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Abstract—This paper addresses the mixed H∞/L2−L∞ con-
trol problem for two-dimensional (2-D) Markov jump systems
using a multiaccess stochastic communication protocol (MSCP).
The actuators are randomly selected, allowing only some of the
actuator nodes to access the communication network channels.
Two independent Markov chains govern the switching of plant
modes and actuator access states. A state-feedback controller is
formulated based on the MSCP and a hidden Markov model.
We derive a sufficient condition such that the closed-loop 2-
D system is stochastically stable and satisfies H∞/L2 − L∞
mixed performance employing Lyapunov’s direct method and
Schur’s complement. Then, we develop a numerically efficient
strategy to determine the desired controller gains of the state-
feedback controller. Finally, we demonstrate the effectiveness
of the proposed controller through a numerical example based
on the Darboux equation.

Index Terms—Two-dimensional system, Markov jump sys-
tem, mixed control, stochastic communication protocol.

I. INTRODUCTION

OVER the years, two-dimensional (2-D) systems have s-
timulated research interests in different application sce-

narios, such as gas filtration process [1], motion systems [2],
and image data analysis [3]. Several extensively used mathe-
matical models have been developed to describe 2-D systems,
with the Roesser [4] and the Fornasini-Marchesini [5] mod-
els being the most familiar. Compared to one-dimensional
systems, 2-D systems significantly increase the complexity
of analysis and calculation due to the coordinated evolution
of their states in multiple directions. In some 2-D systems,
internal parameters or structures may change suddenly due to
various widespread uncertainties. This phenomenon can be
effectively characterized using Markov stochastic processes.
Therefore, 2-D Markov jump systems (MJSs), as a typical
hybrid system, have never stopped being discussed. Wu et
al. [6] considered the problem of asynchronous H∞ control
for 2-D MJSs. Ghous et al. [7] studied the stochastic stability
and control problem of 2-D continuous delayed MJSs. Zhu
et al. [8] focused on 2-D discrete-time hidden MJSs subject
to partly known mode-observation conditional probabilities
and presented state feedback controller design schemes. In
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Refs. [6–8], H∞ performance performance is considered as
the primary control objective. However, in actual industry,
there is also a requirement to restrict the peak value of the
system output [9], necessitating the consideration of mixed
H∞/L2 − L∞ control.

In real-world networks, bandwidth and data rates are often
limited [10, 11], so only a portion of the signals can be trans-
mitted simultaneously between system components (e.g.,
sensors, controllers, and actuators) to avoid data conflicts.
Furthermore, for different transmission mediums, the signals
may interfere with each other during the propagation process,
thus limiting the channel’s ability to accommodate and trans-
mit multiple node data simultaneously. Therefore, effective
access scheduling of nodes is critical to save communication
resources and avoid data congestion. To solve this problem,
an effective approach is to determine which actuator nodes
should access the communication network through commu-
nication protocols. For instance, in [12], the round-robin
protocol is used to schedule the data transmission order of
the controller-actuator (C/A) channel to select transmission
nodes periodically. In [13, 14], the system schedules trans-
missions based on the deviation between the current and the
previous state, and this method is known as the weighted try-
once-discard protocol. In addition, in [15, 16], the stochastic
communication protocol selects transmission nodes based on
a random process. A communication protocol based on a
discrete-time Markov chain is presented to schedule nodes
in [17], which can determine which component node accesses
the communication network [18, 19]. The common feature
of the above protocols is that at any instant, only one node
is allowed to access the communication channel to send or
receive information. Although conventional protocols restrict
single-node access, under certain specific network conditions,
multiple nodes may also communicate simultaneously [20].

Inspired by the above discussion, this paper considers the
mixed H∞/L2 − L∞ control problem for 2-D MJS with
a multiaccess stochastic communication protocol (MSCP),
where multiple actuator nodes are selected to transmit signals
in the communication channel. Mapping the plant mode
switching and the actuator access state to a new Markov
chain can effectively facilitate control design and analysis.
The problem to be solved is to design a state feedback
controller such that the resulting closed-loop system is s-
tochastically stable (SS) and satisfies H∞/L2 − L∞ mixed
performance. A sufficient condition for the stochastic stabil-
ity and H∞/L2−L∞ mixed performance of the closed-loop
2-D MJS is established using Lyapunov’s direct method and
Schur’s complement. Then, the state feedback controller is
designed by introducing the relaxation matrix. Finally, the
effectiveness of the proposed analysis and synthesis results
is verified by taking the Darboux equation as an example.
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Fig. 1. System structure with communication network

II. PRELIMINARIES

A. Model description

Consider a class of 2-D MJS described by{
x1(s, t) =A(ρs,t)x(s, t) +B(ρs,t)u(s, t) +D(ρs,t)ω(s, t),

y(s, t) =C(ρs,t)x(s, t),

(1)

where

x1(s, t) =

[
xh(s+ 1, t)
xv(s, t+ 1)

]
, x(s, t) =

[
xh(s, t)
xv(s, t)

]
,

xh(s, t) ∈ Rnhx and xv(s, t) ∈ Rnvx represent the hor-
izontal and the vertical states respectively; u(s, t) ∈ Rm
represents the control input; ω(s, t) ∈ Rnω represents the ex-
ternal disturbance, which belongs to l2([0,∞), [0,∞)); and
y(s, t) ∈ Rny means the controlled output. A(ρs,t), B(ρs,t),
C(ρs,t), and D(ρs,t) are known constant matrices, which
are related to the Markov jump process ρs,t. The variable
ρs,t is generated from the set S1 = {1, 2, . . . , N1} with the
transition probability matrix (TPM) Λ = [λpq]N1×N1

, which
can be formulated as follows:

λpq = Pr{ρs+1,t = q|ρs,t = p} = Pr{ρs,t+1 = q|ρs,t = p}
(2)

with 
λpq ∈ [0, 1],
N1∑
q=1

λpq = 1.
(3)

The boundary condition (X0, M0) of 2-D MJS (1) is given
as: {

X0 = {xh(0, t), xv(s, 0)|s, t ∈ N+},
M0 = {ρ0,t, ρs,0|s, t ∈ N+}.

(4)

The zero boundary condition is assumed as X0 = {0}.
Furthermore, the following assumption is imposed on the
boundary condition.

Assumption 1. [21] Assume the boundary condition X0

satisfies

lim
T→∞

E

{
T∑
t=0

(‖xh(0, t)‖2 + ‖xv(t, 0)‖2)

}
<∞.

B. Multiaccess stochastic communication protocol

As depicted in Fig. 1, 2-D MJS (1) has m actuators
connected to the communication network. Due to network
bandwidth and data rate limitations, only a portion of the
signal can be transmitted between the actuator and controller.

In a multi-node control system, the C/A channel can ac-
commodate n(1 ≤ n ≤ m) actuator nodes to receive control
signals at the same time. The access state of each actuator
node is defined by the variable φι(s, t) : Z+ → {0, 1},
which indicates whether the ι-th actuator can access the
communication channel and receive the control signal at the
time (s, t). The control signal is represented by

u(s, t) = Φσs,tv(s, t)

with Φσs,t
= diag{φ1(s, t), φ2(s, t), . . . , φm(s, t)}. σs,t ∈

S2 , {1, 2, . . . , N2} with N2 = Cnm follows the conditional
probability given by

γı = Pr{σs+1,t = |σs,t = ı} = Pr{σs,t+1 = |σs,t = ı}
(5)

with γı ∈ [0, 1] and
∑N2

=1 γı = 1. Define the TPM as
Γ = [γı]N2×N2

.

Remark 1. When only one actuator node is allowed to
access the network at instant (s, t), i.e., n = 1, the
proposed MSCP is simplified to the traditional stochastic
communication protocol case, which has been extensively
studied in [22–24]. Therefore, the stochastic communication
protocol can be regarded as a particular instance of the
MSCP. The MSCP, by better coordinating the scheduling and
communication of multiple actuator nodes, reduces signal
conflicts and resource waste, thereby optimizing the system’s
control performance, which will be shown in the subsequent
simulation.

The Markov chain in (2) is used to control the plant mode
switch, and the Markov chain in (5) is used to manage access
to actuator nodes. To simplify control design and stability
analysis, we will introduce a new stochastic variable θs,t by
using the mapping technique as in [25] to define a one-to-one
mapping with Markov chains ρs,t and σs,t

θs,t = R(ρs,t, σs,t) = ρs,t +N1(σs,t − 1) (6)

with θs,t ∈ S , {1, . . . , N} and N = N1 ×N2.
Correspondingly, for a given θs,t ∈ S, the unique pair

(ρs,t, σs,t) can be determined as follows:
ρs,t , η1(θs,t) = mod(θs,t − 1, N1) + 1,

σs,t , η2(θs,t) = bθs,t − 1

N1
c+ 1.

That is, the variable θs,t and the pair (ρs,t, σs,t) are one-to-
one mapping.

At the same time, based on the transition probabilities (2)
and (5), the conditional probability of the stochastic variable
θs,t can be obtained as follows:

πij = Pr {θs+1,t = j|θs,t = i} = Pr {θs,t+1 = j|θs,t = i}
= Pr{ρs+1,t = η1(j), σs+1,t = η2(j)|ρs,t = η1(i),

σs,t = η2(i)}
= Pr{ρs,t+1 = η1(j), σs,t+1 = η2(j)|ρs,t = η1(i),
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σs,t = η2(i)}
= Pr{ρs+1,t = η1(j)|ρs,t = η1(i)}
× Pr{σs+1,t = η2(j)|σs,t = η2(i)}

= Pr{ρs,t+1 = η1(j)|ρs,t = η1(i)}
× Pr{σs,t+1 = η2(j)|σs,t = η2(i)}

=λη1(i)η1(j)γη2(i)η2(j). (7)

According to (7), the random variable θs,t follows the
Markov chain, and its state transitions are described by TPM
Π = [πij ]N×N .

C. Controller model

To make the plant mode ρs,t more accurately detected, the
hidden Markov model (HMM) can be used, which is one of
the popular models to describe the relationship between the
detected mode and the plant mode [26, 27]. The detected
mode is denoted by ζs,t, which value varies in the finite
set S3 = {1, 2, . . . , N3}; at the same time, it follows the
conditional probability ψpg given ρs,t as follows:

Pr{ζs,t = g|ρs,t = p} = ψpg,

and Ψ = {ψpg} signifies the conditional transition probabil-
ity matrix (CTPM). For ψpg , the restrictions are similar to
(3), i.e., ψpg ∈ [0, 1],

∑N3

g=1 ψpg = 1 for ∀p ∈ S1, g ∈ S3.
Combining the HMM and the MSCP, the following asyn-

chronous state-feedback controller is proposed:

v(s, t) = Kζs,tσs,t
x(s, t), (8)

where Kζs,tσs,t ∈ Rm×(nhx+nvx) denotes the controller gain.

Remark 2. The HMM used in this paper is a unified frame-
work for asynchronous, synchronous, and mode-independent
controllers. By adjusting the CTPM, the mode relationship
between 2-D MJS (1) and its controller (8) can be flexibly
controlled. Specifically, when the CTPM is set to the identity
matrix, the controller mode ζs,t is completely consistent
with the plant mode ρs,t, and the controller v(s, t) =
Kρs,tσs,t

x(s, t) performs synchronous control according to
the actual state of the plant. When the CTPM has identical
rows, the controller ignores the information of the plant
mode ρs,t, and the controller becomes a mode-independent
controller v(s, t) = Kσs,t

x(s, t).

In the following, we will introduce some simple symbols
to clarify and concise the expression. Specifically, the sub-
scripts p, i, g, and ı will be used in place of the parameters
ρs,t, θs,t, ζs,t, and σs,t, respectively. Then, the closed-loop
2-D MJS is obtained as follows:{

x1(s, t) = (Ap +BpΦıKgı)x(s, t) +Dpω(s, t),

y(s, t) =Cpx(s, t).
(9)

Definition 1. [28] Closed-loop 2-D MJS (9) with ω(s, t) = 0
is said to be SS if the following condition holds:

lim
s+t→∞

E
{
‖x(s, t)‖2

}
= 0 (10)

for any boundary condition (4).

Definition 2. Assume that closed-loop 2-D MJS (9) satisfies
(10). If there exist scalars µ > 0 and α ∈ [0, 1] make the
following condition holds:
∞∑
s=0

∞∑
t=0

E
{

(1− α)yT (s, t)y(s, t)− µ2ωT (s, t)ω(s, t)
}

+ sup
0≤s≤∞

sup
0≤t≤∞

αyT (s, t)y(s, t) < 0, (11)

that is to say that the system satisfies H∞/L2 − L∞ mixed
performance.

Remark 3. Note that Definition 2 can degenerate into a
single performance index, H∞ or L2−L∞ performance in-
dex, by selecting different values of parameter α. Specifically,
Definition 2 encompasses the two following cases.

Case 1: When α = 0, Definition 2 degenerates into
the H∞ performance index, which reduces the impact of
disturbance on system performance.

Case 2: When α = 1, Definition 2 degenerates into the
L2 − L∞ performance, which adjusts the output of the
systems to be minimum.

In this work, our goal is to develop a state-feedback
controller subject to the MSCP to guarantee the closed-loop
system is SS and satisfies H∞/L2−L∞ mixed performance.

III. MAIN RESULTS

Next, we will provide sufficient conditions for closed-loop
2-D MJS (9) to ensure that the system is SS.

Lemma 1. Under Assumption 1, closed-loop 2-D MJS (9) is
SS, if there exist matrices Pi = diag{Phi , P vi } > 0, Rig > 0,
and Kgı, for i ∈ S, ı ∈ S2, and g ∈ S3, such that the
following conditions hold:

N3∑
g=1

ψpgRig < Pi, (12)[
−P̄−1i Ap +BpΦıKgı

∗ −Rig

]
< 0, (13)

where P̄i =
∑N
i=1 πijPj .

Proof: Choose a Lyapunov function given by

V (s, t) = xT (s, t)Pix(s, t),

here Pi = diag{Phθs,t , P
v
θs,t
}. Let

4V (s, t) =x1T (i, j)Pjx
1(s, t)− xT (s, t)Pix(s, t)

=xT (s, t)(Ap +BpΦıKgı)
TPj(Ap

+BpΦıKgı)x(s, t)− xT (s, t)Pix(s, t)

+ He
(
xT (s, t)(Ap +BpΦıKgı)

TPjDpω(s, t)
)

+ ωT (s, t)DT
p PjDpω(s, t), (14)

where Pj = diag{Phθs+1,t
, P vθs,t+1

}. Setting ω(s, t) = 0, and
performing expectation operation for 4V (s, t), one has

E {4V (s, t)} = E
{
xT (s, t)

( N3∑
g=1

ψpg(Ap +BpΦıKgı)
T

× P̄i(Ap +BpΦıKgı)
)
x(s, t)

− xT (s, t)Pix(s, t)
}
. (15)
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Using the Schur complement, (13) guarantees that

(Ap +BpΦıKgı)
T P̄i(Ap +BpΦıKgı) < Rig. (16)

Then by (15) and (16), we obtain

E {4V (s, t)} < E

{
xT (s, t)

(
N3∑
g=1

ψpgRig − Pi

)
x(s, t)

}
≤ −β1E

{
‖x(s, t)‖2

}
, (17)

where β1 denotes the minimum eigenvalue of (Pi −∑N3

g=1 ψpgRig). It follows from (12) that β1 > 0. Adding
both sides of (17) yields

E

{
d1∑
s=0

d2∑
t=0

‖x(s, t)‖2
}
≤ − 1

β1
E

{
d1∑
s=0

d2∑
t=0

4V (s, t)

}
,

(18)

where d1 and d2 are arbitrary positive integers. By substi-
tuting x1(s, t) and Pi = diag{Phi , P vi } into 4V (s, t), we
have

d1∑
s=0

d2∑
t=0

4V (s, t)

=

d2∑
t=0

[xhT (d1 + 1, t)Phθd1+1,t
xh(d1 + 1, t)

− xhT (0, t)Phθ0,tx
h(0, t)]

+

d1∑
s=0

[xvT (s, d2 + 1)P vθs,d2+1
xv(s, d2 + 1)

− xvT (s, 0)P vθs,0x
v(s, 0)]. (19)

It follows from (18) and (19) that

E

{
d1∑
s=0

d2∑
t=0

‖x(s, t)‖2
}
≤ 1

β1
E
{ d2∑
t=0

xhT (0, t)Phθ0,tx
h(0, t)

+

d1∑
s=0

xvT (s, 0)P vθs,0x
v(s, 0)

}
.

(20)

Let β2 denote the maximum eigenvalue of Phθ0,t and P vθs,0 ,
where s, t = 0, 1, 2, . . . . If let d1, d2 tend to infinity in (20),
then the following inequality holds:

E

{
d1∑
s=0

d2∑
t=0

‖x(s, t)‖2
}

≤ β2
β1

E
{ ∞∑
s=0

‖xh(0, s)‖2 + ‖xv(s, 0)‖2
}
.

Recalling Assumption 1, it follows that:

E

{
d1∑
s=0

d2∑
t=0

‖x(s, t)‖2
}
<∞,

which implies that closed-loop 2-D MJS (9) is SS. The proof
has been ended.

In what follows, we analyze the stochastic stability and
H∞/L2 − L∞ mixed performance of the closed-loop 2-D
MJS (9).

Theorem 1. Under Assumption 1, given the parameters µ >
0, 0 ≤ α ≤ 1, closed-loop 2-D MJS (9) is SS and subject

to H∞/L2−L∞ mixed performance condition (11), if there
exist matrices Pi = diag{Phi , P vi } > 0, Rig > 0, and Kgı,
for i ∈ S, ı ∈ S2, and g ∈ S3, such that the following
conditions hold:

N3∑
g=1

ψpgRig < Pi, (21)
−P̄−1i 0 Ap +BpΦıKgı Dp

∗ −I
√

1− αCp 0
∗ ∗ −Rig 0
∗ ∗ ∗ −µ2I

 < 0, (22)

[
−I

√
αCp

∗ −Pi

]
< 0, (23)

where P̄i =
∑N
i=1 πijPj .

Proof: By employing the Schur complement, we can
deduce (13) from (22). Following Lemma 1, it can be inferred
that closed-loop 2-D MJS (9) is SS. Next, we only need to
demonstrate that closed-loop 2-D MJS (9) satisfiesH∞/L2−
L∞ mixed performance. To that purpose, we may introduce

J =
∞∑
s=0

∞∑
t=0

E
{

(1− α)yT (s, t)y(s, t)− µ2ωT (s, t)ω(s, t)
}
.

Under the zero boundary condition, we can obtain∑∞
s=0

∑∞
t=04V (s, t) ≥ 0 from (19). Based on (14) yields

J ≤
∞∑
s=0

∞∑
t=0

E
{

(1− α)yT (s, t)y(s, t)− µ2ωT (s, t)ω(s, t)

+4V (s, t)
}

=

∞∑
s=0

∞∑
t=0

E
{
x̂T (s, t)

( N3∑
g=1

ψpgÂ
T P̂ Â

+ diag
{
−Pi,−µ2I

})
x̂(s, t)

}
, (24)

where x̂(s, t) =

[
x(s, t)
ω(s, t)

]
, Â =

[
Ap +BpΦıKgı√

1− αCp

]
, P̂ =

diag{P̄i, I}.
Noting (21), we can get from (24) that

J ≤
∞∑
s=0

∞∑
t=0

E
{
x̂T (s, t)

( N3∑
g=1

ψpgÂ
T P̂ Â

+ diag
{
−Rig,−µ2I

})
x̂(s, t)

}
. (25)

Considering (22) and (25), we can conclude that J < 0,
which means

∞∑
s=0

∞∑
t=0

E
{

(1− α)yT (s, t)y(s, t)− µ2ωT (s, t)ω(s, t)

+4V (s, t)
}
< 0.

This implies that
∞∑
s=0

∞∑
t=0

E
{

(1− α)yT (s, t)y(s, t)− µ2ωT (s, t)ω(s, t)
}

<− V (s, t).

Therefore, we will calculate the following formula:

sup
0≤s≤∞

sup
0≤t≤∞

αyT (s, t)y(s, t)− V (s, t)
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≤αxT (s, t)(CTp Cp − Pi)x(s, t).

According to condition (23), the following inequality is
derived:

sup
0≤s≤∞

sup
0≤t≤∞

αyT (s, t)y(s, t)− V (s, t) < 0.

With the help of the above proof process, it is evident that
the following formula holds:
∞∑
s=0

∞∑
t=0

E
{

(1− α)yT (s, t)y(s, t)− µ2ωT (s, t)ω(s, t)
}

+ sup
0≤s≤∞

sup
0≤t≤∞

αyT (s, t)y(s, t) < 0.

Based on the discussions mentioned above, it becomes
evident that condition (11) in Definition 2 is satisfied. Thus,
we can say that closed-loop 2-D MJS (9) satisfies H∞/L2−
L∞ mixed performance. With this, the proof is concluded.

Although Theorem 1 provides concise constraints to en-
sure closed-loop 2-D MJS (9) is SS and equipsH∞/L2−L∞
mixed performance condition (11), it is still difficult to
directly use it for the controller design due to the presence of
nonlinearity. As a result, we will eliminate the nonlinearity
in Theorem 1 and develop LMI-based conditions.

Theorem 2. Under Assumption 1, given the parameters µ̃ >
0, 0 ≤ α ≤ 1, if there exist matrices P̃i = diag{P̃hi , P̃ vi } >
0, R̃ig > 0, Mgı, and K̃gı, for i ∈ S, ı ∈ S2, and g ∈ S3,
such that the following conditions hold:[

−P̃i Ti
∗ −Ri

]
< 0, (26)

−P 0 A D
∗ −I

√
1− αCpMgı 0

∗ ∗ R̃ig −He(Mgı) 0
∗ ∗ ∗ −µ̃I

 < 0, (27)

[
−I

√
αCpP̃i

∗ −P̃i

]
< 0, (28)

where

Ti =
[√

ψp1P̃i
√
ψp2P̃i · · ·

√
ψpN3

P̃i
]
,

Ri = diag{R̃i1, R̃i2, . . . , R̃iN3},
P = diag{P̃1, P̃2, . . . , P̃N},

A =
[√
πi1U

T
A

√
πi2U

T
A · · · √πiNUTA

]T
,

UA = ApMgı +BpΦıK̃gı,

D =
[√
πi1D

T
p

√
πi2D

T
p · · · √πiNDT

p

]T
,

closed-loop 2-D MJS (9) is SS and satisfies H∞/L2 − L∞
mixed performance index µ =

√
µ̃. Furthermore, if feasible

solutions exist for (26) - (28), the designed controller gain
Kgı can be obtained by

Kgı = K̃gıM
−1
gı .

Proof: In Theorem 2, the coupling terms in Theorem 1
are successfully handled by introducing a slack matrix Mgı.
It can be deduced from (27) that R̃ig−He(Mgı) < 0, that is,
He(Mgı) is positive definite. This indicates that the matrix
Mgı should be invertible. Here, some notations are defined
by

P̃i = P−1i , R̃ig = R−1ig , K̃gı = KgıMgı, µ̃ = µ2.

We will prove through the Schur complement that (21)
and (26) are equivalent. For this purpose, we establish the
equivalence between (21) and the following inequality:[

−Pi T̄i
∗ −Ri

]
< 0, (29)

where T̄i =
[√

ψp1I
√
ψp2I · · ·

√
ψpN3I

]
. Then, we

can pre-multiply and post-multiply (29) with diag{P̃i, I} to
obtain (26).

Subsequently, we will verify (27) to ensure that (22) is
established. It is easy to find that

(Mgı − R̃ig)T R̃−1ig (Mgı − R̃ig) ≥ 0,

which can be rewritten as

−MT
gıR̃
−1
ig M

T
gı ≤ R̃ig −He(Mgı). (30)

Thanks to (27) and (30), the following condition holds:
−P 0 A D
∗ −I

√
1− αCpMgı 0

∗ ∗ −MT
gıR̃
−1
ig M

T
gı 0

∗ ∗ ∗ −µ̃I

 < 0. (31)

Using diag{I, I, (MT
gı)
−1, I} and its transpose to pre-

multiply and post-multiply (31), respectively, we obtain
−P 0 Ā D
∗ −I

√
1− αCp 0

∗ ∗ −Rig 0
∗ ∗ ∗ −µ̃I

 < 0,

where Ā =
[√
πi1Ū

T
A

√
πi2Ū

T
A · · · √πiN ŪTA

]T
and

ŪA = Ap + BpΦıKgı. By successively applying the Schur
complement, (22) can be obtained. Then, pre- and post-
multiplying (28) by diag{I, P−1i }, and employing the Schur
complement again, we can obtain (23). This completes the
proof.

Remark 4. Theorem 2 transforms the controller design
problem into a linear matrix inequality (LMI) based problem
by eliminating nonlinearities, which can be efficiently solved
using the MOSEK optimization toolbox for MATLAB. The
optimal H∞/L2 − L∞ mixed performance is obtained by
solving the following convex optimization issue:

min µ

s.t. LMIs (26), (27), and (28).

If the number of actuator nodes accessing the network is
fixed to one, the MSCP will degenerate into the traditional
stochastic communication protocol. Then, we can obtain the
following result:

Corollary 1. Under Assumption 1, given the parameters µ̃ >
0, 0 ≤ α ≤ 1, if there exist matrices P̃i = diag{P̃hi , P̃ vi } >
0, R̃ig > 0, Mgı, and K̃gı, for i ∈ S, g ∈ S3, and ı ∈ S4,
such that the following conditions hold:[

−P̃i Ti
∗ −Ri

]
< 0, (32)

−P 0 A D
∗ −I

√
1− αCpMgı 0

∗ ∗ R̃ig −He(Mgı) 0
∗ ∗ ∗ −µ̃I

 < 0, (33)
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[
−I

√
αCpP̃i

∗ −P̃i

]
< 0, (34)

where

Ti =
[√

ψp1P̃i
√
ψp2P̃i · · ·

√
ψpN3

P̃i
]
,

Ri = diag{R̃i1, R̃i2, . . . , R̃iN3
},

P = diag{P̃1, P̃2, . . . , P̃N},

A =
[√
πi1U

T
A

√
πi2U

T
A · · · √πiNUTA

]T
,

UA = ApMgı +BpIıK̃gı,

D =
[√
πi1D

T
p

√
πi2D

T
p · · · √πiNDT

p

]T
,

Iı = diag{0, ..., 0︸ ︷︷ ︸
ı−1

, 1, 0, ..., 0︸ ︷︷ ︸
m−ı

},

closed-loop 2-D MJS (9) is SS and satisfies H∞/L2 − L∞
mixed performance index µ =

√
µ̃. Furthermore, if feasible

solutions exist for (32) - (34), the designed controller gain
Kgı can be obtained by

Kgı = K̃gıM
−1
gı .

Considering the case where there is no stochastic commu-
nication protocol, the following corollary can be drawn:

Corollary 2. Under Assumption 1, given the parameters µ̃ >
0, 0 ≤ α ≤ 1, if there exist matrices P̃p = diag{P̃hp , P̃ vp } >
0, R̃pg > 0, Mg , and K̃g , for g ∈ S3 and p ∈ S5, such that
the following conditions hold:[

−P̃p Tp
∗ −Rp

]
< 0, (35)

−P 0 A D
∗ −I

√
1− αCpMg 0

∗ ∗ R̃pg −He(Mg) 0
∗ ∗ ∗ −µ̃I

 < 0, (36)

[
−I

√
αCpP̃p

∗ −P̃p

]
< 0, (37)

where

Tp =
[√

ψp1P̃p
√
ψp2P̃p · · ·

√
ψpN3

P̃p
]
,

Rp = diag{R̃p1, R̃p2, . . . , R̃pN3
},

P = diag{P̃1, P̃2, . . . , P̃N1},

A =
[√
πi1U

T
A

√
πi2U

T
A · · · √πiN1U

T
A

]T
,

UA = ApMg +BpK̃g,

D =
[√
πi1D

T
p

√
πi2D

T
p · · · √πiN1D

T
p

]T
,

closed-loop 2-D MJS (9) is SS and satisfies H∞/L2 − L∞
mixed performance index µ =

√
µ̃. Furthermore, if feasible

solutions exist for (35) - (37), the designed controller gain
Kgı can be obtained by

Kg = K̃gM
−1
g .

IV. NUMERICAL EXAMPLE

In practical engineering, the Darboux equation [29] can
effectively describe various dynamic processes, such as in-
fectious prediction [30], fluid motion [31], and investment
securities [32]. This paper assumes that the parameters of the
Darboux equation obey the Markov random process. Using

TABLE I
RELATION OF (ρs,t, σs,t) AND θs,t

(ρs,t, σs,t) θs,t (ρs,t, σs,t) θs,t
(1, 1) 1 (2, 1) 2
(1, 2) 3 (2, 2) 4
(1, 3) 5 (2, 3) 6

TABLE II
OPTIMAL µ FOR DIFFERENT α AND CTPM.

α
µ

Ψ1 Ψ2 Ψ3

0.6 1.2075 0.7127 1.5094
0.7 1.0457 0.6663 1.3072
0.8 0.8864 0.6380 1.0679

the same modeling technology as [33], a 2-D difference
model in the form of 2-D MJS (1) is generated with

Mode 1:

A1 =

[
−0.9 0.5
−0.2 −1.5

]
, B1 =

[
−0.2 0.3 0.3
−0.2 0.5 0.45

]
,

D1 =

[
0.1
0.2

]
, C1 =

[
1 0
1 0.6

]
.

Mode 2:

A2 =

[
−1.1 0.6
−0.3 −2.2

]
, B2 =

[
0.2 0.3 0.3
−0.3 0.4 0.55

]
,

D2 =

[
0.2
0.1

]
, C2 =

[
1 0
1 0.6

]
.

The jump of the plant is assumed to adhere to the TPM Λ
as follows:

Λ =

[
0.6 0.4
0.5 0.5

]
.

In the C/A channel, three possible transmission com-
binations are formed by randomly selecting two actua-
tor nodes for transmission at each moment, i.e., Φ1 =
diag{1, 1, 0},Φ2 = diag{0, 1, 1},Φ3 = diag{1, 0, 1}.
Assume that the TPM Γ is given as

Γ =

0.4 0.4 0.2
0.3 0.3 0.4
0.2 0.2 0.6

 .
According to the mapping relationship in (6), the relation

between the pair (ρs,t, σs,t) and the variable θs,t is provided
in TABLE I. In addition, based on (7), the TPM for the new
random variable θs,t can be obtained as follows:

Π =


0.24 0.16 0.24 0.16 0.12 0.08
0.20 0.20 0.20 0.20 0.10 0.10
0.18 0.12 0.18 0.12 0.24 0.16
0.15 0.15 0.15 0.15 0.20 0.20
0.12 0.08 0.12 0.08 0.36 0.24
0.10 0.10 0.10 0.10 0.30 0.30

 .
Then, assume that the CTPMs Ψ are as follows:

Ψ1 =

[
0.1 0.9
0.8 0.2

]
,Ψ2 =

[
1 0
0 1

]
,Ψ3 =

[
0 1
0 1

]
,

indicating the asynchronous, synchronous, and mode-
independent case of closed-loop 2-D MJS (9) and its con-
troller, respectively. For different values of the scalar α and
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Fig. 2. State trajectories xh(s, t) and xv(s, t) in the open-loop case

the CTPMs, TABLE II lists the optimal value µ regarding
H∞/L2−L∞ mixed performance based on Theorem 2. It is
evident that in each CTPM case, µ decreases as α increases,
indicating that a higher α results in improved H∞/L2−L∞
mixed performance of closed-loop 2-D MJS (9).

By solving Theorem 2 with α = 0.6, we can obtain the
state-feedback controller gains as

K11 =

0.9730 −3.8035
1.1371 1.8772

0 0

 ,K21 =

0.1559 −0.8422
0.6966 3.0250

0 0

 ,
K12 =

 0 0
0.1372 −2.1678
0.5716 5.3295

 ,K22 =

 0 0
−0.3883 −1.3569
0.9969 4.6200

 ,
K13 =

2.0105 −2.8528
0 0

1.5213 2.0187

 ,K23 =

0.4816 −0.4244
0 0

0.8035 3.0920

 ,
with the H∞/L2 − L∞ mixed performance index µ =
1.2075.

If we assume that the network channels permit only one
actuator node to transmit signals at each time, in this case,
the MSCP proposed in this paper will be simplified to the
stochastic communication protocol. By solving Corollary 1
with α = 0.6, we can obtain the state-feedback controller
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0 0
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0 0

Fig. 3. State trajectories xh(s, t) and xv(s, t) in the closed-loop case

gains as

K11 =

−0.9439 −6.4214
0 0
0 0

 ,K21 =

−0.9894−6.4621
0 0
0 0

 ,
K12 =

 0 0
0.6478 2.7964

0 0

 ,K22 =

 0 0
0.5488 3.9078

0 0

 ,
K13 =

 0 0
0 0

0.5633 3.4714

 ,K23 =

 0 0
0 0

0.5274 3.6091

 ,
with H∞/L2 − L∞ mixed performance index µ = 8.2116.
Through more effective actuator node scheduling, the MSCP-
proposed control scheme can greatly enhance control perfor-
mance, according to a comparison of the outcomes of the
two scenarios.

Next, we’ll demonstrate the effectiveness by comparing the
evolutions of system states with and without control input.
As a result, it is necessary to present the boundary condition
and disturbance input. In addition, set the disturbance as
ω(s, t) = 0.9s+tω∗(s, t), where ω∗(s, t) takes values in -1
or 1, and specify the initial states given by

xh(0, t) =

{
0.2, t = 0, 1, . . . , 10;
0, elsewhere.
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xv(s, 0) =

{
0.2, s = 0, 1, . . . , 10;
0, elsewhere.

In this way, the state trajectories of uncontrolled 2-D MJS
(1) are shown in Fig. 2. It can be seen in the figure that the
horizontal and vertical states show a trend toward infinity,
which indicates that the system is unstable. However, by
using the controller based on Theorem 2, the state trajectories
of closed-loop 2-D MJS (9) in both directions are shown in
Fig. 3, which shows that the controller designed in Theorem
2 is effective.

To measure H∞/L2−L∞ mixed performance of closed-
loop 2-D MJS (9), according to Definition 2, we introduce
the following two binary functions:

µh(s, t) =

√
(1− α)

∑∞
s=0

∑∞
t=0 ‖yh(s, t)‖2

‖ω(s, t)‖2

+

√
α sup0≤s≤∞ sup0≤t≤∞ ‖yh(s, t)‖2

‖ω(s, t)‖2
,

µv(s, t) =

√
(1− α)

∑∞
s=0

∑∞
t=0 ‖yv(s, t)‖2

‖ω(s, t)‖2

+

√
α sup0≤s≤∞ sup0≤t≤∞ ‖yv(s, t)‖2

‖ω(s, t)‖2
.

Fig. 4 depicts the trajectories of µh(s, t) and µv(s, t). The

TABLE III
COMPARISONS OF µ FOR DIFFERENT METHODS.

Methods µ
Ψ1 Ψ2 Ψ3

Theorem 2 in [6] 1.2331 0.6848 1.5245
Corollary 2 0.7799 0.4627 0.9642

trajectories of µh(s, t) and µv(s, t) obtained by the proposed
method finally converge to 0.7821 and 0.7659, respectively,
both less than the minimum value µ = 1.2075. The above
results show the effectiveness of the state-feedback controller
design method proposed in this paper.

Finally, we investigate the case without the stochastic com-
munication protocol, in which both Corollary 2 and Theorem
2 in [6] apply. Table III provides the optimal performance
index µ for different CTPM selections based on the LMIs
in Corollary 2 and Theorem 2 in [6]. It can be observed
that the optimal value of µ obtained by the method in [6]
is consistently higher than the optimal value obtained by
Corollary 2. Therefore, under the same parameter conditions,
our proposed method is less conservative than the method
given in [6].

V. CONCLUSIONS

In this paper, we have devoted ourselves to investigating
the H∞/L2 − L∞ mixed control problem of 2-D MJS (9),
where the MSCP has been adopted to schedule transmission
nodes. A new Markov chain (7) has been introduced to simul-
taneously characterize plant mode switch and actuator access
states. Then, using Lyapunov’s direct method, a sufficient
condition has been obtained to ensure that closed-loop 2-D
MJS is SS and satisfies H∞/L2 − L∞ mixed performance.
Furthermore, the state-feedback controller has been designed
through an optimization technique. Finally, the feasibility and
applicability of our proposed state-feedback controller have
been verified through an example related to the Darboux
equation.
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