential solutions, 

ultimately contributing to improved healthcare operations 

management by enhancing efficiency, resource utilization, and 

patient care outcomes. 

Index Terms— Congestion analysis, Markov model, queueing 

network, hidden Markov model, patient navigation. 

 
NOMENCLATURE 

Symbol Quantity 

𝐩𝐢  Probability of starting in a particular state 

𝐀𝐢 State transition probability matrix which 
describes the probability of being in state i after 

state j 

B bed 

N nurse 

HR Human Resource 

𝐩𝐁𝐁 Probability of a state transition from bed to Bed 

𝐩𝐁𝐍 Probability of a state transition from bed to 

nurse 

𝐩𝐁𝐍 Probability of a state transition from bed to 

nurse 

𝐩𝐁𝐇𝐑 Probability of a state transition from bed to HR 

𝐩𝐍𝐁 Probability of a state transition from nurse to 

Bed 
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Symbol Quantity 

𝐩𝐍𝐍 Probability of a state transition from nurse to 
nurse 

𝐩𝐍𝐇𝐑 Probability of a state transition from nurse to 

HR 

𝐩𝐇𝐑𝐁 Probability of a state transition from HR to bed 

𝐩𝐇𝐑𝐍 Probability of a state transition from HR to 

nurse 

𝐩𝐇𝐑𝐇𝐑 Probability of a state transition from HR to HR 

𝛑𝐢 Steady state probability of state i 

𝛑𝐁 Steady state Probability of bed 

𝛑𝐍 Steady state Probability of nurse 

𝛑𝐇𝐑 Steady state Probability of HR 

𝐚𝐢𝐣 Transition Probability of state i to state j 

𝐚𝐁𝐁 Transition Probability of state bed to bed 

𝐚𝐁𝐍 Transition Probability of state bed to nurse 

𝐚𝐁𝐇𝐑 Transition Probability of state bed to HR 

𝐚𝐍𝐁 Transition Probability of state nurse to bed 

𝐚𝐍𝐍 Transition Probability of state nurse to nurse 

𝐚𝐍𝐇𝐑 Transition Probability of state nurse to HR 

𝐚𝐇𝐑𝐁 Transition Probability of state HR to bed 

IP  Inpatient 

𝐗𝐢 denotes the order of the requirement 

𝐗𝐧 nth call at the nurse station 

𝐚𝐣 jth Patients in the hospital 

A Admission 

D Discharge 

I. INTRODUCTION 

Efficient management of patient flows and optimal 

resource utilization are critical for enhancing healthcare 

delivery within hospital environments. This study addresses 

these imperatives through a thorough investigation utilizing 

advanced modeling techniques and optimization strategies 

tailored specifically for nurse stations. The foundational 

framework of the study lies in the Quasi-birth-and-death 

(QBD) process, which provides a structured approach for 

understanding the dynamic interactions among patients, 

nurses, and assistants within hospital units [17]. 

This theoretical underpinning forms the basis for 

integrating insights from a robust literature review, which 

highlights the versatility and applicability of Markov and 

hidden Markov models in healthcare operations. Previous 

research has demonstrated the utility of these models in 

diverse contexts: from assessing quality of care in geriatric 

wards [4] and classifying medical documents [5], to 

optimizing resource allocation in intensive care units [7]. 

[18], In [19] a congestion model of transmission network 

considering partition.  In the proposed model, the distribution 

companies would relate to HR, nurse and nursing assistant 

and the distribution of patient workload. Such models offer 

predictive capabilities essential for anticipating patient flow 

patterns and optimizing resource allocation in real-time 
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scenarios [2, 6].  The literature review underscores the 

breadth of applications for Markov models, particularly in 

healthcare operations management. Studies have utilized 

Markov processes to model patient movements within 

hospitals, providing insights into capacity planning, staff 

scheduling, and resource allocation [14, 13]. Hidden Markov 

models have been employed to analyze complex behaviors 

and conditions, such as patient readmission risks and 

treatment outcomes [4, 5]. Simulation studies and 

optimization techniques, including genetic algorithms and ant 

colony optimization, have been instrumental in optimizing 

operational efficiencies in healthcare settings [7, 25, 26]. 

Additionally, queueing theory has contributed to 

understanding patient flow dynamics and staffing 

requirements in hospital environments [15, 16]. In [21], a 

M/M/1 repairable queueing system with variable input rates 

and failure rates seem to reflect the hospital scenario with 

varying crowds of patients and their success rate in treatments 

offered. [22,23,24,27,28] discuss queueing systems with two 

types of customers and dynamic change of priority inspiring 

to incorporate Markov decision process to handle situations. 

The integration of these methodologies aims to address the 

multifaceted challenges faced by healthcare facilities in 

managing patient care and operational workflows. [8,9,10,11] 

talk about the uncertainty of the availability of bed. 

Motivated by the imperative to enhance operational 

efficiency and patient care outcomes, this study aims to 

achieve several key objectives: (1) Develop and validate 

models using Markov and hidden Markov processes to 

simulate patient movements through nurse stations; (2) 

Evaluate the efficacy of these models through rigorous 

numerical simulations, including the application of heuristic 

algorithms for resource optimization [7]; (3) Explore 

scalability by analyzing scenarios with multiple nurse stations 

to assess system performance under varying complexities 

[12]. In [20] two stage, selection of hyper-heuristic algorithm 

for solving routing problem is discussed and has been the 

source of inspiration for incorporating heuristic algorithm for 

validation. 

 The motivation behind this research lies in the critical 

need to improve healthcare operations management. By 

employing advanced modeling techniques and optimization 

strategies, healthcare facilities can effectively manage patient 

flows, reduce waiting times, optimize resource allocation, 

and ultimately improve patient outcomes. The predictive 

capabilities offered by Markov models and the optimization 

potential of heuristic algorithms present promising avenues 

for addressing these challenges systematically.   

The organization of the paper follows a structured 

approach to systematically address the research objectives: 

Section II provides a detailed model description of the Quasi-

birth-and-death (QBD) process, focusing on its application in 

healthcare operations and capturing system performance 

measures, specifically aiming to optimize nurse, nurse 

assistant interactions in hospital settings. Section III delves 

into the Markov models and hidden Markov models; Section 

IV explores their application in modeling patient navigation 

through nurse stations with case studies and validation 

discussions. Section V presents the numerical results 

obtained from simulations and validates model predictions. 

This section also introduces the Viterbi algorithm, utilized for 

obtaining optimal paths in modeling patient flows through 

nurse stations.  Section VI examines strategies for cost 

optimization using heuristic algorithms such as genetic 

algorithms, ant colony optimization and Markov decision 

process. In Section VII, the analysis extends to four stations 

(servers), obtaining steady-state probabilities and illustrating 

scenarios using state transition diagrams. This section 

calculates performance measures and graphically illustrates 

the system's complexity as the number of states increases. 

Section VIIA briefly discusses system constraints in hospital 

care and potential solutions using insights gained from the 

study. The conclusion synthesizes findings from all sections 

and discusses their implications for healthcare operations 

management, aiming to foster improved efficiency, resource 

utilization, and patient care outcomes. 
 

II. MODEL DESCRIPTION 

A. Modelling Patient – Nurse - Assistant Dynamics using QBD Process 

This section analyses the dynamics between patients, 

nurses and assistants in a hospital setting, using the Quasi-

Birth-Death (QBD) process. The goal is to understand steady-

state behaviour, optimize staffing levels and ensure timely 

patient care. The QBD process accurately models patient 

arrival and service processes, optimizes staffing levels, and 

provides insights into system performance, ultimately 

achieving the goal of minimizing nurses and assistants while 

meeting the requirement of the patients. 

Let X(t) denote the count of assistants at time t, and N(t) 

represent the count of nurses needed to attend the patients. 

The model is structured as a two-dimensional continuous-

time Markov chain with a state space {(0,1), (0,2), …(0,n)} 

⋃ {(i,n) : 1 ≤ n ≤ 𝑁, i=0,1,2…,n}. This state space accounts 

for the various combinations of free nurses and assistants, 

where i denotes the number of occupied nurses and n 

represents the number of assistants available. The state space 

now becomes S = {(0,1), (0,2), … (0, n), (1,1), (1,2), …, (1, 

n), (2,1), (2,2) … (2, n)…} 

The transitions signify the movement between states 

corresponding to the availability of a free nurse or a free 

assistant. Assuming the arrival rate of a free assistant is 

denoted by 𝜆𝑎, when an occupied assistant leaves the system, 

it is denoted by 𝜇𝑎, while the arrival rate of a free nurse is 

denoted by 𝜆𝑛, and the departure rate of a nurse is denoted by  

𝜇𝑛. The generator matrix is thus formulated as follows: 

𝑄 =

[
 
 
 
 
𝐵0 𝐴0

𝐴2 𝐴1

. .
𝐴0 .

. .

. .

. 𝐴2

. .
𝐴1 𝐴0

. .

. .
𝐴1 𝐴0

. . . . 𝐴2 𝐷0]
 
 
 
 

        (1) 

Where 𝐵0 = [
−(𝜆𝑛 + 𝜆𝑎) 𝜆𝑛

𝜇𝑛 −(𝜆𝑎 + 𝜇𝑛)
],  

𝐴0 = [
𝜆𝑎 0
0 𝜆𝑎

] , 𝐴2 =  [
𝜇𝑎 0
0 𝜇𝑎

] 

𝐴1 = [
−(𝜇𝑎 + 𝜆𝑎 + 𝜆𝑛) 𝜆𝑛

𝜇𝑛 −(𝜇𝑎 + 𝜆𝑎 + 𝜇𝑛)
]   
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𝐷0 = [
−(𝜇𝑎 + 𝜆𝑛) 𝜆𝑛

𝜇𝑛 −(𝜇𝑎 + 𝜇𝑛)
]    

Stability Analysis And Steady-State Probabilities 

The steady state probability is defined as, 

𝜋𝑖,𝑛 = lim
𝑡 →∞

𝑃(𝑋(𝑡) = 𝑎, 𝑁(𝑡) = 𝑖), (𝑖, 𝑛) 𝜖 Ω.     (2) 

The stability condition ensures that the system remains 

stable under various operating conditions. It consists of two 

key components: 𝜋Q=0 and 𝜋𝑒=1, where 𝑒 is the unit column 

vector. The vector Π is partitioned as Π = [Π0, Π1, … , Π𝑛] 

where Π𝑛 = [𝜋0,𝑛 , 𝜋1,𝑛, 𝜋2,𝑛] 𝑓𝑜𝑟 𝑛 ≥ 1. Using Theorem 

3.1.1 in Neuts the necessary and sufficient condition for the 

system's stability, is expressed as 𝜋𝐴2𝑒 > 𝜋𝐴0𝑒. 

The stationary probability vectors are calculated as 

follows: 

Π0𝐵0 + Π1𝐴 = 0 ⟹ Π0 = −Π1𝐴𝐵0
−1      (3) 

Π0𝐴0 + Π1𝐴1 + Π2𝐴2 = 0           (4) 

Π1𝐴0 + Π2𝐷0 = 0              (5) 

Π𝑛 = Π1𝑅
𝑛−1, 𝑛 ≥ 2. 

and the normalizing condition is  

∑ Π0R
ie = 1𝑁

𝑖=0                (6) 

This part explains the process of solving for the steady-

state probabilities of the system. It involves substituting the 

equation for 𝑅 to derive 𝜋0(𝐵0+𝑅𝐴2) = 0. From the last 

equation (6) we can find the explicit value of rate matrix R.  

Substituting these values and solving the system of linear 

equations (3) – (6) we get, the steady state probabilities 

Π0, Π1,…,Π𝑛.  

B. System performance measures 

Mean number of nursing assistants in the system 

𝐿𝑠𝑦𝑠 = ∑ 𝑛𝜋𝑛
𝑁
𝑛=1                (7)  

Mean number of non-priority nursing assistants in the 

system 

𝐿𝑛𝑜𝑛−𝑝𝑟𝑖𝑜𝑟  =  ∑ ∑ 𝑛𝜋𝑖,𝑛
𝑛
𝑖=1  𝑁

𝑛=1           (8) 

Mean number of priority nursing assistants in the system 

𝐿𝑝𝑟𝑖𝑜𝑟 =  𝐿𝑠𝑦𝑠 − 𝐿𝑛𝑜𝑛−𝑝𝑟𝑖𝑜𝑟            (9) 

The nursing facility comprises of nurses and nursing 

assistants.  However, few nursing assistants may not be 

trained to assist nurses in all situations.  These assistants 

whose presence does not cause any impact in improving the 

situation are termed as non-prior assistants. Others fall under 

prior nursing category.  The performance measures are 

discussed in this context by varying 𝜆𝑛. 

III.  OPTIMAL ROUTING TECHNIQUES 

A.  Markovian model 

A Markov model is a random process in which the current 

value depends only on the previous value and is independent 

of past values. A Markov process is characterized by the 

future being independent of the past, given the present. A 

Markov model, which is a probabilistic model, comprises a 

sequence of states. The sequence of patient flow in the system 

is represented by the matrix. 

   Bed Nurse HR 

Bed
Nurse
HR

[

pBB pBN pBHR

pNB pNN pNHR

− − pHRHR

] 

Transition probability matrix of Queueing Network Diagram 

For a three-state model, the initial probability matrix = 

[πB πN πHR] 

Here, for every single state Si the probability is πi, where 

πi =
Number of training sequence starting with i

Total number of training sequence
                  (10)                                                                

State transition matrix A=aij= [

aBB aBN aBHR

aNB aNN aNHR

aHRB aHRN aHRHR

] 

For every single state Si the transition probability to state Sj 

is aij, where 

aij =
Number of transition from i to j

Total number of transitions from i to all states
              (11)     

Steady state probability, πiA = πi             (12)  

B. Hidden Markov model 

Hidden Markov model is a type of Markov chain which 

uses Markov process that accommodate hidden and unknown 

parameters to identify hidden parameters. The states cannot 

be right away observed but can be linked by considering the 

visible states. 

The relationship between the patients and nurses may be 

modelled as a two dimensional random variable X(N, IP). Let 

there be i = 1 to n nurses in the station and j= 1 to m patients 

under admission.  Here the hidden states are nurse and bed.  

The inpatient (IP) are visible.  Hidden states S={nurse, bed}.  

Visible state V1=IP1, V2=IP2, V3 = IP3       

 

                                      

Emission matrix Initial matrix State transition 

matrix 

   V1        V2      V3 

N
B

{
pNIP1

pNIP2
pNIP3

pBIP1
pBIP2

pBIP3

} 

       N  B             

IP{pN pB} 

          N    B  

IP
N
B

{

pN pB

pNN pNB

pBN pBB

} 

The conditional probability function of N given IP=yj. 

p(N = ni|IP = yj) =
p(N=ni,IP=yj)

p(Y=yj)
                                 (13)                                                                                                                                                                                     

(i.e.). the probability of the nurse N= ni attending the IP=yj is 

the jth inpatient call for the ith nurse is given by equation (13).  

the event of discharge of a patient the nurse calls the jth 

patient after getting assigned to discharge duty. 

p(IP = yj|N = ni) =
p(IP=yj,N=ni)

p(N=ni)
                                (14)                                                                                                                                        

If k patients call for a service from nurse station assuming ‘l’ 

stationed nurses are available then we have 

p(IP = K|N = l) =
p(IP=K,N=l)

p(N=l)
                  (15)                                                                                            

If there is a nurse service requirement then 

p(N) = p(IP)p(N|IP) + p(A)p(N|A)                          (16)    

                                                                                                                                                                                          

p(N) = ∑ ∑ p(IP = yj)p(N = ni|IP = yj) +n
i=1

m
j=1

                             p(A = ai)p(N = ni|A = ai)                    (17) 
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An extension of the hidden Markov model (HMM) is 

represented by the hidden semi-Markov model (HSMM), 

which allows the underlying process to be a semi-Markov 

chain with variable durations or sojourn times for each state. 

Therefore, in addition to the notation defined for the HMM, 

the duration ‘d’ of a given state is explicitly defined for the 

HSMM. State duration is a random variable that assumes an 

integer value in the set D = {1, 2,..., d}. The significant 

difference between HMM and HSMM is that, in an HMM, 

one observation per state is assumed, while in an HSMM, 

each state can emit a sequence of observations. The number 

of observations produced while in state iii is determined by 

the length of time spent in state ‘i’; thus, the duration ‘d’ can 

be considered for the extension of this work. 
 

C. Routing probabilities 

If the number of patients in admission attended by a nurse 

is aj then consider the sequence {X1 = a1, X2 = a2, X3 =

a3, X4 = a4, … , Xn = an}. 

Proposing an HMM, we consider the hidden states as 

nurses and beds, while the visible states are determined by the 

patients. 

Case 1: In this section the utility of bed resource and its 

probability are given. 

 

 

 

 
 

 

 
 

 

Fig. 1.   Flow diagram of ‘a’ patient utilizing the bed 

The ith observed output is Xi = aj 

 

 
 

 

 
 

 

 

 

 

 
 

 

Fig. 2.   Flow diagram of jth patient utilizing the bed 

 p(aj) = [(pNpNB)pBaj
] + [ (pBpBB)pBaj

]      (18)                                                                    

Here aj – patients are under admission to the hospital 

B to B – denotes that the inpatient continues to be in 

admission today also. 

N to B – denotes the new patient getting admission to bed. 

Both cases contribute to the admission strength. 

Case 2: Here the admission and discharge process are 

illustrated using a flow diagram. The probability of having an 

admission or discharge is also obtained. 

HR is in-charge of putting admission and sending to nurse 

for bed assignment. After the completion of treatment nurse 

sends the patient to HR for discharge procedure.  

padp(aj) = [(pNpNNU)pNUaj
] + [(pHRpHRNU)pNUaj

] (19)  

Here aj – denotes jth patient is admission 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.  Flow diagram of ‘a’ patient from nurse and HR 

 

Total number of patients utilizing nursing care unit (NU) 

at any time instant: S= {N, HR}, V = {a1, a2, … , aj}.  

The ith observed output is Xi = aj 

 

 

 

 

 

Fig. 4.  Flow diagram of jth patient getting admission and discharge 

pdis(aj)
[(pNpNNU)pNUaj

] + [(pHRpHRNU)pNUaj
]        (20)                                                

Here aj – denotes jth patient is discharge 

IV. STUDY OF PATIENT NAVIGATION 

A. Navigation of two patients through two modules HR and nurse 

When two patients are handled by the two modules HR and 

nurse. By [17], the patient flow from HR to nurse has the state 

space {(1,1), (0,2), (2,0)}. The two patients may go to HR or 

nurse to seek admission. The probability of choosing the path 

that leads to HR is denoted as p and the probability of 

choosing the path which leads to nurse denoted as q. Two 

transitions in same path simultaneously is not possible only 

one transition is possible. 

Assume that the system is in the (1,1) state, which means 

that both HR and nurse are   occupied in two ways by both 

the patients. So, the probability is 2pq. 

 

 

 

 
 

 

 

 

Fig. 5.  State diagram of two patients through two modules 

 

               (1,1) (0,2) (2,0) 

(1,1)
(0,2)

(2,0)
[
2pq    q2     p2

 p   q     0
q  0     p

] 

Transition probability matrix of two patients 
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L_non-prior 

L_na 

L_sys 

 Similarly, the probability that a patient requesting 

admission in bed is directed by HR to nurse is q2.  The 

probability that a patient being discharged from the bed has 

to be reported to HR for discharge process by the nurse is p2.  

Two independent transition in same path simultaneously is 

not possible so the probability of (2,0)→(0,2) is 0.  

The steady state probability vector is given by 

π(1,1) = 2pqπ(1,1) + pπ(0,2) + qπ(2,0)         (21)                                                            

π(0,2) = q2π(1,1) + qπ(0,2)               (22)                                                                                             

π(2,0) = p2π(1,1) + pπ(2,0)                 (23)                                                                       

From (22), π(0,2) =
q2

1−q
π(1,1)                  (24)                                                                                                                              

From (23), π(2,0) =
p2

1−p
π(1,1)           (25) 

π(1,1) + π(0,2) + π(2,0) = 1                (26)                                                                                                                       

Substituting the equation (24) and (25) in equation (26), we 

get, π(1,1) =
pq

1−2pq
                        (27)                                                                                                       

The steady state probability vector π = [π(1,1) π(0,2) π(2,0)] = 

[π1  π2 π3 ]                                                (28) 

(i.e.) π1 = π(1,1), π2 = π(0,2), π3 = π(2,0) 

π(z)- Probability generating function of πi, where πi denotes 

the steady state probability of i patients in the system 

π(z) = ∑ πiz
i2

i=0                        (29)                                                                                                                             

Substitute (21), (22) and (23) in equation (29), we get   

π(z) = [2pqπ(1,1) + pπ(0,2) + qπ(2,0)]z
0 + [q2π(1,1) +

qπ(0,2)]z
1 + [p2π(1,1) + pπ(2,0)]z

2                (21)                                                                                                                                                                             

By solving equation (21), we get 

π(z) = π(1,1) [2pq +
pq2

1−q
+

p2q

1−p
+

q2z

1−q
+

p2z2

1−p
]           (30)                                                                           

Taking the derivative and substituting z=1 in equation (22), 

we get 

E[N] = π′(1) =
q3+2p3

1−2pq
                                               (31)                                                                                

B. Navigation of three patients through two modules HR and nurse 

 The patient flow from HR to nurse has the state space 

{(3,0), (2,1), (1,2), (0,3)}. Due to the restriction imposed 

those two transitions in the same path simultaneously is not 

possible. The probability of choosing the path that leads to 

HR denoted as p and which leads to nurse denoted as q.  

  

 

 

 

 

 
 

Fig. 6.  State Diagram of three patients through two modules 

           (3,0) (2,1) (1,2) (0,3) 

(3,0)

(2,1)
(1,2)

(0,3)

[

  p       q        −     −
p     −       q    −
−     p       −    q
−      −       p  q

] 

Transition Probability Matrix of three patients 

Following the same procedure as in two patient navigation 

and solving it ,                                                                                                                          

we get 

π(z) = π(3,0)[1 +
q

p
z +

q2

p2 z2 +
q3

p3 z3]                  (32)                                                                                  

Taking the derivative and substituting z=1 in equation (32), 

we get 

π′(1) =
qp2+2q2p+3q3

p2+q2                                         (33) 

In Section IV patient movement between two modules, HR 

and nurse is discussed. The system’s routing probabilities, 

steady state probability distribution are discussed and 

derived. 

V. NUMERICAL RESULTS 

TABLE I 

PERFORMANCE MEASURES AS 𝜆𝑛 VARIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  𝜆𝑛 versus mean number of nursing assistants 

As 𝜆𝑛 is increased, more dynamic state changes with higher 

nurse arrival rates are indicated. The stationary distributions 

(π_0 and π_1) are shifted with increasing 𝜆𝑛, influencing the 

equilibrium states of the system. The mean number of nursing 

assistants is decreased as 𝜆𝑛 is increased, indicating higher 

nurse activity and reduced availability of nursing assistants 

on average. The decreasing numbers in buffer (L_Sys) and 

non-prior (L_non_prior) indicate a shift in staffing dynamics 

towards meeting immediate demands efficiently. A 

comprehensive understanding of the system's behavior under 

different scenarios is offered by the data analysis, aiding in 

optimizing staffing strategies for efficient healthcare 

delivery. Valuable insights into how changes in nurse activity 

levels affect the availability and distribution of nursing 

assistants in different roles are provided by the model.  

𝜆𝑛 
Mean 

nursing 
assistants 

𝐿𝑠𝑦𝑠  𝐿𝑛𝑜𝑛−𝑝𝑟𝑖𝑜𝑟  

1.0 3.026636 1.806166 1.551310 

1.1 2.966979 1.779459 1.516780 

1.2 2.909075 1.753314 1.483363 

1.3 2.853094 1.727871 1.451130 

1.4 2.799088 1.703194 1.420093 

1.5 2.747088 1.679333 1.390254 

1.6 2.697077 1.656307 1.361590 

1.7 2.649070 1.634153 1.334098 

1.8 2.603001 1.612855 1.307732 

1.9 2.558814 1.592403 1.282454 
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W 

W_sys 

The average time a nursing assistant spends in the system, 

from arrival to departure, decreases as 𝜆𝑛 increases. This 

suggests that the system becomes more efficient at handling 

arrivals quickly. 

 

 

 

 

 

 

 

 

 

  

 

 

 

Fig. 8.  𝜆𝑛 versus mean response time 

The mean time in the system, which is the average time a 

nursing assistant waits in the system, also decreases with 

higher 𝜆𝑛, indicating better system management and faster 

processing times as nurse arrival rates rise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, the mean time of non-priority, or the average time 

non-priority nursing assistants spend in the buffer, decreases 

as 𝜆𝑛 increases.  This demonstrates that the system manages 

non-priority cases more efficiently under higher loads.  The 

CTMC model is valuable for understanding the dynamic 

behavior and long-term performance of a system with 

multiple states and transitions. 

The integration of CTMC into the Quasi-birth-and-death 

(QBD) process is beneficial for several reasons.  The real-

time dynamics of patient, nurse, and assistant interactions are 

captured by the CTMC model, which is crucial for analyzing 

system responses to changes and the time taken to reach 

steady states. The exact rates and transitions between 

different states are provided by the CTMC model, aiding in 

the formulation of the generator matrix Q. The steady-state 

probabilities derived from the CTMC model inform the long-

term behavior of the system, critical for resource optimization 

and efficiency improvement in the QBD framework. 

Additionally, the integration helps in understanding the 

evolution of different states over time, assisting in more 

effective resource allocation and planning.  The QBD process 

can be validated by comparing the predicted state 

probabilities with actual observations, and the system can be 

optimized by identifying bottlenecks and areas for 

improvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time 

(hours) 
State 0 State 1 State 2 State 3 State 4 State 5 State 6 State 7 

0 0.7000 0.3000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

8 0.3784 0.2833 0.1428 0.1069 0.0406 0.0304 0.0101 0.0075 

16 0.3344 0.2508 0.1516 0.1137 0.0614 0.0460 0.0241 0.0180 

24 0.3178 0.2383 0.1523 0.1142 0.0697 0.0523 0.0317 0.0237 

32 0.3106 0.2329 0.1524 0.1143 0.0733 0.0550 0.0352 0.0264 

40 0.3074 0.2305 0.1524 0.1143 0.0749 0.0562 0.0368 0.0276 

48 0.3059 0.2295 0.1524 0.1143 0.0756 0.0567 0.0375 0.0281 

56 0.3053 0.2290 0.1524 0.1143 0.0759 0.0569 0.0378 0.0284 

64 0.3050 0.2287 0.1524 0.1143 0.0761 0.0571 0.0380 0.0285 

72 0.3049 0.2287 0.1524 0.1143 0.0761 0.0571 0.0380 0.0285 

80 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

88 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

96 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

104 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

112 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

120 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

128 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

136 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

144 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

152 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

160 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

168 0.3048 0.2286 0.1524 0.1143 0.0762 0.0571 0.0381 0.0286 

TABLE II 

STEADY STATE PROBABILITIES OVER TIME 
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Given the parameters and the generator matrix Q, the states 

can be interpreted as follows: State 0 represents both nurse 

and assistant being free, State 1 indicates the nurse is 

occupied while the assistant is free, State 2 shows the nurse 

is free but the assistant is occupied, State 3 denotes both are 

occupied, State 4 involves the assistant arriving with the 

nurse remaining free, State 5 means the assistant arrives and 

the nurse becomes occupied, State 6 signifies the nurse leaves 

while the assistant remains, and State 7 reflects both leaving.   

Initially, at time 0 hours, the system is most likely in       

state 0(70%) or state 1 (30%).  Overtime, the probabilities of 

different states evolve.  For example, at 8 hours, state 0 has a 

probability of 37.84%, State 1 has 28.33%, State 2 has 

14.28% and so on.   

These probabilities gradually stabilize, with the system 

reaching equilibrium by 168 hours, showing probabilities of 

30.48% for State 0, 22.86% for State 1, 15.24% for State 2, 

among others. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 9.  State probabilities over time 

Figure 9 describes the steady-state probabilities indicate 

the long-term likelihood of each state, with State 0 being the 

most probable at 30.48%, suggesting both nurse and assistant 

are often free. This distribution helps in planning and 

resource allocation by highlighting which states are more 

likely, thus ensuring adequate staffing and resources. 

Overall, the system transitions smoothly and the state 

probabilities stabilize, reflecting predictable behaviour in the 

long run. The high initial probabilities of states with fewer 

transitions spread over time due to ongoing transitions, 

illustrating the model's dynamic nature. This robust CTMC 

framework aids in analysing nurse and assistant dynamics, 

enabling efficient resource management and optimization in 

healthcare settings, ultimately improving efficiency, resource 

utilization, and patient care outcomes.  

After the nurse and nurse-assistant relationship and the 

patient's concern are discussed, his wait for service is 

optimized. An optimal routing path illustrating the sequence 

of discharge and admission during a specified time interval is 

now provided. This would enable the most efficient rate of 

functioning.    

 

A. Viterbi Algorithm 

The Viterbi algorithm is employed to determine the most 

probable sequence of events. Operating a hospital is a 

challenging task as it requires adherence to multiple 

regulations set by medical councils, strict guidelines, and 

eligibility criteria. Moreover, satisfying patient needs is of 

utmost importance. To achieve this, hospitals must ensure 

they have an adequate and well-trained staff capable of 

meeting patient requirements. In this context, the two types 

of staff considered are HR (Human Resource) and nurse. The 

HR staff's responsibilities encompass collecting patient data, 

scheduling appointments, and managing billing for patient 

care. Nurses, on the other hand, are responsible for assisting 

patients to their beds, monitoring their health and needs, and 

providing assistance to doctors in emergency situations. The 

admission of an inpatient signifies their arrival, while the 

discharge or return of an inpatient to HR represents their 

departure. The hidden states in this scenario are HR and 

nurse. While the hospital needs to assess the quality of service 

provided by the nurses and HR staff, this information remains 

hidden. Hence, the admission and discharge events discussed 

earlier are considered as observation states.  The parameters 

required to calculate the optimal path for this analysis are 

depicted in the context of the situation.  
   

  TABLE III  

      HMM PARAMETERS 

 N HR A D 

S 0.60 0.40   

N 0.60 0.40 0.50 0.5 

HR 0.20 0.80 0.90 0.1 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  State diagram of HMM parameters 

 

The following figure pertains to a sequence of order six. The 

goal is to identify the optimal path for these sequences.  For 

example, consider the occurrence of event A in the first order 

of the sequence, representing admission.  

This is calculated by taking into account the hidden states of 

HR and nurse as the starting points, multiplying the 

probability of admission for both. This yields two probability 

values: one for HR and one for the nurse. In the next step, 

these initial HR and nurse values are replaced with the 

calculated probabilities, and the process is repeated. The HR 

probabilities include transitions from HR to HR and HR to 

nurse, while the nurse probabilities include transitions from 

nurse to nurse and nurse to HR. These probabilities are 

recalculated at each step. 
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After each calculation, the maximum value is determined 

by comparing the two HR possibilities and the two nurse 

probabilities, using this maximum value in the subsequent 

step. This procedure continues until the final stage of the 

sequence is reached. To find the optimal path for the 

sequence, the calculated maximum values of HR and nurse 

are compared.  By doing so, the most favorable path for the 

given sequence is determined. Similarly, a sequence of order 

ten is also evaluated for the optimal path, as shown in Fig. 11. 

For the sequence ADADDA, the optimal path is shown in 

Fig.10.  

B. Steady state probability of two patient 

In previous section IV A, navigation of two patients 

through two modules is discussed. From the calculation, we 

get the following values of equation (27)  

(i.e.)π(1,1) =
pq

1−2pq
  

Substituting this equation in equation (24) and (25), we get 

the values for 

π(0,2) =
q3

1−2pq
   and  π(2,0) =

p3

1−2pq
 

 
TABLE IV 

STEADY STATE PROBABILITY OF TWO PATIENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Steady state probability of three patient 

In Previous chapter Section IV.B, navigation of three 

patients through two modules is discussed. From the 

calculation, we get the following values 

 

(i.e.,)π(3,0) =
p3

p2+q2 , π(2,1) =
p2q

p2+q2 , π(1,2) =
pq2

p2+q2,

 π(0,3) =
q3

p2+q2   . 

    
TABLE V 

STEADY STATE PROBABILITY OF THREE PATIENT 

The steady state probabilities are obtained by varying the 

value of p and is depicted in the table IV and table V. 

Maximum probability occurs shows the most freequently 

occuring event. 

VI. COST OPTIMIZATION 

Now, the cost function is defined as follows: 

Cost = C_nurse * N + C_hr * H + C_waiting *  

Satisfaction    (34) 

where, C_nurse * N, represents the cost associated with 

nurses. C_hr * H, represents the cost associated with HR staff.  

C_waiting * Satisfaction, represents the cost associated with 

patient satisfaction.  

 

p q pi(1,1) pi(0,2) pi(2,0) 
max 

value 

0.3 0.7 0.3621 0.5914 0.0466 0.5914 

0.35 0.65 0.4174 0.5039 0.0787 0.5039 

0.4 0.6 0.4615 0.4154 0.1231 0.4615 

0.45 0.55 0.4901 0.3295 0.1804 0.4901 

0.5 0.5 0.5 0.25 0.25 0.5 

0.55 0.45 0.4901 0.1804 0.3295 0.4901 

0.6 0.4 0.4615 0.1231 0.4154 0.4615 

0.65 0.35 0.4174 0.0787 0.5039 0.5039 

0.7 0.3 0.36207 0.0466 0.5914 0.5914 

p q π(3,0) π(2,1) π(1,2) π(0,3) 
max 
value 

0.3 0.7 0.0466 0.1086 0.2535 0.5914 0.5914 

0.35 0.65 0.0787 0.1461 0.2713 0.5039 0.5039 

0.4 0.6 0.1231 0.1846 0.2769 0.4154 0.4154 

0.45 0.55 0.18045 0.2205 0.2695 0.3295 0.3295 

0.5 0.5 0.25 0.25 0.25 0.25 0.25 

0.55 0.45 0.3295 0.2696 0.2206 0.1805 0.3295 

0.6 0.4 0.4154 0.2769 0.1846 0.1231 0.4154 

0.65 0.35 0.5039 0.2713 0.1461 0.0787 0.5039 

0.7 0.3 0.5914 0.2535 0.1086 0.0466 0.5914 

Fig. 13.  Viterbi algorithm for sequence of length ten 
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Here  

• N: Number of nurses. 

• HR: Number of HR staff. 

• C_nurse: Cost per nurse per unit time. 

• C_hr: Cost per HR staff per unit time. 

• C_waiting: Cost associated with patient waiting 

time. 

• Satisfaction: A measure of patient satisfaction, 

typically ranging from 0 (dissatisfied) to 1 

(satisfied). 

(34) is a cost that accounts for the degree of patient 

satisfaction. The higher the satisfaction (closer to 1), the 

lower the associated cost. The balance between staffing levels 

and patient satisfaction is achieved by optimizing the cost 

function. 

A. Optimization by genetic algorithm 

The main staffing issue is that we need to establish the 

number of nurses (N) and HR personnel (HR) needed to 

minimize staffing expenses while maintaining patient 

satisfaction. 

Cost = C_nurse * N + C_hr * HR + C_waiting * 

Satisfaction is the cost formula. 

Genetic algorithm’s (GA) are population-based optimization 

algorithms with natural selection as their primary inspiration. 

A problem's specific parameters, such as population size, 

chromosome length (which represents solutions), and the 

number of generations (or iterations), are first defined by the 

GA code. 

 Additionally, it establishes constants like the costs 

associated with hiring nurses, HR personnel, and patients. 

The population is started with chromosomes drawn at 

random. A certain number of generations are spent in the 

primary GA loop. Based on the cost formula, the fitness 

function assesses the fitness of each chromosome. Better 

solutions tend to be more affordable. Crossover parents are 

chosen according on their physical health. Better solutions are 

more likely to be chosen. Crossover mixes the offspring of 

two sets of parents. Random modifications are introduced in 

offspring solutions via mutation. The old population is 

replaced by the new population (offspring).  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 14.  Average cost over generations for different population size 

 

The optimal staffing solution (N and HR) is displayed.  

 

To illustrate the optimization procedure, a MATLAB code 

has been developed to generate three plots: one depicting the 

optimal average cost, and the others showcasing the 

progression of population size over generations (Fig.12). 

B.  Optimization by ant colony optimization                      

A staffing issue akin to GA, with the same cost formula 

and the aim of reducing staffing expenses while considering 

patient happiness, is discussed.  

Ant colony optimization (ACO), inspired by ant foraging 

behavior, is particularly suitable for pathfinding or routing 

challenges. The parameters initially defined in the code 

include the number of ants, iterations, initial value and decay 

rate of pheromones, as well as influence parameters (alpha 

and beta). Additionally, it specifies cost factors for nurses, 

HR personnel, and patient satisfaction. The main ACO loop 

runs for a set number of iterations. Paths are created for each 

ant in each iteration, representing various nurse and HR 

combinations as staffing options. The cost formula assigns a 

score to each path, with lower scores indicating better staffing 

olutions. Pheromone values are updated based on the path  

scores, with higher updates for paths with lower costs. The 

most cost-effective route is regarded as the ideal one. The 

optimized staffing solution (N and HR) is displayed in Fig.13. 

A graph plot is created, in order to visualize the best score 

history over iterations. 

The task is to compare the performance of the ant colony 

optimization (ACO) and genetic algorithm (GA) for varying 

population sizes or generations (from 100 to 500).  Whereas 

GA employs 2 to 3 HR staff and 2 to 9 nurses, ACO uses 2 to 

5 HR staff and assigns 3 to 8 nurses. 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 15.  Surface plot of HR, nurse and Average cost 

Based on a patient satisfaction scale of 100, costs are 

determined by allocating $100 for each nurse, $200 for HR 

staff, and $50 for patient waiting time. The entire costs of GA 

are between $5600 and $6300, and the total expenses of ACO 

are between $5700 and $6800. According to the data, ACO 

typically has greater expenses than GA, which may indicate 

variations in resource or efficiency. To discover the most 

economical solution while keeping patient happiness, more 

optimization is advised. 
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TABLE VI 

COMPARISON OF ACO AND GA FOR COST FUNCTION 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 16.  GA and ACO HR and Nurse comparison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17.  Cost comparison of GA and ACO  

 

C. Optimization by Markov decision process                      

A Markov decision process (MDP) is a mathematical 

framework used for modeling decision-making in scenarios 

where outcomes are partially random and partially under the 

control of a decision-maker. It consists of states, actions, 

transition probabilities, and rewards. MDPs are used to 

determine the optimal policy, which is a strategy for selecting 

actions to maximize cumulative rewards or minimize costs 

over time.  In our scenario, MDP is applied to optimize 

staffing decisions for HR and nurses. The model is set up with 

states representing various combinations of the number of 

nurses and HR staff. Actions include increasing or decreasing 

the number of nurses and HR staff. Transition probabilities 

are used to describe the likelihood of moving from one state 

to another based on the chosen action, while rewards are 

derived from the cost function, which incorporates the costs 

associated with staffing and patient satisfaction. 

The decision-making process is guided by the value 

iteration algorithm, which uses the Bellman equation to 

iteratively update the value function and determine the  

optimal policy. The Bellman equation is expressed as: 

V(s) = max
𝑎

[∑𝑃(𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎) + 𝛾𝑉(𝑠′)]

𝑠′

  

where V(s) represents the value of state s, a represents 

actions, P(s,a,s′) is the transition probability, R(s,a) is the 

reward, 𝛾 is the discount factor. 

The value iteration algorithm is used to find the optimal 

policy. It iteratively updates the value function (V) until it 

converges to the optimal values. The policy for each state is 

then determined based on the maximum expected reward.  

Rewards (R) are the immediate costs incurred when 

performing a particular action in a given state. They are 

defined as the negative of the total cost, which includes cost 

of nurses, cost of HR staff, cost associated with patient 

waiting time (which is based on satisfaction). 

The output is summarized in the policy table, which details 

the optimal action for each state.  Table VII gives the values 

correspond to action indices where 0: Increase nurse, 1: 

Decrease nurse, 2: Increase HR, 3: Decrease HR 
 

TABLE VII 

POLICY TABLE 

Number of HR 

Staff 

1 2 3 

Number of 
nurses 

Policy Actions 

10 3 1 2 

20 2 0 2 

30 2 1 1 

 

The policy table suggests that, generally, increasing HR 

staff is the optimal action across various staffing scenarios. 

However, specific conditions indicate that decreasing the 

number of nurses can also be beneficial. For instance, with 20 

nurses and 2 HR staff, the optimal action shifts to decreasing 

the number of nurses. This table and the accompanying policy 

insights help guide effective staffing decisions to minimize 

overall costs and enhance patient satisfaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 18.  Cost optimization by MDP 

Popula

tion 
/Ants 

Genera

tion 
/trials 

ACO GA Conclusion 

100 100 2(HR)+3(N) 2(HR)+2(N) GA is better 

150 150 3(HR)+9(N) 3(HR)+4(N) GA is better 

200 200 4(HR)+4(N) 3(HR)+6(N) ACO is better 

300 300 5(HR)+3(N) 3(HR)+5(N) ACO is better 

500 500 5(HR)+8(N) 2(HR)+9(N) GA is better 
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Fig. 20.  State transition diagram of 4-station 3-customer queueing network 

VII. ILLUSTRATION 

In a queueing system, that resembles the workflow of a 

medical clinic or hospital, four stations are involved: HR 

(Human Resources), Nurse, Doctor, and Bed. Patients move 

through these stations, receiving services at each one, and 

then returning to the starting point, which is the HR station.  

Patients enter the system and follow a predefined pattern as 

they move through the stations.  Patients initially arrive at the 

HR desk to register and provide necessary information. At the 

HR Desk, they may complete paperwork, update personal 

information, or schedule appointments.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 19.  Network diagram of a 4-station 

After registering, patients proceed to the nurse station for 

an initial check-up and assessment. The nurse may record 

vital signs, perform basic examinations, and gather additional 

medical history. Following the nurse's assessment, patients 

move to the doctor consultation area for a more thorough 

examination and treatment plan. The doctor evaluates the 

patient's condition, provides medical advice, prescribes 

medications if necessary, and recommends further tests or 

procedures. In some cases, patients may require immediate 

care or observation. They are then directed to the Bed Area 

for treatment, monitoring, or rest. After completing the 

necessary steps, patients return to the HR desk to finalize 

paperwork, schedule follow-up appointments, or exit the 

system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For routine cases, patients follow the usual loop with service 

rates: 

• HR Desk: Mean service duration 
1

μ1
 for registration 

and paperwork. 

• Nurse station: Mean service duration 
1

μ2
 for quick 

assessment. 

• Doctor consultation: Mean service duration 
1

μ3
 for 

thorough examination and treatment plan. 

• Bed area: Mean service duration 
1

μ4
 for immediate 

care or observation. 

Each station has a mean service duration: μ1 for HR, μ2 for 

nurse, μ3 for doctor, and μ4 for Bed. The transition 

probabilities are represented by p12, p13, and p14.   

Figure 19 describes the network diagram of a 4-station 

queueing system. 

This system can be modelled as a continuous-time Markov 

chain (CTMC), where the state space represents the 

distribution of patients across the four stations. In this model, 

each state corresponds to a specific combination of patients 

in stations one, two, three, and four. Transitions between 

states occur probabilistically, driven by the service rates at 

each station and the rules governing patient movement.  For 

instance, when a patient completes their service at a station, 

they may move to another station or exit the system, 

triggering a state transition. 

These probabilistic transitions are depicted in Figure 20, 

which illustrates how patients flow through the stations over 

time. 

The number of possible states in this CTMC model can be 

determined using the combinatorial formula for combinations 

with repetition, given by (N+k-1)C(N-1), where N is the 

number of stations and k is the number of patients. This 

formula accounts for all possible ways to distribute k patients 

among N stations. In the specific case of our model, there are 

4 stations and 3 patients.  
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Plugging these values into the formula, we get (4+3-1)C(3), 

which simplifies to 6C3, yielding a total of 20 possible states. 

This means that there are 20 unique configurations of patients 

across the four stations that the system can occupy at any 

given time.  

These configurations capture all possible ways that the three 

patients can be distributed among the four stations, 

considering every potential combination of patient 

placements. 

Each state in the system can be represented as (k, l, m, n), 

where k indicates the number of patients in station one, l 

represents the number of patients in station two, m denotes 

the number of patients in station three, and n signifies the 

number of patients in station four, with the condition that k + 

l + m + n = 3. This means that the total number of patients 

across the four stations is always three. The 20 possible states 

that satisfy this condition are as follows: (1, 0, 2, 0), (3, 0, 0, 

0), (0, 2, 1, 0), (0, 1, 0, 2), (0, 3, 0, 0), (2, 1, 0, 0), (1, 0, 1, 1), 

(0, 2, 0, 1), (0, 1, 2, 0), (0, 0, 3, 0), (1, 1, 0, 1), (0, 0, 2, 1), (0, 

1, 0, 2), (1, 0, 0, 2), (0, 0, 1, 2), (0, 1, 1, 1), (0, 0, 0, 3), (1, 0, 

1, 1), (0, 0, 2, 1), and (0, 1, 0, 2). Each of these states 

represents a unique distribution of patients among the four 

stations. A potential sequence of these states, illustrating the 

transitions between different patient distributions, is depicted 

in Figure 20. 

Expected Customers =  ∑ i ∗ Steady State Probabilityi
20
i=1  

Utilizationi = ∑Steady State Probabilityj

20

j=i

∗ min (j − i, 3) 

Python code is generated to obtain the steady state 

probabilities of all the 20 states and is listed above in table 

VIII.  

 

TABLE VIII 

STEADY STATE PROBABILITIES 

π1 0.3213 π11 0.0018 

π2 0.1205 π12 0.0026 

π3 0.1208 π13 0.0038 

π4 0.1666 π14 0.0033 

π5 0.0143 π15 0.0053 

π6 0.0186 π16 0.009 

π7 0.0264 π17 0.0048 

π8 0.0241 π18 0.0081 

π9 0.0378 π19 0.0141 

π10 0.0691 π20 0.0277 

 

The code is structured to handle arbitrary transition 

probabilities and service rates. Therefore, we obtain the 

following performance measures, 

Expected number of patients in the system: 3.6024 

Expected time a patient spends in the system: 1.2008 time 

units  

Throughput of the system: 3.0000 patients per time unit 

Station Utilizations: 

Station 1 utilization: 1.3943 

Station 2 utilization: 1.0546 

Station 3 utilization: 0.8034 

Station 4 utilization: 0.6372 

Expected Time at Each Station: 

Expected time at Station 1: 0.5581 time units 

Expected time at Station 2: 0.4221 time units 

Expected time at Station 3: 0.3216 time units 

Expected time at Station 4: 0.2551 time units 

The relationship between service rates and the number of 

patients in the system is directly proportional. As the service 

rate increases, the system becomes capable of 

accommodating more patients, leading to higher expected 

numbers of patients in the system. In the future, it would be 

advantageous to employ well-known algorithms to establish 

bounds for these relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21.  Number of patients versus service rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22.  Server Utilization versus service rate 

A. System constraints in hospital care 

There are separate queues for each specific patient 

requirement. Let C be denoted as the number of nurses, K as 

the number of nursing assistants, and n as the different 

requirements of patients. The pair corresponds to having C 

nurses and C+K total availability of manpower for attending 
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patients. Each patient is attended by a single nurse. However, 

a bed is occupied by the patient even when not being served 

but under admission. Patient calls that arrive when all C+K 

staff are occupied are not allowed to enter the system. Nurses 

are trained to attend to specific tasks such as bedside help, 

emergency situations, surgery dressings, etc. Assuming they 

specialize in only one of the skill sets out of k skills, patient 

calls are attended to only if the requirement matches their 

skill set. With these restrictions, a routing policy is specified. 

It is assumed that the hospital nursing facility is well-

equipped so that the delay in attending to a patient call is 

negligible. The goal is to lexicographically minimize (C, K) 

subject to per class performance constraints.  

Our idea is to minimize C i.e., the set of trained well 

qualified nurses and then for a given C to minimize the 

nursing assistant K. The skills are treated as part of 

constraints.  Each nurse is assumed to be trained to attend two 

different situations only.  The two main constraints for our 

study is  

i) The speed to answer service level constraint i.e., to 

minimize the time delay in attending patient call.   

ii) Unavailability of resource i.e., turning down admission 

due to lack of free space.   

Qk be the steady state number of patients in the system, 

experience by an arrival of type k.  The need for attending 

patients without delay is the atmost requirement.  The speed 

to answer a particular patient call is set to have an upper 

hound of 𝛿𝑘time for type k target.  For otherwise the patient 

may be lost.  This may be represented as  

𝑃(𝑊𝑘 ≤ 𝜏|𝑄𝑘 < 𝐶 + 𝐾) ≥ 𝛿𝑘 , 1 ≤ 𝑘 ≤ 𝑛       (35) 

𝜏𝑘 is the type k target where k could be bedside help, 

emergency care, surgical dressing etc.  The probability of 

turning down a patient admission is  

𝑃(𝑄𝑘 = 𝐶 + 𝐾) ≤ 𝜖𝑘, 1 ≤ 𝑘 ≤ 𝑛         (36) 

Using these two equations we can provide a static priority 

routing scheme as follows.  The nursing staff (trained nurse + 

assistant) are considered to have 1 to n skills.  However, they 

have their priority based on their level of perfection in 

addressing issues.   

VIII. CONCLUSION 

In conclusion, this article has thoroughly explored various 

aspects of modelling patient flow and optimizing healthcare 

delivery systems. Section II begins with the Quasi-birth-death 

(QBD) process, which models patient, nurse-assistant 

dynamics and system performance measures, detailing how 

QBD captures staffing levels and patient care requirements. 

Section III introduces the Markov model, illustrating patient 

movement within nurse stations through network transition 

diagrams and steady-state probabilities, and extends this 

exploration to hidden Markov models with practical case 

studies. 

Section IV studies patient navigation, examining steady-

state probabilities under varying conditions and identifying 

frequent system events. Section V focuses on numerically 

visualizing performance measures as 𝜆𝑛 varies, introducing 

different sequence lengths optimized using the Viterbi 

algorithm in VA determines the most probable event 

sequences. Section VI discusses cost optimization using 

heuristic algorithms like genetic algorithms and ant colony 

optimization, highlighting their effectiveness in cost 

efficiency and minimizing costs under specific scenarios. The 

model is further validated using MDP in decision making 

regarding staff strength. 

Section VII analyses scenarios involving four stations, 

using state transition diagrams to derive and present system 

evaluation metrics. It addresses hospital care constraints, 

emphasizing nursing staff allocation based on patient needs 

and introducing a routing policy to minimize trained nurses 

and nursing assistants while ensuring efficient patient care. 

The utilization of network transition diagrams, hidden 

Markov models, and heuristic algorithms throughout these 

sections has provided a robust framework for understanding 

and improving system performance. 

Future research into heuristic algorithm applications and 

model validation will be crucial in enhancing the 

effectiveness and practicality of these methodologies. By 

continuing to refine and validate these models, we can strive 

towards more efficient and effective healthcare delivery 

systems that benefit both patients and healthcare providers. 

Additionally, future developments may consider continuous 

time modelling and discuss challenges arising from time 

constraints using HSMM and fluid queues. 
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