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Abstract—A vertex v clique dominates a clique l if v is
incident on l. A set D ⊆ V is a clique transversal set if every
clique in G is clique dominated by some vertex in D. The clique
transversal number τc = τc(G) is the cardinality of a minimum
clique transversal set of G. This paper explores properties of
vertices and edges based on their membership in all, at least
one but not all, or none of the clique transversal sets. A graph
G is defined as τc-dot-critical if contracting any edge reduces
the clique transversal number. We establish bounds for τc-dot-
critical graphs and a lower bound for the full open domination
number of a graph in terms of the maximum signature.

Index Terms—τc-critical, τc-fixed, τc-free elements, clique
radius, clique diameter, full open domination number.

I. INTRODUCTION

FOR any undefined terminologies we refer [4], [13]. By
a graph we mean a connected finite simple graph with

p vertices and q edges. A vertex v ∈ V is a cut − vertex
of a graph G, if G − v is disconnected and such an edge
is a bridge or a cut − edge. A graph G is separable if it
has a cut-vertex otherwise it is nonseparable. A maximal
nonseparable subgraph is a block of G. A maximal complete
subgraph is a clique. A vertex v clique dominates a clique
l if v is incident on l. A set D ⊆ V is said to be a clique
transversal set if every clique in G is clique dominated by
some vertex in D. The clique transversal number τc =
τc(G) is the cardinality of a minimum clique transversal set
of G. A detailed study of this literature is done by Tuza,
Erdos and Gallai [15] in 1990 and [3] in 1992.

This passage highlights the work of E. Sampathkumar
and Neeralagi [6], who introduced fundamental concepts
related to domination number and neighborhood number in
1992. In their research, they explored the significance of
certain vertices and edges concerning these graph parameters.
Specifically, they investigated the criticality of vertices and
edges in relation to domination number and neighborhood
number.

Building upon their work, we propose an extension of
the notion of criticality to the clique transversal number.
This suggests that similar to the critical aspects identified
for domination number and neighborhood number, there are
elements within graphs that significantly influence the clique
transversal number. By extending this concept, the study aims
to explore and understand the critical elements that impact
the clique transversal number of graphs.
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Furthermore Surekha et al. [9], [10], [11], [12], Sayinath
Udupa N V [7], and Tana et al. [14] have conducted com-
prehensive investigation into the characteristics of cliques
in graph structures. This implies a detailed study focusing
on understanding various properties and behaviors of cliques
within graph theory. Isabel Cristina Lopes et al. [5] have also
explored the topic of cliques in graph structures, indicating
another independent study on this subject.

II. τc-CRITICAL, FIXED, FREE AND TOTALLY FREE
ELEMENTS

Let G be a graph and x be any element of the graph G.
Then the element x is said to be

(i) τc-critical, if τc(G− x) ̸= τc(G)
(ii) τ+c -critical, if τc(G− x) > τc(G)

(iii) τ−c -critical, if τc(G− x) < τc(G)
(iv) τc-reduntant if τc(G− x) = τc(G)
(v) τc-fixed, if x belongs to every τc-set

(vi) τc-free, if x belongs to some τc-set but not all τc-set.
(vii) τc-totally free, if x belongs to no τc-set
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Fig. 1. A Graph G with removal of an edge and a vertex

Example II.1. The graph G1 in Fig. 1 represents removal of
an edge from G.Whereas G2 represents removal of a vertex
from G. Thus τc(G) = 2, τc(G1) = 3, τc(G2) = 2. Thus
the edge of G1 is τ+c -critical. And the vertex of G2 is τc-
reduntant.
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Fig. 2. Peterson Graph G

Example II.2. From the Fig.2, τc(G) = 6, τc(G1) =
6 and τc(G2) = 5. Thus the edge of G1 is τc-reduntant.
And the vertex of G2 is τ−c -critical.

Theorem II.1.

1) For any cycle Cn, τc(Cn − v) =

⌊
n− 1

2

⌋
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2) For any wheel Wn,

τc(Wn − v) =


⌊
n− 1

2

⌋
, v ∈ V (K1)

1, v ∈ V (Cn−1)

3) Let V1 and V2 be the partite sets of a complete bipartite
graph Km,n with |V1| > |V2|. Let v be any vertex of
Km,n. Then

τc(Km,n − v) =

{
τc(Km,n), v ∈ V1

τc(Km,n)− 1, v ∈ V2

Corollary II.1.1. If x is any edge of a graph G, then

i For any cycle Cn, τc(Cn − x) =

⌊
n

2

⌋
ii For any wheel Wn,

τc(Wn − x) =

{
1, x ∈ Cn−1

2, x ∈ K1

Theorem II.2. Every τ−c -critical vertex of a graph G belongs
to a τc-set and τ+c -critical vertex of G is τc-fixed.

Proof: Let v be a τ−c -critical vertex and S be a τc-set
of G− v. Since τc(G) > τc(G− v) it follows that S ∪ {v}
is a τc-set of G.

Let v be τ+c -critical and D is a τc-set of G. If v /∈ D then
D is a τc-set of G − v also. Hence τc(G − v) ≤ τc(G) a
contradiction.

Theorem II.3. τ−c -critical vertex is τc-fixed if it is isolated
and τc-free otherwise.

Proof: If S is any τc-set of G − v, then S ∪ {u} is a
τc-set of G for any u ∈ N [v]. Any isolated vertex is τc-fixed.

Theorem II.4. If a polycliqual vertex v is τc-fixed, then v is
τ+c -critical.

Proof: If v is a polycliqual vertex which is τc-fixed.
Then v is in every τc-set. Note that τc(G − v) ≥ τc(G).
For otherwise a τc-set of G − v could be extended to a
vertex clique dominating set of G which avoids v and has
cardinality atmost τc(G).

Theorem II.5. An edge x is τc-critical if and only if there
is no τc-set of G− x with τc(G) vertices.

Proof: Suppose an edge x is τc-critical. So τc(G−x) ̸=
τc(G). Then τc(G − x) = τc(G) ± 1 and there exists a τc-
set of G − x with τc vertices. Then τc(G − x) = τc(G), a
contradiction.

Conversely if there is no τc-set of G− x with τc vertices,
then τc(G− x)± τc(G) and x is τc-critical.

Theorem II.6. The support vertices of a path Pn with even
number of vertices are always τc-fixed.

Proof: Let P = v1v2v3 . . . vn−1vn be a path on n
vertices. Then the vertices v2 and vn−1 are the support
vertices of Pn. Clearly Pn−vi ∼= K1∪Pn−2 for i = 2, n−1
which contains an isolated vertex. Since τc(Pn − vi) =
τc(K1 ∪ Pn−2) = τc(K1) + τc(Pn−2) < τc(Pn).

Theorem II.7. Every vertex v of a regular graph G is τ−c -
critical.

Proof: It may be noted that removal of any vertex from
a regular graph G reduces the minimum degree of graph by
1. Hence there exists atleast two vertices of degree δ(G)−1
say u and v in G−x where x is a vertex in G. Then the set
V − u or V − v forms a clique transversal set of the graph
G− x. Thus τc(G− x) ≤ |V | − 1 < τc(G).

The open neighborhood of a vertex v is N(v) =
{u|u is adjacent to v}. The closed neighborhood is N(v)∪
{v}.

Theorem II.8. Let G be a graph of order n such that
τc(G) < n. If an edge x = uv of G is τ+c -critical, then
for every τc-set D any one of the following conditions holds

(i) u ∈ D and v ∈ V −D ⇒ N(v) ∩D = {u}
(ii) u, v ∈ D

Proof: Let x = uv be a τ+c -critical edge of the graph
G. Assume that none of the above two condition holds. Then
there exists a τc-set D of G such that u ∈ D and v ∈ V −D
but N(v)∩D ̸= u. Since D is a VC-dominating set one must
have |N(v)∩D| ≥ 2. Thus v is vertex of V −D which has
atleast two neighbors in D and hence removal of the edge
x doesnot affect the clique transversal property of D. Hence
τc(G − x) = τc(G), a contradiction. Thus any one of the
conditions in the statements must be true.

Theorem II.9. An edge x = uv of a graph G is τc-fixed
edge if and only if both the end vertices u and v of x are
τc-fixed vertices of G.

Proof: Let x = uv be a τc-fixed edge of G. Then
the edge lies in every τcset of the graph G. Hence the end
vertices of the edge also lies in every τc set of the graph.
Thus u and v are τc-fixed vertices of G.

Conversely, if the end vertices u and v are τc-fixed vertices
then the edge x also lies in every τc-set of the graph. So x
is a τc-fixed edge of G.

Theorem II.10. An edge x = uv is a τc-free edge of G if
and only if both the end vertices of x share atleast one τc-set
in common but not all.

Proof: Since x = uv is a τc-free edge of the graph,
the edge lies in some τc-set butnot in all. Thus both the end
vertices must lie in atleast one τc-set of the graph. If u and
v share all the τc-sets, then the edge x = uv is a τc-fixed
edge of the graph, a contradiction.

Conversely, if both the end vertices share atleast one τc-set
in common but not all, then the edge x lies in atleast one
τc-set, but not all. Hence edge is τc-free edge.

Theorem II.11. An edge x = uv is τc-totally free edge, if
both the end points doesnot share a τc-set in common.

Proof: Since x is a τc-totally free edge of the graph,
the edge doesnot lie in any τc-set of the graph. If the end
vertices share atleast one τc-set in common then the edge is
a τc-free edge of the graph, a contradiction.

Theorem II.12. A vertex vi of a path Pn with even number
of vertices is τc-reduntant if i = 2, n− 1

Proof: The removal of support vertices from a path
results in a graph which contains isolated vertices. The
support vertices of a path Pn with even number of vertices
is τc-fixed. (Refer Theorem 1.6). Thus the removal of the
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support vertices doesnot alter the clique transversal number.

Theorem II.13. A τc-free vertex v of a graph G, is always
τc-reduntant.

Proof: If v is τc-free vertex of the graph G, Then G
always contains atleast one τc-set D1 such that v /∈ D1. So
τc remains unaltered. Hence v is τc-reduntant.

Theorem II.14. If v is a pendant vertex of a graph G, then
τc(G− v) ≤ τc(G).

Proof: If v is a pendant vertex of a graph G then δ(G) =
1. If S is any τc−set of G− v, then S ∪ {u} is a τc-set of
G for any u ∈ N [v].

Theorem II.15. If G is a τcEC graph and v is a vertex of
G that is not a support vertex, then τc(G− v) ≤ τc(G) + 1

Proof: If G is a complete graph Kn, then n ≥ 3 and
τc(G − v) = τc(G) = 1. Therefore, assume G ̸= Kn.
Suppose the neighborhood N(v) forms a complete subgraph.
Let S be a τc-set. To dominate a clique, S includes a neighbor
u of v, and N [v] ⊆ N [u]. If v ∈ S, replace v with a vertex
from N [u] − {v}, so we assume v /∈ S. Thus, S is also a
τc-set for G− v, giving τc(G− v) ≤ τc(G).

Now, assume N(v) contains two non-adjacent vertices u
and w. Consider the edge x = uw ∈ X(Ḡ). Since G is a
τcEC graph, we have τc(G − x) = τc(G) ± 1. Let D be a
τc(G − x)-set. Assume u ∈ D. If v ∈ D, then D is a τc-
set of G, which contradicts G being a τcEC graph. Hence,
v /∈ D.

Since v is not a support vertex and both u and w have
degree at least 2, if w /∈ D, then let w′ ∈ N(w)− {v} and
note that D∪{w′} is a τc-set for G−v, so τc(G−v) ≤ τc(G).
If w ∈ D and u and w share a common neighbor w′ ̸= v,
then D∪{w′} is a τc-set for G−v. Assume N(u)∩N(w) =
{v}, and let u′ ∈ N(u) − {v}, w′ ∈ N(w) − {v}. Then
D ∪ {u′, w′} is a τc-set for G − v, giving τc(G − v) ≤
τc(G) + 1.

III. DOT-CRITICAL

Identifying or Contracting Vertices: Given two adjacent
vertices v and u in a graph G, when these two vertices are
identified (merged into one), the result is a new graph G.vu.
In this new graph, the vertices v and u are replaced by a
single vertex (vu), and this new vertex is adjacent to all
vertices that were adjacent to either v or u in the original
graph.

A graph G is called τc dot-critical if, for any pair of adja-
cent vertices v and u, contracting the edge between them (i.e.,
identifying v and u) decreases the clique transversal number
by exactly 1. Mathematically, for any adjacent vertices v and
u,

τc(G.vu) = τc(G)− 1.

This means that contracting an edge between adjacent
vertices always reduces the clique transversal number, but
only by 1. Therefore, τc dot-critical graphs are those for
which every edge contraction has a precise effect on the
clique transversal number, lowering it by exactly 1.

A graph is called totally τc dot-critical if, for any pair
of vertices v and u (whether they are adjacent or not),
identifying these two vertices reduces the clique transversal
number by exactly 1. In other words, for any vertices v and
u,

τc(G.vu) = τc(G)− 1.

This is a stronger condition than the τc dot-critical property
because it applies to any pair of vertices, not just adjacent
ones.

A τc dot-critical graph only requires that the clique
transversal number decreases by 1 when contracting adjacent
vertices. A totally τc dot-critical graph requires the same
reduction for any pair of vertices, whether they are adjacent
or not.

For any two vertices v and u in a graph G, the graph G.vu
is the result of identifying the two vertices. This process can
be viewed as:
- Deleting both v and u from the graph G.
- Introducing a new vertex (vu), which is adjacent to all the
neighbors of v and u in the original graph.
If v and u are adjacent in the original graph, then this process
is equivalent to contracting the edge between them, forming
the new vertex (vu) with the appropriate adjacencies.

Every totally τc dot-critical graph is also a τc dot-critical
graph because the totally τc dot-critical property is a stronger
condition. If the clique transversal number decreases by 1
for any pair of vertices (the totally τc dot-critical property),
it will certainly decrease by 1 when contracting adjacent
vertices (the τc dot-critical property). However, not every τc
dot-critical graph is totally τc dot-critical because the latter
requires the reduction to happen for any pair of vertices, not
just adjacent ones.

Theorem III.1. Let u, v ∈ V (G) for a graph G. Then
τc(G.vu) < τc(G) if and only if either there exists an
minimum clique transversal set S of G such that u, v ∈ S
or at least one of u or v is critical in G.

Proof: Let u, v ∈ V (G) such that τc(G.vu) < τc(G).
Consider a minimum clique transversal set S for G.vu.

If (vu) ∈ S, then the set

S∗ = [S − (vu)] ∪ {v, u}

serves as a minimum clique transversal set for G that
includes both u and v.

If (vu) /∈ S, there must be some t ∈ S that is adjacent to
(vu). If t is adjacent to both u and v, S would then clique-
dominate G, contradicting τc(G.vu) < τc(G). Thus, t can
only be adjacent to one of u or v, say u. This implies S
clique-dominates G− v, leading to v ∈ G′.

Conversely, if u and v are both in a common minimum
clique transversal set S for G, then

S∗ = (S − {u, v}) ∪ (uv)

is a clique transversal set for G.vu with size τc(G) − 1.
Additionally, if u ∈ G′, any minimum clique transversal set
for G−u will also serve as a clique transversal for G.vu of
the same size.

Thus, we conclude that τc(G.vu) < τc(G).
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Theorem III.2. If u and v are adjacent vertices in a graph
G on at least three vertices, then τc(G) − 1 ≤ τc(G.uv) ≤
τc(G)

Proof: We begin by establishing that

τc(G.uv) ≤ τc(G).

Let S be a minimum clique transversal set for G. If S does
not include u or v, then S remains a valid transversal set for
G.uv, yielding

τc(G.uv) ≤ |S| = τc(G).

Assuming v ∈ S, if u /∈ S, we can form a new set

Suv = (S − {v}) ∪ {(uv)}.

If both u and v are in S, we select a neighbor w of either u
or v (not including u or v) and create

Suv = (S − {u, v}) ∪ {(uv), w}.

In either scenario, |Suv| ≤ |S|, thus confirming that

τc(G.uv) ≤ τc(G).

Next, we demonstrate that

τc(G)− 1 ≤ τc(G.uv).

Let Suv be a minimum clique transversal set for G.uv. If
(uv) ∈ Suv , we can reconstruct a set

S = (Suv − {(uv)}) ∪ {u, v},

maintaining the size. If (uv) /∈ Suv , we find a vertex w in
Suv adjacent to (uv) and include an element x from the
neighborhood of w that is either u or v. In both cases, this
results in

|S| = |Suv|+ 1,

confirming

τc(G) ≤ |Suv|+ 1 = τc(G.uv).

Mixed block domination, as introduced by Surekha and
P. G. Bhat [2], [8], is a concept in graph theory aimed at
understanding the domination properties within a graph. This
concept builds upon the notion of block degrees, which are
defined in Surekha et. al previous work.

In their paper, Surekha and P. G. Bhat [8] defined different
types of block degrees, laying the groundwork for further
exploration of domination within graph structures.

The concept of clique walk, clique path and clique cycles
is introduced in [9]. Let K(G) denote the set of all cliques
of G. Let Cm(G) denote the set of all polycliqual vertices of
G. Two cliques l1 and l2 are adjacent if there is a polycliqual
vertex incident on l1 and l2. Again two polycliqual vertices
cm1 and cm2 are adjacent if there is a common clique incident
on cm1

and cm2
. A clique graph KG(G) is a graph with

vertex set K(G) and two cliques l1 and l2 are adjacent
in KG(G) if there is a polycliqual vertex incident on l1
and l2. A polycliqual vertex graph CmG(G) is a graph
with vertex set Cm(G) and two polycliqual vertices cm1 and
cm2 are adjacent in CmG(G) if they are adjacent in G. A
polycliqual vertex graph CmG(G) is a subgraph of G without
unicliqual vertices. Further a clique polycliqual vertex

graph (CPV − graph) KCm(G) is a bigraph with vertex
set K(G) ∪ Cm(G) and a polycliqual vertex cm ∈ Cm(G)
and a clique l ∈ K(G) are adjacent if and only if cm is
incident on the clique l.

IV. CLIQUE WALKS AND CLIQE PATHS AND CLIQUE
TREES

A clique − walk (C − walk) is a sequence
of cliques and polycliqual vertices say, l1, cm2

, l3, cm4
, l5,

. . . , lm−2, cmm−1
, lm beginning and ending with cliques in

which each polycliqual vertex cmi
is incident with the cliques

li−1, li+1. The length of a clique walk is the number of
polycliqual vertices in a clique-walk. If all the polycliqual
vertices are distinct in a clique walk, then such a walk is
called a clique path. A clique path with l cliques is denoted
as Cpl. A graph G is said to be clique connected if there
is a clique path between any two cliques of G.

A graph G is said to be a clique tree if there exists a
unique clique path between any two cliques of a graph. A
graph G is a clique tree if and only if G is a block graph.
A clique cycle denoted by Ccl is a clique path in which the
starting and terminal cliques are same.

A graph G with l-cliques is Clique − Complete graph
Ql if any two cliques of G are adjacent. A graph G is
a Clique − Star denoted by Cl1,l2,...,lk , if there exists a
clique l with c cutvertices and ith cutvertex is incident with
li + 1 cliques, li ∈ N , 1 ≤ i ≤ k. The clique l is then
called the central clique. Clique graph of a clique star is
clique complete. Clique graph of a clique complete graph is
a complete graph Kl.

A Clique complete graph G

A Clique complete graph G

A Clique complete graph G

A Clique complete graph G

A Clique path A Clique path

Fig. 3. Different types of clique graphs

V. CLIQUE-DISTANCE BETWEEN TWO CLIQUES

For any two cliques l1, l2 ∈ K(G), the clique
distance d(l1, l2) is the length of the clique path from l1
to l2. Further d(l1, l2) has the following properties.

1) d(l1, l2) ≥ 0 and d(l1, l2) = 0 if and only if l1 = l2
2) d(l1, l2) = d(l2, l1)
3) d(l1, l2) ≤ d(l1, l3) + d(l3, l2)

Using clique distance we can define the central tendences
of a clique, like clique radius and clique diameter of a
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A Clique star
A Clique star

A Clique star

A Clique Cycle
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Fig. 4. Different types of clique star and a clique cycle

clique in a graph. The clique − eccentricity of a clique
l ∈ K(G) is defined as e(l) = max

l1,l2∈K(G)
{d(l1, l2)}. Then

clique − diameter dc(G) = max
l∈K(G)

{e(l)} and clique −

radius rc(G) = min
l∈K(G)

{e(l)}. The set of all cliques with

minimum eccentricity is called clique − center Cc(G) of
the graph G.

Proposition V.1. For any graph G, CmG(G) ∼= G if and
only if G has no unicliqual vertex.

Proof: If there is no unicliqual vertex then every vertex
is polycliqual vertex.

Proposition V.2. For any graph G,

rb(G) ≤ rc(G)

Proof: As every cutvertex is a polycliqual vertex, we
have e(h) ≤ e(l).

Proposition V.3. For any graph G,

d(BG(G)) ≤ d(KG(G)) ≤ d(G)

Proof: Diametrical path is a subset of diametrical clique
path which is a subset of diametrical block path. Any block
path contains m − 1 blocks, any clique path contains l − 1
cliques and any path contains n-1 edges. We observe that
number of blocks in the block path is less than or equal to
number of cliques in clique path which is less than or equal
to number of edges in a path. Therefore m−1 ≤ l−1 ≤ e−1.
Which implies db ≤ dc ≤ d.

Proposition V.4. For any graph G,

CG(G) ⊆ CmG(G) ⊆ PG(G)

Proof: We observe that C(G) ⊆ Cm(G) ⊆ V (G). If u
and w are clique adjacent implies u and w are vv-adjacent.
Therefore CmG(G) ⊆ PG(G). If c1 and c2 are two adjacent
cutvertices implies c1 and c2 are cutvertices of a block b.
Which implies c1 and c2 are cutvertices of a clique which is
a subgraph of b. Which implies c1 and c2 are clique adjacent.

Proposition V.5. For any graph G,

db(G) ≤ dc(G)

Further equality holds iff G is a block graph.

Proof: Let b1, c2, b3, c4, b5, . . . , cs, bs+1 be a diametrical
block path with db =

s

2
. Inside this diametrical block

path there is a clique path k1, u2, k3, u4, k5, . . . , ut1 =
c2, kt1+1, ut1+2, . . . , ut2 = c3, kt2+1, ut2+2, . . . , uts =
cs, kts+1

, uts+2
, . . . , uts+h

, kts+h+1
with clique distance =

ts+h

2
=

s+ h

2
since ts = s. Therefore db =

s

2
<

s+ h

2
≤

dc.

Note V.1. For any block graph G, block diameter and clique
diameter are identical.

Proposition V.6. For any graph G, clique diameter and
diameter are incomparable.

G2G
1

Fig. 5. A Graph G

Example V.1. For the graph G1 of Fig. 5, clique diameter
dc = 6 where as diameter d = 5. For G2 of Fig. 5, clique
diameter dc = 3 where as diameter d = 4. Thus clique
diameter and diameter are incomparable.

Corollary V.6.1. For any block graph,

dc = d− 1

Let ∆sn(G), δsn(G) denote the maximum and minimum
signature of G respectively. A graph G is said to be k-
signature regular if sn(v) = k for every v ∈ V . Any
signature regular graph need not be regular. But if every edge
is contained in a triangle, then every signature regular graph
is also regular. For example, the graph obtained by removing
the edges joining antipodal vertices from K6 is 4-signature
regular and 4-regular graph. We (refer [10]) obtained bounds
for n-covering number n0 (neighborhood number) of G in
terms of maximum strength ∆s(G).

Proposition V.7. For any graph G,
q

∆s
≤ n0(G) ≤ q −∆s + 1 (1)

Further, these bounds are sharp.

The argument for Proposition (V.7) leads us to identify
a corresponding lower bound for the open full domination
number, as defined by Brigham et al. [1]. In a graph G, a
vertex v is said to openly dominate the subgraph ⟨N(v)⟩,
which consists of its open neighborhood N(v). A collection
of vertices S is classified as a full open dominating set if
it ensures that every edge in G is included in ⟨N(v)⟩ for
at least one vertex v ∈ S. The minimum size of such a set
is known as the full open domination number γFO(G). A
graph G is guaranteed to have a full open dominating set if
it contains no isolated vertices and if each edge of G is part
of a triangle. Therefore, we derive a lower bound for the
full open domination number in relation to the maximum
signature ∆sn(G).
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Proposition V.8. For any graph G in which every edge lies
in a triangle,

q

∆sn(G)
≤ γFO(G) (2)

Proof: Given that a vertex v can openly dominate a
maximum of ∆sn(G) edges, it follows that to dominate
all edges of G, a minimum of q

∆sn (G) vertices is required.
Therefore, we conclude that γFO(G) ≥ q

∆sn (G) .
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