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Abstract—This paper primarily investigates the conservative
Swift-Hohenberg (SH) equation with quadratic-cubic nonlin-
earity, where mass conservation is achieved by introducing a
Lagrange multiplier. Based on Fourier spectral method and
SSP-RK2 method, we ingeniously utilize operator splitting
method to derive an accurate and efficient numerical scheme
for solving the SH equation. The theoretical analysis of this
numerical scheme, including mass conservation, convergence,
and energy stability, is discussed in detail. Finally, a variety of
numerical examples are presented to validate the precision and
effectiveness of the scheme.

Index Terms—Swift-Hohenberg equation, Quadratic-cubic
nonlinearity, Operator splitting, Fourier spectral method, SSP-
RK2 method.

I. Introduction

IN this paper, we pay attention to the following free energy
functional [4], [15]:

ε(ϕ) :=
∫
Ω

(
1
4
ϕ4 − g

3
ϕ3 +

1
2
ϕ
(
−ε + (1 + ∆)2

)
ϕ

)
dx. (1)

where ϕ is the density field, g and ε are non-negative
constants which have specific physical significance. We
consider that ϕ and ∆ϕ are periodic on ∂Ω. By taking
the variational derivative to Eq.(1), we obtain the following
chemical potential

∂ϕ

∂t
= ∆µ,

µ = −
(
ϕ3 − gϕ2 +

(
−ε + (1 + ∆)2ϕ

))
.

(2)

The PFC model (2) is mass-conservative, i.e.,

d
dt

∫
Ω

ϕdx =
∫
Ω

∂ϕ

∂t
dx =

∫
Ω

∆µdx =
∫
Ω

∇µ · nds = 0. (3)

We note that the PFC model (2) includes sixth-order spatial
derivative which is the real bottleneck in terms of compu-
tational time. To overcome the difficulty, Lee [9] recently
developed a conservative SH equation by introducing a
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space-time dependent Lagrange multiplier. Based on the L2-
gradient flow, a conservative SH equation is proposed to be ∂ϕ∂t = −

(
ϕ3 − gϕ2 +

(
−ε + (1 + ∆)2ϕ

))
+ (I(ϕ))rβ(t),

ϕ|t=0 = ϕ0,
(4)

where I(ϕ) = 1−ε
2 ϕ

2+
(

1
4ϕ

4 − 1
3 gϕ3

)
and β(t) =

∫
Ω

I′(ϕ)dx∫
Ω

(I(ϕ))rdx
. Note

that the above model can include both the overall information
and the local effect. It’s easy to see that the SH model (4)
is mass-conservative and the energy functional ε(ϕ) is non-
increasing in time.

The methods used to solve the SH equation are usually
operator splitting [10], convex splitting [9] and so on. Lee
[9] presented temporally first- and second-order energy stable
methods for the SH equation with quadratic-cubic nonlin-
earity based on the Fourier spectral method. Moreover, by
using operator splitting method, Lee [10] constructed mass-
conservative first- and second-order methods for solving a
new conservative SH equation.

In this study, we aim to solve the mass-conservative SH
model in virtue of Strang splitting method [11], [17], [18],
[21], [26]. Strang splitting is one of the operator splitting
methods, which mainly simplifies the problem by dividing
the original problem into two subproblems. Thus, Strang
splitting method has been used to solve many complicated
problems [6], [7], [13], [19], [22]. However, it’s very chal-
lenging to apply the Strang splitting method to nonlinear
partial differential equations on account of its multi-stage na-
ture. To our best knowledge, there is little research for Strang
splitting method for the SH model. Our main contribution,
which is different from that in [10], includes two aspects. On
the one hand, the nonlinear part is solved by second-order
strong stability preserving Runge-Kutta(SSP-RK2) method.
On the other hand, the theoretical analysis of convergence in
L2-norm is discussed.

The rest of the paper is organized as follows. In Section
2, we proposed an effective second-order numerical scheme
for the SH model. In Section 3, we analyze the mass con-
servation, convergence and energy stability of our proposed
scheme. A series of numerical examples are presented in
Section 4. Finally, conclusions are drawn in Section 5.

II. An effective and easy-to-implement second-order scheme

In this section, we present an efficient second-order Strang
splitting scheme for the SH equation (4).

To obtain an efficient scheme, we first rewrite the SH
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equation (4) into the following equivalent form

∂ϕ

∂t
= −

(
ϕ3 − gϕ2 + (−ε + (1 + ∆)2)ϕ

)
+ (I(ϕ))rβ(t)

= −
(
∆2ϕ + 2∆ϕ

)
− (1 − ε) ϕ −

(
ϕ3 − gϕ2

)
+ (I(ϕ))rβ(t)

= H(ϕ) + Q(ϕ),
(5)

where
H(ϕ) = −

(
∆2ϕ + 2∆ϕ

)
and

Q(ϕ) = −(1 − ε)ϕ −
(
ϕ3 − gϕ2

)
+ (I(ϕ))rβ(t).

A. Strang splitting method

The main idea of our method is to transform the original
problem into linear subproblem and nonlinear subproblem.
Let’s consider the following two subproblems:

SL(ϕ1) : ϕt = H(ϕ), ϕ|t=0 = ϕ1, (6)

SN (ϕ2) : ϕt = Q(ϕ), ϕ|t=0 = ϕ2. (7)

The standard form of the Strang splitting method [21], [27]
is given by

ϕn+1 = SL(
τ

2
)SN (τ)SL(

τ

2
)ϕn, (8)

where τ > 0 is the time step. Now we employ the standard
Strang splitting (8) to approximate the SH equation (4).

B. Numerical approximation of ϕt = H(ϕ)

First, in order to obtain a numerical approximation of the
SH equation (4), it’s necessary to mesh the geometry domain
Ωper. The set of the grid points is defined as

Ω
per
h =

{
(xi, y j) = (a + ih, a + jh), 0 ≤ i, j ≤ N − 1

}
,

where h = b−a
N is the space step, N is the number of grid

nodes. Let ϕk
mn denotes the numerical solution ϕ(xm, yn, tk),

where tk = kτ, τ = T/M is the time step and M is time
iteration number. The discrete Fourier transform and its
inverse transform are given by [12], [23]

FN : ϕ̂k
pq =

h2

cpcq(b − a)2

N−1∑
m=0

N−1∑
n=0

ϕk
mne−i

(
2pπ(xm−a)

b−a +
2qπ(yn−a)

b−a

)
,

(9)

F −1
N : ϕk

mn =

N/2∑
p=−N/2

N/2∑
q=−N/2

ϕ̂k
pqei

(
2pπ(xm−a)

b−a +
2qπ(yn−a)

b−a

)
, (10)

where p, q = 0,±1,±2, ... and cp and cq are respectively
defined as

cr =


2, |r| = N

2
,

1, |r| < N
2
.

r = p or q.

In accordance with [12], [23], the discrete Laplacian term is
recast to

∆ϕk
mn = −

N/2∑
p=−N/2

N/2∑
q=−N/2

(ξ2p + η
2
q)ϕ̂k

pqei
(

2pπ(xm−a)
b−a +

2qπ(yn−a)
b−a

)
.

Similarly, we can handle the higher order derivative ∆2ϕk
mn

as

∆2ϕk
mn = −

N/2∑
p=−N/2

N/2∑
q=−N/2

(ξ2p + η
2
q)2ϕ̂k

pqei
(

2pπ(xm−a)
b−a +

2qπ(yn−a)
b−a

)
.

Substituting (9) for (6), we can get an ordinary differential
equation for the (pq)-th Fourier coefficient

dϕ̂pq(t)
dt

= Kϕ̂pq(t), (11)

where
K = −

(
λ2

pq + 2λpq

)
and

λpq = −
[( pπ

b − a

)2
+

( qπ
b − a

)2
]
. (12)

Employing the variable separation approach, the solution to
the equation (11) is given by

ϕ̂k+1
pq = exp (τK) ϕ̂k

pq.

Thus, we obtain

ϕk+1 = F −1
N

{
exp(τK)FN[ϕk](p, q)

}
. (13)

C. Numerical approximation of ϕt = Q(ϕ)

Now we focus on the nonlinear subproblem (7). By
utilizing the second-order SSP-RK method [3], we obtain
that 

ϕ(1)
mn = ϕ

k
mn + τQ

(
ϕk

mn

)
,

ϕk+1
mn =

1
2
ϕk

mn +
1
2
ϕ(1)

mn +
1
2
τQ

(
ϕ(1)

mn

)
.

(14)

In summary, an effective and easy-to-implement second-
order scheme for problem (4) is given by

ϕ(1)
mn = F −1

N

{
exp(
τ

2
K)FN[ϕk

mn](p, q)
}
,

ϕ(2)
mn = ϕ

(1)
mn + τQ

(
ϕ(1)

mn

)
,

ϕ(3)
mn =

1
2
ϕ(1)

mn +
1
2
ϕ(2)

mn +
1
2
τQ

(
ϕ(2)

mn

)
,

ϕk+1
mn = F −1

N

{
exp(
τ

2
K)FN[ϕ(3)

mn](p, q)
}
.

(15)

In the following, Sh
L and Sh

N denote the numerical
approximations of SL and SN , respectively.

III. Theoretical analysis of the mass conservation and
convergence

In this section, we primarily conduct a detailed theoretical
analysis of the proposed numerical scheme. To this end, it is
necessary to establish some definitions and notations.

For any function

ϕ ∈ Hm
per(Ω) =

{
u|Ω̄ : u ∈ Hm(Ω) and u is Ω − periodic

}
,

we define the following Fourier interpolation

(INϕ)(x, y) =
N/2∑

p=−N/2

N/2∑
q=−N/2

ϕ̂pq(t)φpq(x, y). (16)

By leveraging the definition of Fourier interpolation (16),
we can efficiently derive the first derivative by multiplying
the appropriate Fourier coefficients by i( pπ

b−a +
qπ

b−a ). The
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process for higher order derivatives follows a similar pattern;
for instance, the second derivative and fourth derivative
can be obtained by multiplying the Fourier coefficients by
−

[
( pπ

b−a )2 + ( qπ
b−a )2

]
and

[
( pπ

b−a )4 + ( qπ
b−a )4

]
, respectively. As-

suming that ϕ and its derivatives are continuous, the conver-
gence of the interpolation is encapsulated by the following
result:(0 ≤ k ≤ m,m > d

2 )∥∥∥∂kϕ(x, y) − ∂kINϕ(x, y)
∥∥∥

L2 ≤ C ∥ϕ∥Hm hm−k. (17)

For any periodic function ϕ, we denote its collocation
approximation as (0 ≤ i, j ≤ N − 1)

ϕ(xi, y j) = (INϕ)i, j =

N/2∑
p=−N/2

N/2∑
q=−N/2

ϕ̂pq(t)φpq(xi, y j). (18)

Conversely, the discrete differentiation operator DN is defined
on the vector of grid values ϕ = ϕ(xi, y j), 0 ≤ i, j ≤ N − 1.
Essentially, the collocation coefficients ϕ̂pq are computed
using FFT, as indicated by (9), and one could multiply them
by the corresponding eigenvalues and perform the inverse
FFT. This same methodology is applied to compute the
higher order derivatives, such as D2

N and D4
N .

A. Discrete mass conservation

Recall the equation (3), the exact solution ϕe to the SH
equation (4) upholds the principle of mass conservation,
expressed as:∫

Ω

ϕe(·, t) dx =
∫
Ω

ϕe(·, 0) dx = C, with ∀t > 0.

This property is also preserved in the proposed operator
splitting scheme, at a discrete level, as illustrated by the
following theorem.

Theorem 3.1: The second-order scheme (15) preserves the
discrete mass conservation property.
Proof: Using (12), we have

λ00 = −
[( pπ

b − a

)2
+

( qπ
b − a

)2
]
= 0, when p, q = 0.

Using the discrete Fourier transform (9), we bound the first
expression of the scheme (15) as

C̃
N−1∑
m=0

N−1∑
n=0

ϕ(1)
mn = ϕ̂

(1)
00 = ϕ̂

k
00 = C̃

N−1∑
m=0

N−1∑
n=0

ϕk
mn.

where C̃ = h2

cpcq(b−a)2 . Similarly, it’s clear to see that

C̃
N−1∑
m=0

N−1∑
n=0

ϕ(2)
mn = ϕ̂

(2)
00 = ϕ̂

(1)
00 = C̃

N−1∑
m=0

N−1∑
n=0

ϕ(1)
mn,

C̃
N−1∑
m=0

N−1∑
n=0

ϕ(3)
mn = ϕ̂

(3)
00 = ϕ̂

(2)
00 = C̃

N−1∑
m=0

N−1∑
n=0

ϕ(2)
mn.

Finally, we obtain that

C̃
N−1∑
m=0

N−1∑
n=0

ϕk+1
mn = ϕ̂

k+1
00 = ϕ̂

(3)
00 = ϕ̂

k
00 = C̃

N−1∑
m=0

N−1∑
n=0

ϕk
mn.

Thus, our proposed scheme inherits the mass conservation.

B. Convergence analysis

In order to establish the optimal error estimate, the con-
cept from [24] is adopted. First, we consider the following
numerical scheme equivalent to the scheme (15):
Stage1: linear part, with 1

2∆t advance

∂ϕ1

∂t
= Aϕ1, over (tk, tk+ 1

2 ), (19)

where
A = −

(
D4

N + 2D2
N

)
. (20)

Integrating both sides of equation (19) with respect to time
t, the numerical solution is explicitly expressed as

ϕk,(1) = e
1
2∆tAϕk, (21)

ϕk,(1) = ϕ1(tk+ 1
2 ), ϕk = ϕ1(tk). (22)

Stage2: nonlinear part, with ∆t advance

∂ϕ2

∂t
= QN(ϕ2), over (tk, tk+1), (23)

in which

QN(ϕ) = −(1 − ε)ϕ −
(
ϕ3 − gϕ2

)
+ (I(ϕ))r

h2

b−a

N−1∑
i, j=0

(I′(ϕ))i j

h2

b−a

N−1∑
i, j=0

(I(ϕ))r
i j

.

Using the second-order SSP-RK method to the aforemen-
tioned equation (23) yields

ϕ∗ = ϕk,(1) + ∆tQN

(
ϕk,(1)

)
,

ϕk∗ =
1
2
ϕk,(1) +

1
2
ϕ∗ +

1
2
∆tQN (ϕ∗) ,

(24)

ϕk∗ = ϕ2(tk+1), ϕk,(1) = ϕ2(tk). (25)

Stage3: linear part, with 1
2∆t advance

∂ϕ3

∂t
= Aϕ3, over (tk, tk+ 1

2 ), (26)

Mirroring the approach taken in the first stage, we are poised
to deduce the numerical solution

ϕk+1 = e
1
2∆tAϕk∗ , (27)

ϕk+1 = ϕ3(tk+ 1
2 ), ϕk∗ = ϕ3(tk). (28)

Let ϕe and ϕ∆t,h be the solutions to the equations (5)
and (19)-(28), respectively, then the convergence result con-
cerning the numerical scheme is presented in the following
theorem. The proof of theorem is along the lines of [24] with
appropriate modifications.

Theorem 3.2: For any final time T > 0, assume the exact
solution ϕe to the SH equation (5) is smooth enough. As
∆t, h→ 0, the following convergence result is valid:∥∥∥ϕ∆t,h − ϕe

∥∥∥
L2(Ω) ≤ C(∆t2 + hm), (29)

provided that the time step ∆t and the space grid size h
are bounded by given constants only depending on the exact
solution.
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C. Energy stability

In this section, we present the energy stability of the
numerical scheme. To streamline our analysis, let us define
the spectral approximation of the L2 (denoted as ℓ2) inner
product (·, ·)N and the norm ∥ · ∥N as follows:

( f , g)N =
h2

b − a

N−1∑
i, j=0

fi jgi j, ∥ f ∥N =
√

( f , f )N . (30)

Upon a simple verification, it can be concluded that

( f , A · g)N = (A · f , g)N .

The space-discrete scheme for (5) is designed to identify a
function ϕ̃ : [0,T ]→ Ωper

h satisfying
dϕ̃
dt
= Aϕ̃ + QN(ϕ̃), t ∈ (0,T ],

ϕ̃(0) = ϕ0, t = 0,

where ϕ0 ∈ Ωper
h is determined by the initial data. We

consider the following numerical scheme:
For any k ≥ 1, our objective is to find ϕk+1

h (t) : [tk, tk+1]→
Ω

per
h such that for any t ∈ [tk, tk+1],

dϕk+1
h (t)
dt

= Aϕk+1
h (t) + QN(ϕk+1

h (t)). (31)

Let ϕk
h be denoted as ϕh(tk) for k ≥ 0. Subsequently, we

introduce the modified energy

ε̃N(ϕ) =
(
ϕ

2
,−Aϕ

)
N
−

(∫
QN(ϕ)dϕ, 1

)
N
. (32)

The principal outcome of this section is delineated below.
The proof of theorem adheres to the methodology of [24],
with suitable adjustments to fit our context.

Theorem 3.3: The numerical system (31) is energy-stable
in the sense that for any 1 ≤ k ≤ M − 1,ε̃N(ϕk+1

h ) ≤ ε̃N(ϕk
h).

IV. Numerical experiments

A. Temporal accuracy test

Firstly, we investigate the convergence rate of our pro-
posed method with an initial condition [8], [16]

ϕ(x, 0) = 0.07 − 0.02 cos
(

2π(x − 12)
32

)
+ 0.02cos2

(
π(x + 10)

32

)
−0.01sin2

(
4πx
32

)
.

We consider the SH model (4) posed on the domain Ω =
[0, 32]. In this simulation, we fix the grid size to h = 1

3 and
vary the time step size τ = 2−4, 2−5, ..., 2−8. The L2-norm
errors, temporal convergence rates and CPU times with g = 0
and 1 for ε = 0.25 are shown in Table I. We observe that the
method is second-order accuracy in time.

B. Phase transition behaviors in 2D

In this section, we simulate the phase transition for the
SH model (4) on domain Ω = [0, 32] × [0, 32]. The initial
condition is given by ϕ(x, y, 0) = 0.07+(2rand(x, y) − 1),
where rand(x,y) is a random number between 0 and 1.
To perform the phase transition, we take τ = 2−3 and
hx = hy =

1
3 . The other parameters are set to be ε = 0.07 and

r = 0. (a)-(c) in Figure 1 display the snapshots at different

Table I. L2-errors, convergence rates and CPU times for SH model with
r = 0 at T = 1.

g=0 g=1

τ ErrL2 Rate CPU ErrL2 Rate CPU

2−4 9.79E-06 - 4.25E-03 5.89E-06 - 4.13E-03

2−5 2.40E-06 2.03 6.27E-03 1.45E-06 2.02 5.85E-03

2−6 5.96E-07 2.01 1.43E-02 3.60E-07 2.01 1.23E-02

2−7 1.48E-07 2.01 2.09E-02 8.97E-08 2.01 1.94E-02

2−8 3.68E-08 2.01 4.31E-02 2.23E-08 2.01 3.90E-02

moments. We can observe that the phase transition reaches
a steady state until T = 200. It can be observed that the
energy is non-increasing in time and the mass is conservative
in Figure 2 and Figure 3.

V. Conclusion
In this work, we mainly use Fourier spectral method

and SSP-RK2 method to provide a second-order operator
splitting numerical scheme for the conservative SH equation.
We conduct the theoretical analysis of the proposed scheme
and validate its accuracy and efficiency by numerical exper-
iments.
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