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Abstract—The physicochemical properties for thirteen an-
tipsychotic drugs: Chlorpromazine, Trifluoperazine, Thiori-
dazine, Thiothixene, Haloperidol, Ziprasidone, Loxapine, Que-
tiapine, Aripprazole, Clozapine, Risperidone, Olanzapine and
Sertindole were studied using some distance and degree based
topological descriptors. The heterocyclic antipsychotic drugs are
modeled as hydrogen suppressed molecular multigraph with
the specific treatment for the heteroatoms using valence delta
values δv. In the literature, the molecular connectivity index,
originally for hydrocarbons, has been extended to molecules
with heteroatoms. The delta value for the heteroatom consid-
ers its valence electrons (Zv) minus the number of bonded
hydrogen atoms (h), expressed as Zv − h. This modification
accommodates heteroatoms in the index calculation on the
recently introduced certain set of distance based leap Zagreb
indices and degree-based indices. This research uses statistical
techniques like quadratic, stepwise regression to link topological
descriptors with QSPR models, improving the estimation of
drug properties such as boiling point, melting point, enthalpy,
flash point, molar refractivity, refractive index, complexity,
molecular weight and refractivity. Validation involves com-
paring estimated values with actual drug properties. This
study demonstrates both the similarities and distinctions among
the chosen antipsychotic drugs by employing chemometric
methods like principal component analysis (PCA) and cluster
analysis (CA). These methods help in understanding the shared
characteristics and variations present within the drugs being
investigated.

Index Terms—Antipsychotic drugs, distance based leap Za-
greb indices, quadratic regression, stepwise regression, valence
delta values, chemometric methods.

I. INTRODUCTION

Schizophrenia is a complex mental disorder marked by
distorted thoughts, perceptions, and emotions, often leading
to hallucinations, delusions, and cognitive impairment.
Treatment involves a combination of medication, therapy,
and support to manage symptoms and improve daily
functioning [1]. Boosting drug efficacy while reducing side
effects remains pivotal. Parameters like solubility, stability,
and toxicity play a vital role in drug design, relying
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on various chemical and physical drug characteristics.
Recently, computational tools, including machine learning,
have gained momentum in discovering schizophrenia
drugs. These methods predict drug effectiveness and
adverse effects, while computer simulations unravel disease
mechanisms, aiding in new drug target identification. Lately,
computational methods like quantitative structure-property
relationship (QSPR) analysis have become influential
tools within drug discovery and design. Very recently
Das et al. [2] (2023) investigated the topological indices
of Molnupiravir and its quantitative structure–activity
relationship (QSPR) modeling with other antiviral drugs
for COVID-19 treatment. Density Functional Theory(DFT)
has been applied in constructing QSAR models for
schizophrenia drugs, with utilizing multiple linear regression
within the genetic function approximation method for model
development [3]. Lately, various QSAR/QSPR models and
clinical techniques have been employed to create powerful
and effective medications for this condition [4], [5], [6] and
[7].

This research article aims to utilize QSPR analysis for
predicting both the effectiveness and potential side effects
of schizophrenia disorder. Our study aims to offer deeper
insights into the molecular mechanisms of antipsychotic
drugs by using chemometric methods, thereby aiding the
advancement of more potent medications for schizophrenia
treatment. In the world of chemical graph theory, we engage
in analyzing the structures of chemical graphs representing
various chemical systems. From computational data, we
extract the chemical properties, by using diverse topological
indices associated with parameters such as degree, distance,
and eccentricity of graphs, depicting the bonds within the
compounds being investigated. Graph vertices symbolize
atoms, while edges symbolize the connections or bonds
formed between these atoms. Throughout this article
we consider chemical structures that are converted into
molecular multigraph where the heteroatoms are treated
using valence delta values δv . An alternate approach for
computing heteroatoms is rooted in earlier explorations
within the literature on unsaturated molecules [8] and [9].
This method employed assessing the valence connectedness
of atoms, assigning a δ value to carbon atoms within double
bonds. For instance, in propene, this method assigns a δ of
3 to the central carbon atom.
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Kier et al. [10] employed a series of valence δ values
initially designed for determining the connectivity index,
χ, in molecules containing heteroatoms. The enhanced
correlations observed between these values and the boiling
point, as well as molar refraction across a diverse spectrum
of molecules indicate the broad usefulness of these
assigned values. We expanded our study to incorporate
implications regarding certain distance-based leap Zagreb
indices utilizing the equation δv = Zv − h. Specifically,
we calculated valence δ values for heteroatoms present in
antipsychotic drugs, considering various bonding scenarios.
The use of the number of valence electrons together with
the number of attached hydrogen atoms provides a strong
connection between the structural characteristics expressed
in the hydrogen suppressed molecular multigraph and the
properties of antipsychotic drugs.

Naji et al. introduced and studied a new set of distance-
based topological descriptors termed "leap Zagreb indices"
in 2017 [11]. Since their introduction, these indices have
attracted considerable attention among researchers, resulting
in a rapid surge of related research articles. Recently Alsinai
et al. [12] introduced the fourth leap Zagreb index, yielding
significant outcomes. Zhu et al. [13] explored the third leap
Zagreb index in tree structures, while Raza delved into leap
Zagreb connection indices for various network models in
[14] and computed them for benzenoid systems in a separate
work [15].

The definitions for the first, second, and third leap Zagreb
indices are as follows:

LM1(G) =
∑

v∈V (G)

d2(v)
2

(1)

LM2(G) =
∑

uv∈E(G)

d2(u)d2(v) (2)

LM3(G) =
∑

v∈V (G)

d(v)d2(v) (3)

Here, d(v) signifies the degree of a vertex v in graph G,
while d2(v) denotes the 2-degree of vertex v, representing
the count of vertices at a distance of two from v within G.

The leap eccentric connectivity index of G was introduced
by Sharma et al. [16] and is defined as:

LEC(G) =
∑

v∈V (G)

d2(v)e(v) (4)

Let τ(v) represents the connection number of a vertex v
within graph G, indicating the 2-degree of vertex v (i.e., the
count of vertices at a distance of two from vertex v).

In [17] authors introduced the reformulated leap Zagreb
indices which are a new set of topological indices:

RZC1(G) =
∑

e∈E(G)

τ(e)2 (5)

where e = uv, τ(e) = τ(u) + τ(v)− 2

RZC2(G) =
∑
ef̃

τ(e)τ(f) (6)

Fig. 1: 2D - Antipsychotic Chemical Structures of (a) Chlor-
promazine (b) Trifluoperazine (c) Thioridazine (d) Thio-
thixene (e) Haloperidol (f) Ziprasidone (g) Loxapine, (h)
Quetiapine (i) Aripprazole (j) Clozapine (k) Risperidone (l)
Olanzapine and (m) Sertindole

where ef̃ denotes adjacent edges e and f in G.

RZC3(G) =
∑

e∈E(G)

deg(e)τ(e) (7)

where e = uv and deg(e) = deg(u)+deg(v)-2.
The calculation method for valence connectivity indices is

outlined in reference [10] and [18]:

mχv =
N∑
i=1

m+1∏
k=1

[
1

δvk

] 1
2

(8)

where δvk =
Zv

k−Hk

Zk−Zv
k−1 is the valence connectivity for

the kth atom in the molecular graph, Zk stands for the

IAENG International Journal of Applied Mathematics

Volume 54, Issue 11, November 2024, Pages 2388-2403

 
______________________________________________________________________________________ 



total number of electrons in the kth atom, Zv
k represents

the count of valence electrons in the kth atom, Hk denotes
the number of hydrogen atoms directly connected to the kth

non-hydrogen atom, and m = 0 signifies atomic valence
connectivity indices (referred to as order-0).

Milan Randic invented the Randic index [19], which can
be represented as

R(G) =
∑

uv∈E(G)

1√
d(u)d(v) (9)

Trinajstić and Gutman [20] introduced a set of fundamen-
tal indices known as the first and second Zagreb indices,
which are defined as,

M1(G) =
∑

uv∈E(G)

[d(u) + d(v)]

M2(G) =
∑

uv∈E(G)

[d(u)× d(v)]
(10)

Zhou and Trinajstić introduced the sum connectivity index,
as described in [21], which is defined as,

SCI(G) =
∑

uv∈E(G)

1√
d(u) + d(v) (11)

Vukičević et al. [22] defined the GA index as,

GA(G) =
∑

uv∈E(G)

2
√
d(u)d(v)

d(u) + d(v) (12)

Fajtlowicz [23] introduced the harmonic index as,

H(G) =
∏

uv∈E(G)

2

[d(u) + d(v)] (13)

Hyper Zagreb index was proposed by Shirdel et al. [24],
which is defined as,

HM(G) =
∑

uv∈E(G)

[d(u) + d(v)]2 (14)

Forgotten topological index was proposed by Furtula et al.
[25], which is defined as,

F (G) =
∑

uv∈E(G)

[d(u)2 + d(v)2] (15)

In this study, we utilize certain degree and distance-
based topological descriptors, as indicated in Equations 1
- 15, for various anti schizophrenic drugs to assess their
physicochemical properties. Employing the above topolog-
ical indices, we construct QSPR models using quadratic and
stepwise regression for schizophrenia drugs. Additionally, we
employ chemometric techniques like cluster analysis (CA)
and principal component analysis (PCA) to compare and
analyze the drugs comprehensively, considering theoretical
topological descriptors to enhance the model’s robustness.

II. METHODOLOGY

A. Specific Treatment of Heteroatoms

Kier-Hall’s well-defined valence connectivity (δvk) method
[26]and [27] provides information on electric states and
atomic orbitals of multiple bonds and heteroatoms in
molecular structures, making it a potential contender for
this investigation. However one notes that (δvk) values
can be directly applied to the recently introduced distance
based leap Zagreb indices and as Kier et al. in [10], a
collection of valence delta values was constructed to aid in
the calculation of connectivity index, χv , for heteroatom-
containing compounds. Improved correlations with boiling
points and molar refraction for several compounds imply
their universal application.

As we try to extend for certain antipsychotic drugs with the
specific treatment for heteroatoms with the valence delta val-
ues (δvk). A strong quadratic correlation is observed between
the properties of antipsychotic drugs and structural features
in the hydrogen-suppressed molecular multigraph. This cor-
relation is obtained using the number of bonded hydrogen
atoms and valence electrons. The quadratic regression model,
which treats heteroatoms with valence delta values, provides
a slightly better model compared to the linear regression
model used by Zhang et al. [5], who employed a molecular
simple graph. This molecular connectivity treatment helps
in understanding the chemical nature of atoms and their
properties. To assess the robustness of the estimators derived
from the quadratic regression model, a stepwise regression
approach was employed. Interestingly, the stepwise regres-
sion analysis yielded the same estimators as the original
quadratic regression model, further validating the reliability
and consistency of the results. Further CA and PCA helps
us to visualize the drug similarity and efficiency.

Hence we see that, in a molecular multigraph heteroatoms
are treated specifically with the (δvk) values that is, the vertex
degree d(v) of the ith atom in the molecular multigraph is
equal to the (δvk) values.

d(v) = δvk

Table I shows the valence delta values for sulphur, nitrogen,
chlorine, fluorine, oxygen, amino functional group (NH),
and hydroxyl functional group (OH) is shown in various
bonding circumstances seen in antipsychotic medications.
Use of these values give rise to valence connectivity χ or
χv and distance based leap Zagreb indices. These valence
delta values are calculated from Equation 8 represented as
(δvk).

TABLE I: Valence Delta Values δvk for Heteroatoms in the
Schizophrenia (Antipsychotic) Drugs

Groups δvk
S 0.667
N 5
Cl 0.778
F 7
O 6

NH 4
OH 5
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B. Computation of Certain Degree and Distance Based Leap
Zagreb Indices for Chlorpromazine Antipsychotic Drug

Fig. 2: 2D - Chemical and Molecular Structure of Chlorpro-
mazine

Figure 2 shows the 2D - chemical structure and molecular
multigraph with the valence delta values δvk for heteroatoms
in Chlorpromazine drug. We now calculate the certain de-
gree based and distance based leap Zagreb indices for the
Chlorpromazine drug.

Theorem 1. Let G be the molecular multigraph of Chlor-
promazine (C), then we have,

1. LM1(G) = 492.0502, 2. LM2(G) = 745.116

3. LM3(G) = 289.112, 4. LEC(G) = 670.338

5. RZC1(G) = 2072.2791, 6. RZC2(G) = 3428.5849

7. RZC3(G) = 1078.2791, 8. 0χv(G) = 13.9154

9. R(G) = 10.1075, 10. M1(G) = 189.112

11. M2(G) = 295.448, 12. SCI(G) = 11.5283

13. GA(G) = 27.3109, 14.H(G) = 9.2677

15. HM(G) = 1277.3911, 16. F (G) = 686.4951

Proof: By using definition Equations 1 - 15 and Tables
II - VIII we calculate the above mentioned nine degree based
indices and seven distance based leap Zagreb indices.

TABLE II: 2-Dist Deg and Eccentricity based Vertex Parti-
tion

Drug 0.667 0.778 5 4 6 7 3 2

C 1 1 2 3 6 3 2 3

TABLE III: 2-Dist Deg Edge Partition

Drug C
(0.667,6) 2

(0.778,4) 1

(2,3) 2

(2,5) 2

(3,5) 2

(4,4) 2

(4,6) 4

(4,7) 1

(5,7) 2

(6,6) 5

(6,7) 4

(7,7) 2

TABLE IV: (Deg, 2-Dist Deg) Partition

Drug C

(2,0.667) 1

(1,0.778) 1

(1,2) 2

(2,2) 1

(2,3) 2

(3,4) 2

(3,5) 2

(3,6) 4

(3,7) 1

(4,4) 1

(4,6) 2

(4,7) 2

TABLE V: 2-Dist Deg and Eccentricity based Vertex Parti-
tion

Drug C

(0.667,8) 1

(0.778,9) 1

(2,6) 1

(2,9) 2

(3,5) 1

(3,7) 1

(4,8) 2

(4,9) 1

(5,5) 1

(5,8) 1

(6,7) 3

(6,8) 2

(6,9) 1

(7,6) 2

(7,7) 1

TABLE VI: Edge Partition for RZC1

Drug C

2.778 1

3 2

4.667 2

5 2

6 4

8 4

9 1

10 7

11 4

12 2
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TABLE VII: Edge Partition for RZC2

Edge e = uv with (τ(e), τ(f)) C
(2.778,8) 2
(2.778,9) 1

(3,3) 1
(3,6) 2
(5,5) 1
(5,6) 2
(6,8) 4

(6,10) 2
(8,9) 2

(8,10) 4
(9,12) 2
(10,10) 3
(10,11) 8
(10,12) 2
(11,11) 2
(11,12) 2

(4.667,4.667) 1
(4.667,10) 4
(4.667,11) 2

TABLE VIII: Edge Partition for RZC3

Drug C
(2,3) 2
(2,5) 2

(2.778,2.778) 1
(3,6) 2
(4,6) 2
(4,8) 2
(4,10) 1
(5,8) 2
(5,9) 1
(5,10) 5
(5,11) 2
(5,12) 2
(6,11) 2
(7,10) 1

(4.667,4.667) 2

1) LM1(G) =
∑

v∈V (G)

d2(v)
2

= 1(0.667)2 + 1(0.778)2 + 2(5)2

+ 3(4)2 + 6(6)2 + 3(7)2 + 2(3)2

+ 3(2)2

= 492.0502

2) LM2(G) =
∑

uv∈E(G)

d2(u)d2(v)

= 2(0.667× 6) + 1(0.778× 4) + 2(2× 3)

+ 2(2× 5) + 2(3× 5) + 2(4× 4)

+ 4(4× 6) + 1(4× 7) + 2(5× 7)

+ 5(6× 6) + 4(6× 7) + 2(7× 7)

= 745.116

3) LM3(G) =
∑

v∈V (G)

d(v)d2(v)

= 1(2× 0.667) + 1(1× 0.778)

+ 2(1× 2) + 1(2× 2) + 2(2× 3)

+ 2(3× 4) + 1(4× 4) + 2(3× 5)

+ 4(3× 6) + 2(4× 6) + 1(3× 7)

+ 2(4× 7)

= 289.112

4) LEC(G) =
∑

v∈V (G)

d2(v)e(v)

= 1(0.667× 8) + 1(0.778× 9)

+ 2(2× 9) + 1(2× 6) + 1(3× 7)

+ 1(3× 5) + 2(4× 8) + 1(4× 9)

+ 1(6× 9) + 2(6× 8) + 3(6× 7)

+ 1(7× 7) + (7× 6) + 1(5× 5)

+ 1(5× 8)

= 670.338

5) RZC1(G) =
∑

e∈E(G)

τ(e)2

= 1(2.778)2 + 2(3)2 + 2(4.667)2

+ 2(5)2 + 4(6)2 + 4(8)2

+ 1(9)2 + 7(10)2 + 4(11)2

+ 2(12)2

= 2072.2791

6) RZC2(G) =
∑
ef̃

τ(e)τ(f)

= 2(2.778× 8) + 1(2.778× 9)

+ 1(3× 3) + 2(3× 6) + 1(5× 5)

+ 2(5× 6) + 4(6× 8) + 2(6× 10)

+ 2(8× 9) + 4(8× 10) + 2(9× 12)

+ 3(10× 10) + 8(10× 11)

+ 2(11× 11) + 2(11× 12)

+ 2(10× 12) + 2(4.667× 11)

+ 1(4.667× 4.667) + 4(4.667× 10)

= 3428.5849

7) RZC3(G) =
∑

e∈E(G)

deg(e)τ(e)

= 2(2× 3) + 2(2× 5)

+ 1(2.778× 2.778) + 2(3× 6)

+ 2(4× 6) + 2(4× 8) + 1(4× 10)

+ 2(5× 8) + 1(5× 9) + 5(5× 10)

+ 2(5× 11) + 2(5× 12) + 2(6× 11)

+ 1(7× 10) + 2(4.667× 4.667)

= 1078.2791
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8) mχv =
N∑
i=1

m+1∏
k=1

[
1

δvk

] 1
2

= 1

(
1

0.778

)0.5

+ 1

(
1

0.667

)0.5

+ 2

(
1

1

)0.5

+ 3

(
1

2

)0.5

+ 7

(
1

3

)0.5

+ 5

(
1

4

)0.5

+ 2

(
1

5

)0.5

= 13.9154

9) R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

= 2(1× 5)−0.5 + 1(0.778× 4)−0.5

+ 2(0.667× 4)−0.5 + 2(2× 2)−0.5

+ 5(3× 3)−0.5 + 11(3× 4)−0.5

+ 2(4× 4)−0.5 + 2(4× 5)−0.5

= 10.1075

10) M1(G) =
∑

uv∈E(G)

[d(u) + d(v)]

= 2(1 + 5) + 1(0.778 + 4)

+ 2(0.667 + 4) + 2(2 + 2)

+ 2(2 + 5) + 5(3 + 3)

+ 11(3 + 4) + 2(4 + 4) + 2(4 + 5)

= 189.112

11) M2(G) =
∑

uv∈E(G)

[d(u)× d(v)]

= 2(1× 5) + 1(0.778× 4)

+ 2(0.667× 4) + 2(2× 2)

+ 2(2× 5) + 5(3× 3)

+ 11(3× 4) + 2(4× 4) + 2(4× 5)

= 295.448

12) SCI(G) =
∑

uv∈E(G)

1√
d(u) + d(v)

= 2

(
1√
1 + 5

)
+ 1

(
1√

0.778 + 4

)
+ 2

(
1√

0.667 + 4

)
+ 2

(
1√
2 + 2

)
+ 2

(
1√
2 + 5

)
+ 2

(
1√
3 + 3

)
+ 11

(
1√
3 + 4

)
+ 2

(
1√
4 + 4

)
+ 2

(
1√
4 + 5

)
= 11.5283

13) GA(G) =
∑

uv∈E(G)

2
√
d(u)d(v)

d(u) + d(v)

= 2

(
2
√
1× 5

1 + 5

)
+ 1

(
2
√
0.778× 4

0.778 + 4

)
+ 2

(
2
√
0.667× 4

0.667 + 4

)
+ 2

(
2
√
2× 2

2 + 2

)
+ 2

(
2
√
2× 5

2 + 5

)
+ 2

(
2
√
3× 3

3 + 3

)
+ 11

(
2
√
3× 4

3 + 4

)
+ 2

(
2
√
4× 4

4 + 4

)
+ 2

(
2
√
4× 5

4 + 5

)
= 27.3109

14) H(G) =
∏

uv∈E(G)

2

[d(u) + d(v)]

= 2

(
2

1 + 5

)
+ 1

(
2

0.778 + 4

)
+ 2

(
2

0.667 + 4

)
+ 2

(
2

2 + 2

)
+ 2

(
2

2 + 5

)
+ 2

(
2

3 + 3

)
+ 11

(
2

3 + 4

)
+ 2

(
2

4 + 4

)
+ 2

(
2

4 + 5

)
= 9.2677

15) HM(G) =
∑

uv∈E(G)

[d(u) + d(v)]2

= 2(1 + 5)2 + 1(0.778 + 4)2

+ 2(0.667 + 4)2 + 2(2 + 2)2

+ 2(2 + 5)2 + 5(3 + 3)2

+ 11(3 + 4)2 + 2(4 + 4)2 + 2(4 + 5)2

= 1277.3911

16) F (G) =
∑

uv∈E(G)

[d(u)2 + d(v)2

= 2(12 + 52) + 1(0.7782 + 42)

+ 2(0.6672 + 42) + 2(22 + 22)

+ 2(22 + 52) + 5(32 + 32)

+ 11(32 + 42) + 2(42 + 42) + 2(42 + 52)

= 686.4951

We show the numerical values of certain chosen distance
based leap Zagreb indices and degree based indices for the
other drugs are computed and presented in the Table IX.

III. RESULTS AND DISCUSSIONS

A. Quadratic Regression Analysis

This segment’s main goal is to improve the quantitative
structure-property relationship (QSPR) between the
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TABLE IX: Distance and Degree based Indices for Schizophrenia (Antipsychotic) Drugs

Drugs LM1 LM2 LM3 LEC RZC1 RZC2 RZC3
0χv R M1 M2 SCI GA H HM F

Chlor 492.050 745.116 289.112 670.338 2072.279 3428.585 1078.279 13.915 10.107 189.112 295.448 11.528 27.311 9.268 1277.391 686.495

Triflu 717.445 911.004 364.334 1394.337 2532.562 4462.135 1512.894 16.769 12.398 251.334 440.669 14.577 35.409 11.520 1888.228 1006.890

Thior 535.890 812.006 320.668 875.673 2225.120 3718.032 1204.785 16.705 12.293 210.668 325.671 14.148 31.035 12.194 1389.122 737.780

Thioth 808.890 1123.350 396.336 1447.341 3323.915 5882.764 1621.912 19.468 15.634 269.336 375.347 16.789 37.745 13.548 1774.253 1023.559

Halo 562.605 818.112 334.778 1575.226 2157.717 3391.894 1303.717 15.383 11.361 235.778 399.112 13.776 34.070 11.008 1675.829 877.605

Zipra 737.050 1077.005 411.112 1686.452 3056.057 5160.472 1786.894 17.022 12.918 277.112 471.115 15.475 38.267 12.136 2002.725 1060.495

Loxa 606.605 927.112 346.778 837.002 2623.717 4865.450 1508.717 13.753 10.174 233.778 409.112 12.603 31.920 9.743 1721.829 903.605

Queti 632.445 908.004 359.334 1410.671 2517.562 4407.802 1432.894 15.697 12.906 232.668 365.338 14.519 34.010 11.932 1590.456 859.780

Aripi 641.211 892.780 371.556 1874.230 2398.547 4114.568 1466.991 18.514 13.267 269.556 452.224 15.791 38.577 12.695 1921.659 1017.211

Cloza 582.605 919.112 342.778 824.780 2535.717 4435.894 1442.717 13.845 10.266 229.778 393.112 12.678 31.960 9.843 1649.829 863.605

Risp 785.000 1129.000 416.000 1926.000 3122.000 5271.000 1907.000 17.364 12.730 296.000 551.000 15.755 40.031 12.398 2296.000 1194.000

Olanza 553.445 845.003 316.334 758.336 2390.560 4074.462 1260.893 13.781 9.710 213.334 358.336 12.027 29.563 9.455 1527.562 810.890

Serti 768.605 1095.112 424.778 1771.114 2993.717 4935.450 1752.717 18.116 13.552 297.778 517.112 16.684 41.886 13.146 2167.829 1133.605

TABLE X: Schizophrenia Drugs’ Physicochemical Properties

Drugs BP (◦C) MP (◦C) E (KJ/mol) FP (◦C) MR (cm3) C MW (g/mol) R (cm3)

Chlorpromazine 450.1 60 70.9 226 92.8 339 355.33 93.76

Trifluoperazine 506 242 77.6 259.8 108.2 510 480.4 110.98

Thioridazine 515.665 73 78.8 265.7 112.8 432 370.6 113.52

Thiothixene 599 114 89.2 316.1 126.5 711 443.62 137.85

Haloperidol 529 151.5 84.6 273.8 101 451 375.9 102.59

Ziprasidone 554.8 213 83.6 289.3 114.1 573 412.936 116.72

Loxapine 458.6 109 71.9 231.1 92.1 450 327.81 95.11

Quetiapine 556.5 172 88.2 290.4 110.2 496 383.51 114.09

Aripiprazole 646.2 139 95.3 344.6 120.3 559 448.4 124.34

Clozapine 489.2 183 75.5 249.6 93.7 446 326.8 97.36

Risperidone 572.4 170 85.8 300 111.7 731 410.5 111.7

Olanzapine 476 195 74 241.7 92.2 432 312.432 107.17

Sertindole 592.1 95 88.3 311.9 120.7 623 440.941 131.77

TABLE XI: The Values of Correlation Coefficient (R) acquired by Quadratic Regression Model between Topological Indices
and Physicochemical Properties of Different Drugs Employed in the Remedy of Antipsychotic Drugs

TI BP MP E FP MR C MW R
LM1 0.67 0.63 0.614 0.67 0.733 0.944 0.73 0.732

LM2 0.584 0.59 0.507 0.584 0.63 0.926 0.494 0.644

LM3 0.742 0.526 0.697 0.741 0.73 0.908 0.662 0.699

LEC 0.863 0.393 0.871 0.863 0.773 0.781 0.796 0.677

RZC1 0.515 0.554 0.429 0.515 0.622 0.896 0.456 0.653

RZC2 0.433 0.501 0.35 0.433 0.551 0.838 0.399 0.593

RZC3 0.589 0.479 0.538 0.588 0.555 0.874 0.53 0.539
0χv 0.892 0.333 0.833 0.892 0.982 0.815 0.884 0.931

R 0.867 0.247 0.848 0.867 0.979 0.803 0.854 0.923

M1 0.774 0.577 0.72 0.774 0.714 0.908 0.69 0.68

M2 0.561 0.603 0.512 0.561 0.433 0.737 0.528 0.385

SCI 0.904 0.477 0.863 0.904 0.958 0.895 0.826 0.928

GA 0.849 0.554 0.811 0.849 0.8 0.886 0.758 0.75

H 0.895 0.519 0.862 0.895 0.99 0.822 0.804 0.957
HM 0.64 0.571 0.587 0.639 0.539 0.83 0.612 0.512

F 0.687 0.568 0.629 0.687 0.622 0.901 0.67 0.597

topological indices and various physicochemical properties
of antipsychotic (schizophrenic) drugs. These include
first-generation drugs like chlorpromazine (DB00477),
trifluoperazine (DB00831), thioridazine (DB00679),
thiothixene (DB01623) and haloperidol (DB00502),
as well as atypical (newer) drugs like ziprasidone
(DB00246), loxapine (DB00408), quetiapine (DB01224),
aripiprazole (DB01238), clozapine (DB00363), risperidone
(DB00734), olanzapine (DB00334), and sertindole
(DB06144) used in the treatment of schizophrenia patients,
this study incorporates various topological indices to

evaluate the efficacy of oral antipsychotic drugs. Our
approach involves utilizing nine degree-based and seven
distance-based leap Zagreb topological indices to model
eight physicochemical characteristics of the drugs under
consideration. These include their boiling point (BP),
melting point (MP), enthalpy (E), flash point (FP), molar
refractivity (MR), complexity (C), molecular weight (MW),
and refractivity (R). The physicochemical property values
of these medications are compiled from the ChemSpider
chemical database and are presented in Table X.

Next, we will construct quadratic regression models to
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TABLE XII: Optimistic Estimates of Physicochemical Properties Derived from Quadratic Regression Models

Models TI No. Eq R R2 F S.E Adjusted - R2

BP = 100.002 + 29.904(SCI) + 0.027(SCI)2 SCI (A1) 0.904 0.818 22.405 27.630 0.781

MP = -1503.337+4.988(LM1)-0.004(LM1)2 LM1 (A2) 0.63 0.397 3.291 46.916 0.276

E = 55.087+0.028(LEC)-(5.490e-6)(LEC)2 LEC (A3) 0.871 0.759 15.717 4.085 0.71

FP = 13.937 + 18.128(SCI) + 0.015(SCI)2 SCI (A4) 0.904 0.818 22.399 16.717 0.781

MR = 99.476− 7.216(H) + 0.680(H)2 H (A5) 0.990 0.981 252.899 1.824 0.977

C = 347.440-0.521(LM1)+0.001(LM1)2 LM1 (A6) 0.944 0.891 40.692 41.843 0.869

MW = -760.905+119.951(0χv)-2.972(0χv)2 0χv (A7) 0.884 0.782 17.961 27.077 0.739

R = 328.700− 48.097(H) + 2.511(H)2 H (A8) 0.957 0.916 54.659 4.280 0.899

TABLE XIII: Comparison of the Results Obtained from Quadratic and Linear Regression Models

Physicochemical Properties Our obtained results Our quadratic model Results obtained by Zhang [4] Their linear regression model

R values Most relevant indices R values Most relevant indices

BP 0.904 SCI 0.915 H

MP 0.63 LM1 0.175 M2

E 0.871 LEC 0.885 H

FP 0.904 SCI 0.915 H

MR 0.990 H 0.902 RA

C 0.944 LM1 0.944 M2

MW 0.884 0χv 0.85 ABC

R 0.957 H 0.91 M2

analyze the relationship between the topological indices of
these drugs and their physicochemical properties. Our choice
of quadratic regression is based on its superior performance
compared to linear and cubic regression models. Before
proceeding, let’s provide a brief overview of the quadratic
regression model and highlight some statistical measures that
will be computed. We will use the following equation in our
regression analysis:

Y = c+ u1X + u2X
2;N,R (Quadratic equation)

In the provided equation, where the dependent or response
variable is denoted by Y, and the independent or predictor
variable is denoted by X. Regression model constant and
individual topological index coefficients, respectively, are
denoted by the coefficients c and ui (where i = 1, 2). Here,
N corresponds to the total sample size and R denotes the
correlation coefficient. Various statistical measures gauge the
effectiveness of a regression model, including R2, F-statistic
(F), standard error (S.E.), and adjusted R2. These metrics
collectively provide insights into the model’s goodness of
fit and predictive accuracy.

Among the obtained values of R and R squared for
each physicochemical property, the model with the highest
R is considered the most optimistic regression model
for that property. Consequently, the maximum R for each
physicochemical property is emphasized in bold in Table XI.
The Table XII presents the quadratic regression equations
for each physicochemical property associated with the
topological index having the highest R value. Additionally,
the table includes the corresponding values of F, S.E, and

adjusted - R2.

Based on the quadratic regression models presented
in Table XII for specific degree-based and distance-
based topological indices, reveals noteworthy insights for
these indices, as illustrated by equations (A1) - (A8)
demonstrate a strong correlation with the physicochemical
properties of drugs utilized in the treatment of schizophrenia.

We now present a comparison of the R values derived from
our quadratic regression models for various physicochemical
properties with those calculated in a prior study by Zhang et
al. [5]. In their study, Zhang et al. utilized linear regression
models to obtain R values for the same physicochemical
properties. The comparative analysis is summarized and
listed in Table XIII where the bolded values shows that our
multigraph model overshadows the simple graph model.
A set of valence delta values was devised to facilitate the
calculation of certain degree and distance-based indices
tailored for heteroatom-containing antipsychotic drugs. In
our demonstrated quadratic regression models, the outcomes
underscore notable enhancements in correlations achieved
through our multigraph model, particularly in addressing the
specific treatment for heteroatoms. For all the considered
physicochemical properties of these drugs (except BP, E,
and FP with minor variations), our results overshadow those
reported by Zhang et al. in the article [5].

We assert that combining the number of valence electrons
with the count of attached hydrogen atoms establishes a
robust correlation between the structural features depicted in
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the hydrogen-suppressed graph and the properties of drugs.
Moreover, all the aforementioned implications are visually
illustrated and depicted in Figure 3.

SIMPLE GRAPH

MULTIGRAPH

Fig. 3: Multigraph vs Simplegraph of R Values

The F-value is a statistical indicator employed in analysis
of variance (ANOVA) to determine the significance of the
overall model fit. Generally, an F-value greater than 1 is
considered significant. A higher F-value implies a stronger
fit of the regression model to the data, indicating that the in-
dependent variables collectively exert a substantial influence
on the dependent variable. Consequently all our multigraph
models exhibit F > 1. A higher value of R2, closer to 1,
along with a higher Adjusted-R2 and a lower standard error
(S.E.), indicate the effectiveness of a regression model in
explaining the variability in the data. For a comprehensive
understanding, refer articles [28] amd [29].

B. Stepwise Regression Analysis

Several linear QSPR models involving 16 topological
descriptors were established and the strongest multivariable
correlations were identified by the stepwise regression
implemented in IBM SPSS Statistics 25 used to develop
the linear model for the prediction of boiling point, melting
point, enthalpy, flash point, molar refractivity, complexity,
molecular weight and refractivity. Stepwise selection in
regression is a method that combines aspects of forward
selection and backward elimination to iteratively build
or refine a regression model. This approach is aimed at
identifying a subset of predictor variables that collectively
provide the best fit for predicting the outcome variable.

QSPR models for boiling point (BP)

The best linear model for boiling point contains one topo-
logical descriptor, namely sum connectivity index (SCI). The
model is presented below:

BP = 94.635 + 30.670(±4.368)SCI (Model 1)

N = 13, R = 0.904, R2 = 0.818, R2
adj = 0.801, S.E =

26.3441, F = 49.291, sig = 0.000, Tolerance = 1, VIF = 1
and DW = 1.604.

Here ± 4.368 n the regression model equation indicates
the standard error of the coefficient. This indicates the range
within which the true value of the coefficient is expected to
lie, given the statistical confidence level (usually 95 %).

QSPR models for melting point (MP)

While performing stepwise regression for melting point,
no variables were entered into the equation since none of
the independent variables met the criteria for entry into
the regression model. This can happen for several reasons
significance level might not reach the standard sig value set
at 0.05, multicollinearity or the independent variable might
not have significant predictive power to explain the variance
in the dependent variable.

QSPR models for enthalpy (E)

The best linear model for enthalpy contains two topological
descriptors, namely, leap eccentric connectivity (LEC) and
second Zagreb index (M2).

E = 63.021 + 0.014(±0.003)LEC (Model 1)

N = 13, R = 0.865, R2 = 0.749, R2
adj = 0.726, S.E = 3.9711,

F = 32.835, sig = 0.000, Tolerance = 1 and VIF = 1

E = 76.948 + 0.022(±0.003)LEC − 0.057(±0.020)M2

(Model 2)
N = 13, R = 0.927, R2 = 0.859, R2

adj = 0.831, S.E = 3.1224,
F = 30.451, sig = 0.000, Tolerance = 0.366, VIF = 2.734
and DW = 1.192.

QSPR models for flash point (FP)

The best linear model for flash point contains one topological
descriptor, namely sum connectivity index (SCI). The model
is presented below:

FP = 10.953 + 18.554(±2.643)SCI (Model 1)

N = 13, R = 0.904, R2 = 0.818, R2
adj = 0.801, S.E =

15.9395, F = 49.278, sig = 0.000, Tolerance = 1, VIF = 1
and DW = 1.607.

QSPR models for molar refractivity (MR)

The best linear model for molar refractivity contains one
topological descriptors, namely, harmonic (H).

MR = 14.632 + 8.101(±0.414)H (Model 1)

N = 13, R = 0.986, R2 = 0.972, R2
adj = 0.970, S.E = 2.0867,

F = 383.075, sig = 0.000, Tolerance = 1, VIF = 1 and DW
= 2.481.

QSPR models for complexity (C)

The best linear model for complexity contains one topolog-
ical descriptor, namely first leap Zagreb index (LM1). The
model is presented below:

C = −152.614 + 1.037(±0.114)LM1 (Model 1)
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N = 13, R = 0.940, R2 = 0.883, R2
adj = 0.873, S.E =

41.2304, F = 83.120, sig = 0.000, Tolerance = 1, VIF =1
and DW = 1.920.

QSPR models for molecular weight (MW)

The best linear model for molecular weight contains one
topological descriptor, namely valence connectivity index of
order 0 (0χv). The model is presented below:

MW = 11.887 + 23.461(±4.091)0χv (Model 1)

N = 13, R = 0.866, R2 = 0.749, R2
adj = 0.729, S.E =

27.6981, F = 32.886, sig = 0.000, Tolerance = 1, VIF =1
and DW = 2.038.

QSPR models for refractivity (R)

The best linear model for refractivity contains one topologi-
cal descriptor, namely valence connectivity index of order 0
(0χv). The model is presented below:

MW = 9.549 + 6.337(±0.827)0χv (Model 1)

N = 13, R = 0.918, R2 = 0.842, R2
adj = 0.828, S.E = 5.6002,

F = 58.686, sig = 0.000, Tolerance = 1, VIF =1 and DW =
1.941.

DISCUSSION:
We studied the relationship between the topological

indices and the physicochemical properties of 13
antispychotic drugs. In this section, to find the best
model to predict the parameters mentioned, we use
statistical parameters like VIF, tolerance, DW and residual
to measure the significant estimators.

Multicollinearity is a statistical phenomenon that occurs
when two or more independent variables in a regression
model are highly correlated with each other. This can
lead to unstable and unreliable estimates of the regression
coefficients.

The VIF measures the degree to which the variance of
a regression coefficient is inflated due to multicollinearity.
A VIF value greater than 10 is generally considered to
indicate the presence of multicollinearity. Conversely, a
VIF value less than 1 may suggest that the variable is
a linear combination of other independent variables and
should be removed from the model. In all our final models
the VIF lies within the acceptable range this indicates no
multicollinearity issue.

The success of QSPR models relies on the accuracy of
input data, the selection of appropriate molecular descriptors,
and the use of robust statistical tools. All our above models
produced a squared correlation coefficient close to 1, and
the results of other statistical parameters are also very
satisfactory.

For verification and validity of the regression models, we
will focus on Durbin-Watson statistics and unstandardized
predicted and residual values. The Durbin-Watson (DW)
statistic helps evaluate the goodness of fit of a regression

model. A DW value close to 2 suggests that the model
effectively captures the relationship between the variables
and that the residuals are independent. This implies that
the model’s predictions are reliable and not influenced by
temporal dependencies in the data. DW statistic for all the
models except for molar refractivity and molecular weight
the DW values close to 2 which indicates that the model
effectively captures the relationship between the variables.

The residual is the difference between the observed
and predicted values. Comparison between predicted and
observed values of all the above models of the antispychotic
drugs is shown in Tables XIV to XX . Figures 4 - 10
show the linear correlation between the observed and the
predicted residuals of the above optimal models for each
physicochemical property.

NOTE: We observe that the results obtained from
quadratic regression, the optimal estimator for the
physicochemical properties of boiling point, flash point
is the sum connectivity index (SCI) which has the same
estimator while performing stepwise regression.

Similarly for the other physicochemical properties
enthalpy, molecular refractivity, complexity and molecular
weight except refractivity. This suggests that these predictors
indicates that these predictors are considered significant in
capturing the variation in the dependent variable, accounting
for both linear and quadratic effects.

TABLE XIV: Comparison between Predicted and Observed
Values of Boiling Point

Drugs BP
(OBS)

UB
(PRED BP)

LB
(PRED BP) RES

Chlor 450.1 452.57 443.83 -2.47
Triflu 506 546.08 537.34 -40.08
Thior 515.665 532.92 524.19 -17.26
Thioth 599 613.92 605.19 -14.92
Halo 529 521.51 512.78 7.49
Zipra 554.8 573.62 564.89 -18.82
Loxa 458.6 485.53 476.80 -26.93
Queti 556.5 544.31 535.57 12.19
Aripi 646.2 583.31 574.58 62.89
Cloza 489.2 487.82 479.09 1.38
Risper 572.4 582.20 573.47 -9.80
Olanza 476 467.86 459.12 8.14

Serti 592.1 610.72 601.98 -18.62

TABLE XV: Comparison between Predicted and Observed
Values of Enthalpy

Drugs E
(OBS)

UB
(PRED E)

LB
(PRED E) RES

Chlor 70.9 74.88 74.83 -3.98
Triflu 77.6 82.53 82.48 -4.93
Thior 78.8 77.67 77.63 1.13
Thioth 89.2 87.42 87.37 1.78
Halo 84.6 88.88 88.83 -4.28
Zipra 83.6 87.22 87.17 -3.62
Loxa 71.9 72.07 72.02 -0.17
Queti 88.2 87.18 87.14 1.02
Aripi 95.3 92.43 92.38 2.87
Cloza 75.5 72.71 72.66 2.79
Risper 85.8 87.94 87.89 -2.14
Olanza 74 73.23 73.18 0.77

Serti 88.3 86.46 86.41 1.84
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TABLE XVI: Comparison between Predicted and Observed
Values of Flash Point

Drugs FP
(OBS)

UB
(PRED FP)

LB
(PRED FP) RES

Chlor 226 227.49 222.20 -1.49
Triflu 259.8 284.06 278.77 -24.26
Thior 265.7 276.10 270.81 -10.40
Thioth 316.1 325.10 319.81 -9.00
Halo 273.8 269.20 263.91 4.60
Zipra 289.3 300.72 295.43 -11.42
Loxa 231.1 247.43 242.14 -16.33
Queti 290.4 282.99 277.70 7.41
Aripi 344.6 306.58 301.30 38.02
Cloza 249.6 248.82 243.53 0.78
Risper 300 305.91 300.62 -5.91
Olanza 241.7 236.74 231.45 4.96

Serti 311.9 323.16 317.87 -11.26

TABLE XVII: Comparison between Predicted and Observed
Values of Molar Refractivity

Drugs MR
(OBS)

UB
(PRED MR)

LB
(PRED MR) RES

Chlor 92.8 90.13 89.30 2.67
Triflu 108.2 108.37 107.54 -0.17
Thior 112.8 113.83 113.00 -1.03
Thioth 126.5 124.80 123.97 1.70
Halo 101 104.22 103.39 -3.22
Zipra 114.1 113.36 112.53 0.74
Loxa 92.1 93.98 93.15 -1.88
Queti 110.2 111.71 110.88 -1.51
Aripi 120.3 117.89 117.06 2.41
Cloza 93.7 94.79 93.96 -1.09
Risper 111.7 115.48 114.65 -3.78
Olanza 92.2 91.64 90.82 0.56

Serti 120.7 121.54 120.71 -0.84

TABLE XVIII: Comparison between Predicted and Observed
Values of Complexity

Drugs C
(OBS)

UB
(PRED C)

LB
(PRED C) RES

Chlor 339 357.76 357.53 -18.53
Triflu 510 591.49 591.26 -81.26
Thior 432 403.22 402.99 29.01
Thioth 711 686.32 686.09 24.91
Halo 451 430.92 430.69 20.31
Zipra 573 611.82 611.59 -38.59
Loxa 450 476.55 476.32 -26.32
Queti 496 503.35 503.12 -7.12
Aripi 559 512.44 512.21 46.79
Cloza 446 451.66 451.43 -5.43
Risper 731 661.55 661.32 69.68
Olanza 432 421.42 421.19 10.81

Serti 623 644.54 644.32 -21.32

TABLE XIX: Comparison between Predicted and Observed
Values of Molecular Weight

Drugs MW
(OBS)

UB
(PRED MW)

LB
(PRED MW) RES

Chlor 355.33 342.44 334.26 12.89
Triflu 480.4 409.40 401.21 71.00
Thior 370.6 407.89 399.71 -37.29
Thioth 443.62 472.72 464.53 -29.10
Halo 375.9 376.88 368.70 -0.98
Zipra 412.936 415.33 407.15 -2.40
Loxa 327.81 338.64 330.46 -10.83
Queti 383.51 384.25 376.07 -0.74
Aripi 448.4 450.33 442.15 -1.93
Cloza 326.8 340.80 332.62 -14.00
Risper 410.5 423.35 415.17 -12.85
Olanza 312.432 339.30 331.12 -26.87

Serti 440.941 441.00 432.81 -0.05

TABLE XX: Comparison between Predicted and Observed
Values of Refractivity

Drugs R
(OBS)

UB
(PRED R)

LB
(PRED R) RES

Chlor 93.76 98.56 96.90 -3.14
Triflu 110.98 116.64 114.99 -4.01
Thior 113.52 116.24 114.58 -1.06
Thioth 137.85 133.74 132.09 5.76
Halo 102.59 107.86 106.20 -3.61
Zipra 116.72 118.24 116.59 0.13
Loxa 95.11 97.53 95.87 -0.76
Queti 114.09 109.85 108.20 5.89
Aripi 124.34 127.70 126.05 -1.71
Cloza 97.36 98.11 96.46 0.90
Risper 111.7 120.41 118.76 -7.06
Olanza 107.17 97.71 96.05 11.12

Serti 131.77 125.18 123.52 8.25

Fig. 4: Comparison between Predicted and Observed Resid-
ual Values of Boiling Point

Fig. 5: Comparison between Predicted and Observed Resid-
ual Values of Enthalpy

Fig. 6: Comparison between Predicted and Observed Resid-
ual Values of Flash Point
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Fig. 7: Comparison between Predicted and Observed Resid-
ual Values of Molar Refractivity

Fig. 8: Comparison between Predicted and Observed Resid-
ual Values of of Complexity

Fig. 9: Comparison between Predicted and Observed Resid-
ual Values of Molecular Weight

Fig. 10: Comparison between Predicted and Observed Resid-
ual Values of Refractivity

C. Multivariate Analysis

Multivariate analysis [30] is a statistical technique used
to analyze data sets that involve the observation of multiple
variables. Unlike univariate analysis, which considers
only one variable at a time, multivariate analysis allows
researchers to examine the relationships between two or
more variables simultaneously. In the further parts of our
study, we used the two chemometric methods, such as cluster
analysis and principal component analysis. Chemometrics
refers to a set of mathematical and statistical techniques
used in chemistry and related fields for analyzing chemical
data. These methods are applied to interpret and extract
meaningful information from complex chemical datasets.
Multivariate analysis were performed by means of software
packages: OriginPro 2023b and IBM SPSS Statistics 25.

1) CLUSTER ANALYSIS (CA): This approach uses
an unsupervised procedure to measure the distance or
similarity of objects to be grouped. Based on how similar
two objects are, they are grouped together into clusters.
The first premise is that an object’s proximity inside the
space described by its variables indicates how similar it’s
characteristics are to each other. We employed Ward’s
method for combining clusters and used squared Euclidean
distance as the measurement metric. The data presented in
Table IX were utilized for analyzing the similarity of the
drugs under study. Analysis of the data reveals variations
in the topological index values based on the calculation
formula and the structural characteristics of each drug used
for descriptor calculations.

The initial analysis focused on comparing the
physicochemical property values of these drugs obtained
experimentally, depicted in Figure 11, with their
corresponding theoretical values derived from topological
indices, illustrated in Figures 12 and 13.

I

II

I(A)

I(B)

II(A)

II(B)

Fig. 11: Custer Analysis based on the Experimental Values
of the Antipsychotic Drugs

A dendrogram of similarity analysis presented in Figures
11 and 12 shows that there are two visible clusters(primary)
(color: red and purple) with its two sub clusters [color:
purple → pink, green as sub cluster I(A) and I(B) and color:
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II(B)

II

II(A)

I(B)

I

I(A)

Fig. 12: Custer Analysis based on the Theoretical Values of
the Antipsychotic Drugs

red → blue, yellow as sub cluster II(A) and II(B)] in the
figure.

In employing the Ward’s method utilizing Squared
Euclidean distance as the metric, our similarity analysis
between experimental and theoretical values reveals striking
similarities. Notably, we observe that the primary clusters,
labeled I and II, exhibit slight discrepancies in group
compositions. Specifically, the drugs Haloperidol and
Quetiapine, initially categorized within cluster I during
similarity analysis with experimental values, transition to
cluster II when analyzed against theoretical values.

Furthermore, an intriguing consistency emerges in
the identification of the most representative observation,
Quetiapine, and the least representative observation,
Chlorpromazine, across both experimental and theoretical
values cluster analyses.

The similarity observed among compounds within clusters
stems from the computation of topological indices derived
from their respective structures. Consequently, compounds
grouped within clusters exhibit structural similarities, indicat-
ing that topological indices can effectively aid in categorizing
first generation and second-generation antipsychotic drugs.
However, it’s crucial to note that the outcomes of this
analysis are influenced not solely by the physicochemical
properties of the compounds but also by their underlying
chemical structures.

The subsequent similarity analysis (CA) allowed for a
more precise comparison of the sixteen topological indices.
Figure 13, the dendrogram illustrating the similarity of these
indices, confirms that certain degree-based and distance-
based indices such as two primary clusters, cluster I (color:
red) and cluster II (color: purple) under which H index
from cluster I has a least distance of 0.0449, 0χv index
with a least distance of 0.18215 and from cluster II we have
LM1 index with a distance of 2.41391, this indicates that
in the context of estimating the physicochemical properties
of drugs using topological indices, these value signifies the
similarity or closeness between the clusters being merged.

II

I

Fig. 13: Custer Analysis based on the Calculated Topological
Indices

A low least distance value signifies that the clusters being
merged are cohesive and share common traits. Notably,
our quadratic and stepwise regression models identifies H,
0χv and LM1 as the most relevant indices for estimating
physicochemical properties aligns with our dendrogram
analysis, as these indices are grouped under similarity in
clusters I and II respectively.

2) PRINCIPAL COMPONENT ANALYSIS (PCA): PCA
is primarily used to reduce the dimensionality of the data
while retaining as much variance as possible. Based on the
results obtained in the preceding sections, we conducted a
principal component analysis (PCA) in this study. Recently
Wardecki et al. [31] (2023) evaluated topological indices’
predictive power for physicochemical properties of bioactive
substances, employing PCA and CA in their analysis and
Ciura et al. [32] (2019) investigated the chromatographic
behavior of antipsychotic drugs using quantitative struc-
ture–retention relationships using PCA and CA. In the year
2000’s, Ražić et al. [33](2006) utilized PCA in their multi-
variate characterization of herbal drugs and rhizosphere soil
samples based on metallic content. The data of this study un-
derwent reduction employing the Kaiser criterion, resulting
in three principal components chosen based on eigenvalues
exceeding 1. These three components collectively account
for 98.38 % of the system’s variability.

Table IX presents the topological indices utilized in this
study. Initially, all indices were subjected to a transformation
involving the natural logarithm of the index value plus one.
This adjustment was necessary due to potential variations
in the scale of certain indices, which could differ by
several orders of magnitude. Correlation coefficients showed
significant enhancement when using a log-transformed
dataset. Scree Plot of the eigenvalues of the principal
componenet analysis is depicted in Figure 14 and the
projection plot illustrating these components is displayed in
Figure 15.

PCA score values reflect the transformation of the initial
data projected onto the newly defined set of principal
components. In the context of physicochemical properties
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Fig. 14: Scree Plot of Eigenvalues of the PC’s

of antipsychotic drugs, these scores essentially depict the
performance of each drug with respect to the derived
principal components. A higher score for a specific
drug on a principal component suggests that the drug
exhibits properties more closely aligned with that particular
component. The results of the PCA are presented in Tables
XXI, XXII and XXIII.

TABLE XXI: Eigenvalues, Percent of Variance and Cumu-
lative Derived from PCA

No. of PC’s Eigenvalues Variance explained % Cumulative

1 13.03907 81.49% 81.49%

2 1.7007 10.63% 92.12%

3 1.00101 6.26% 98.38%

Fig. 15: Projection Plot of PCA Scores of Studied Drugs
based on Log-Transformed TI’s

Basically, the PCA confirmed the conclusions drawn from
cluster analysis, quadratic and stepwise regression analysis.
The clusters highlighted in Figure 15 provide further vali-

TABLE XXII: PCA Scores of Antipsychotic Drugs

PC1 PC2 PC3
Drugs

81.49% 10.63% 6.26%

Scores Scores Labels

-1.83534 0.25103 0.30666 Chlorpromazine

0.27019 0.05119 -0.47481 Trifluoperazine

-0.8619 1.62791 0.58853 Thioridazine

1.08917 0.81878 2.38593 Thiothixene

-0.51239 0.6981 -1.72986 Haloperidol

0.95062 -0.49491 0.16689 Ziprasidone

-0.43856 -1.66935 0.31534 Loxapine

-0.10657 0.64509 0.43803 Quetiapine

0.48912 1.18304 -1.32457 Aripiprazole

-0.58673 -1.25416 0.18421 Clozapine

1.33666 -0.90502 -0.56248 Risperidone

-1.09466 -0.94184 0.15466 Olanzapine

1.30038 -0.00986 -0.44853 Sertindole

dation of the findings from the cluster analysis conducted
on the entire dataset. Specifically, the sub clusters denoted
as I(A), I(B) (colored in pink and green) and II(A), II(B)
(colored in blue and yellow) consist of the same compounds
identified in Figure 11. This observation underscores the
effectiveness of PCA analysis, which condenses multiple data
points describing the system into three principal components.
Despite this reduction in dimensionality, the conclusions
drawn from the analysis remain consistent.

TABLE XXIII: PCA Loadings of the Original Variables

No. Parameter
PC loadings

PC1 PC2

1 LM1 0.26748 -0.06531

2 LM2 0.25654 -0.19729

3 LM3 0.27376 -0.07175

4 LEC 0.24045 0.20483

5 RZC1 0.24107 -0.21836

6 RZC2 0.22131 -0.2707

7 RZC3 0.26021 -0.24627

8 0χv 0.22482 0.42028

9 R 0.22258 0.41603

10 M1 0.27184 -0.05758

11 M2 0.23452 -0.23757

12 SCI 0.25583 0.28831

13 GA 0.26982 0.07112

14 H 0.22897 0.41401

15 HM 0.25466 -0.19302

16 F 0.26565 -0.14762
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Alternatively, when examining the PCA loading of the
same descriptors that comprised subclusters (see Figure 12),
a clear distinction can be made. Analysis of the data in
Table XXIII reveals that the parameters 0χv , H, R, SCI
and LEC estimators exhibit stronger correlation with PC2

than with PC1, suggesting that PC2 primarily represents a
steric component. Bolded values represent the high positive
loadings which coincides with this study of quadratic and
stepwise regression results. Notably, this PCA analysis with
high positive loadings confirms that the optimal estimators
from Table XII.

Fig. 16: Loading Plot

Features with significant positive or negative loadings
essentially dictate the factor’s influence. Establishing a rule
regarding the minimum amount of interpretable loadings is
not feasible. These factors are associated with the estimators
(parameters) of the drugs examined in the study. If we
set our threshold for coefficients at 0.5, only three factors
were identified with high positive loading in PC2, while
all others exhibited negative loadings. The corresponding
loading plot, visualizing this, is presented in Figure 16.

IV. CONCLUSION

In conclusion, this study demonstrates the applicability
and significance of employing distance and degree-based
topological descriptors, alongside chemometric methods like
principal component analysis (PCA) and cluster analysis
(CA), in understanding the physicochemical properties of
antipsychotic drugs. Moreover the optimal estimators ob-
tained from quadratic and stepwise regression confirmed that
the further analysis using chemometric methods like cluster
analysis and principal component analysis also predicts the
same estimators. This suggests that these predictors are
robust in explaining the physicochemical properties of the
antispychotic drugs. The extension of traditional molecu-
lar connectivity indices to accommodate heteroatoms has
notably enhanced the accuracy of estimating various drug
properties. The findings not only reveal both similarities
and distinctions among the investigated antipsychotic drugs
but also provide insights into their structural characteristics

and potential pharmacological behaviors. This research con-
tributes to the advancement of quantitative structure-property
relationship (QSPR) modeling and offers valuable insights
for drug design and optimization processes. Future research
could explore the application of these methodologies to
a broader range of pharmaceutical compounds and further
refine the predictive models to enhance drug development
efforts. Additionally, the incorporation of additional statisti-
cal techniques and the exploration of novel descriptors could
potentially enhance the accuracy and applicability of QSPR
models in drug discovery and development.
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