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Abstract— This study presents a novel quantum secret sharing 

scheme that uses a double 2-level ( , )t n − threshold approach, 

employing both two-qubit and symmetric bivariate polynomial 

techniques. In the key distribution step, the dealer employs a 

symmetric bivariate polynomial to produce shares for each 

participant. In contrast to prevailing methodologies, our 

proposed methodology yields a 1t −  degree polynomial for 

each participant, hence enhancing its adaptability, feasibility, 

and ease of execution. Moreover, as a result of the augmented 

quantity of qubits, our technique has the capability to send a 

greater amount of information simultaneously. This scheme 

utilizes pairs of qubits, the fundamental units of quantum 

information, to encode and share the secret information. By 

employing symmetric bivariate polynomials, the scheme ensures 

both security and reliability in the sharing process. The security 

of the scheme relies on the principles of quantum mechanics, 

such as the no-cloning theorem and the inherent uncertainty 

principle, making it highly resistant to eavesdropping or 

unauthorized access. The utilization of symmetric bivariate 

polynomials enhances the efficiency and robustness of the secret 

sharing process, making it a promising approach in quantum 

cryptography for secure multi-party communication and data 

sharing. 
Index Terms— Quantum Secret Sharing, Symmetric Bivariate 

Polynomial, Shamir Secret Sharing Scheme, Unitary Operation. 

I. INTRODUCTION 

hamir [1] and Blakely [2] independently introduced the     
( , )t n − secret sharing schemes (SSS) for the first time in 

1979. In an ( , )t n − SS, Alice, acting as the dealer, divides the 

secret into many pieces and allocates them among a number 

of participants. This allocation ensures that each individual 

share possesses the ability to reconstruct the original secret, 

but any subset of shares less than a certain threshold is unable 

to do so. The SSS has emerged as a crucial element in many 

applications, such as cloud computing [3] and group 

communications [4]. polynomials, scheme [2] draws upon 

principles from geometry, and scheme [5] is founded on the 

chinese remainder theorem(CRT) methodology. The issue of 

data security and privacy has garnered considerable attention, 

leading to a heightened interest in the field of cryptography.  
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Significant advancement have been achieved in the field of 

quantum cryptography, which integrates principles from 

quantum theory with conventional cryptographic techniques. 

The primary goal of this discipline is to use quantum 

phenomena exclusively for the purpose of facilitating 

information transfer that is unconditionally secure. Quantum 

encryption has attracted considerable attention in recent years 

because of its inherent secrecy.  

Quantum cryptography approaches, which are rooted in the 

fundamental laws of quantum physics, have the potential to 

provide unconditional security. In contrast, traditional 

cryptographic methods often depend on computational 

security, which is reliant on the efficiency of computer 

systems. Therefore, the use of quantum-information-assisted 

approaches for exchanging secrets among users is both more 

safe and attractive. Due to the fast progression of quantum 

technology, conventional classical SSSs have become 

inadequate in ensuring sufficient security measures. 

Consequently, the field has witnessed the emergence of 

quantum secret sharing (QSS) as an alternative solution. 

Quantum cryptography encompasses several areas, including 

fibre network design [6] and quantum secure transportation 

networks [7]. These fields extensively rely on QSS 

techniques, which have gained significant attention from 

researchers. The quantum state storage and computation 

system is identified as one of the dependable and robust 

solutions for QSS. Some findings indicate that the QSS 

system, presented by Hillery et al. in 1999 [8], used the GHZ 

state. Subsequently, Cleve et al. [9] put up a threshold QSS 

that incorporated a quantum error-correcting system. 

QSS relies on the fundamental tenets of quantum physics 

since the secret is communicated, distributed, and recovered 

via quantum processes. Threshold QSS, as discussed in 

references [10] and [11], is a crucial approach within the field. 

Threshold SSSs have the capability to safeguard confidential 

information against unauthorized access in real-time 

instances. Furthermore, the task of sharing a quantum state 

presents greater difficulties compared to sharing a classical 

state, leading to a very limited amount of study on QSS in 

comparison to the sharing of classical state information. In 

our proposed methodology, Alice employs a symmetric 

bivariate polynomial to produce n  shares. This process 

yields univariate polynomials to a certain degree 1t − . 

Subsequently, Alice distributes each share to the relevant 

participants, following a similar approach as outlined in 

reference [1]. The subsequent sections of the paper are 

structured in the following manner: Section 2 presents an 

overview of the essential background and preliminary notions 

pertaining to our strategy. In Section 3, we elucidate the 

conceptualization of our suggested methodology. In Section 

4, we present a demonstration of the validity of our approach 
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and provide proof of the accurate reconstruction of the 

original secret using the shares. In Section 5, we present 

specific instances and visual representations to facilitate 

comprehension of the pragmatic execution of our strategy. In 

Section 6, we analyze the security aspects of our scheme, 

ensuring that it is resilient against potential attacks. Section 7 

compares our scheme with existing QSS approaches, 

highlighting its advantages and strengths. In the final Section 

8, we summarize our work’s key findings and contributions 

and offer concluding remarks. 

II. PRELIMINARIES 

This section comprises fundamental results and definitions 

concerning qubits and their mathematical foundations. These 

concepts are essential for comprehending the proposed 

scheme effectively. 

A. Qubit Quantum State 

A qubit  is defined as  

      0 1  = +                                      …  (1)  

where   and   are scalars (real or complex) and holds the 

following identity 

      
2 2

1 + = .  

B. Two qubit quantum state 

A two qubit quantum state is defined by 

1 2 3 400 01 10 11    = + + +              …(2) 

where i  for 1,2,3,4i =  are scalars and they satisfy the 

following identity 
4

2

1

1i

i


=

= . 

C. Sequence of two qubits 

A two qubit sequence  : 1, 2,...,sT s m=  is defined as  

1 2 3 400 01 10 11s s s s sT    = + + +         …(3)             

where is  for 1,2,3,4i =  are scalars and they satisfy the 

following identity 
4

2

1

1is

i


=

=  for 1,2,3,...,s m= . 

D. Unitary operator 

A unitary operator for two-qubit quantum state is defined as  

( ) ( ) ( )

( ) ( )

cos 2 00 00 sin 2 00 11

10 01 01 10

sin 2 11 00 cos 2 11 11 .

A   

 

= −

+ +

+ +

 

E. Symmetric bivariate polynomial (SBP) 

A SBP of degree 1t −  is defined as  

         

2

0,0 1,0 0,1 2,0

2 1

1,1 0,2 1,0

2 1

2,1 0, 1

( , )

...

...

t

t

t t

t t

g x y c c x c y c x

c xy c y c x

c x y c y

−

−

− −

− −

= + + +

+ + + +

+ + +

 

  where  , , ; , 0,1,2,..., 1i j j ic c i j t=   − . 

III. PROPOSED SCHEME 

In this section, we propose a QSSS that utilizes an SBP 

( , )g x y  of degree 1t − , where t  is the threshold value. The 

scheme is divided into the following three phases: 

A.  Key Distribution Phase: In this phase, Alice (the dealer) 

generates private keys for herself and each participant using 

the following steps: 

(1) Firstly, Alice chooses a random SBP ( , )g x y  of 

the degree 1t −  over finite field qF  such that 

             

( )

0,0 1,0 0,1

2 2

2,0 1,1 0,2

1 2

1,0 2,1

1

0, 1

( , )

...

... mod

t t

t t

t

t

g x y c c x c y

c x c xy c y

c x c x y

c y q

− −

− −

−

−

= + +

+ + + +

+ +

+ +

 

 where ,i j qc F  and  , , ; , 0,1,2,..., 1i j j ic c i j t=   − , 

and private value satisfies  

         (0,0) (1,1) modS g b g q= + , qb F .  

(2) Alice calculates private shares ( ) ( , )i iS y g x y=  

polynomials of degree 1t − , for participants 

, 1,2,3,..., ,iN i n=  ( )0,1ix  , where ix  is the public 

information associated with each participant iN . 

(3) Alice sends each share ( )iS y  to participants iN  

secretly through quantum secure direct communication 

presented in [14]-[16]. 

B.   Sharing of quantum states phase: In this phase, Alice 

wishes to distribute secret information  sT  among n  

participants using the following steps: 

(1) First, Alice generates a random sequence of two-

qubits  sT . 

(2) Now, Alice embeds private value into  sT  by 

performing a phase shift operation ( )0A   on each quantum 

state of  sT , where 0

S

q




−
=  and S  is the private key 

for Alice. Then, each quantum state in  sT  will be of the 

form    ( ) 0 0

0: , 1, 2,3,...,s s sT T A T p m= = . 

(3) For distributing  0

sT , Alice chooses some decoy 

particles for eavesdropping detection from the following bell 

bases. 

00 11 00 11
, ,

2 2


 + −
= 

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01 10 01 10

,
2 2

+ −



. 

(4) Next, Alice inserts some random decoy particles 

into the sequence of two qubits to get an expanded sequence, 

say  
'

0

sT , then he observes each decoy particle’s position 

and state  
'

0

sT . 

(5) After observing each decoy particle’s position and 

state, Alice publicly announces the results and then sends 

 
'

0

sT  to any participant ,iN 1,2,3,..., ,i n=  through 

quantum communication [14-16]. 

(6) Alice transfers the position and state of each decoy 

particle to iN  through [14-16]. Then iN  measures each 

decoy particle according to their bases in   and analyses 

each measurement result against publicly available states and 

positions. 

(7) If the rate of error goes higher than the value of t , 

then the sequence  
'

0

sT  is eliminated, and Alice begins a 

new procedure. Otherwise, process will continue. 

With the help of the above steps, the dealer distributes the 

initial information  sT  into n  parts. 

C. Recovery Phase: Suppose participants 

 1 2 3, , ,..., tN N N N  wish to recreate the original 

information  sT . For the recreation of  sT , the 

following steps need to be done.  

(1) As 1N  knows every decoy particle’s position and 

state, so he deletes the decoy particles from  
'

0

sT to 

extract the sequence  0

sT . Now, 1N  performs phase shift 

operator ( )1A  , 1
1

C

q


 =  on each qutrit of sequen

 0

sT , to give a new sequence  1

sT , where 

( )1

1s sT A T= . Then 1N  sends  1

sT  to 2N . 

(2) Now 2N  does the same as 1N  does in step (1). 2N  

performs phase shift operator ( )2A  , 
2

2

C

q


 =  on 

 1

sT  to obtain a new sequence  2

sT , where 

( )2 1

2s sT A T= . Then 2N  sends  2

sT  to 3N . 

(3) Each remaining member, ; 3,4,..., ,sN s t=  now 

repeats the process as 2N  does in step (2). After the last 

participant tN  completes his phase shift operation ( )tA  ,

t
t

C

q


 = , 

where  

             

( )

( )

1,

1,

0

1
1 ,

t
j

t t

j j t j t

t
j

t

j j t t j

x
C S

x x

x
b S

x x

= 

= 

=
−

−
+

−





then we obtain 

 t

sT , where 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

0

1 1

0

1 1 0

1 1 0

...

...

...

.

t

s t t s

t t s

t t s

s

T A A A T

A A A A T

A T

T

  

   

   

−

−

−

=

=

= + + + +

=

 

Hence, each t  out of n  participant can recover the original 

information successfully. The graphical representation of 

proposed method is drawn in Fig 1.         

IV.  CORRECTNESS 

Theorem-1: In Shamir’s SS, assume that every participant 

jN  has the information ( ),jx y  which is public and shares 

( ),jg x y , 1,2,3,...,j k= , n k t  . By summing each 

component  ( )
1,

0
t

i
j j

i i j i j

x
C S

x x= 


= 

−
  

                  

( )
1,

1
1 mod

t
i

j

i i j j i

x
b S q

x x= 

−
+ 

− 


 

any t  participants can reconstruct the value  

 (0,0) (1,1) modS g b g q= + . 

That is,  

 

( ) ( )

( )

1 1 1,

1,

(0,0) (1,1) mod

mod 0

1
1 mod

tt t
i

j j

j j i i j i j

t
i

j

i i j j i

S g b g q

x
C q S

x x

x
b S q

x x

= = = 

= 

= +


= = 

−

−
+ 

− 

  



  

where ( ),jg x y  is SBP of degree 1t −  over qF , q  is 

prime. 

Proof- By Lagrange Interpolation, 

( ) ( )
1 1,

, ,
tt

i
j

j i i j j i

x x
g x y g x y

x x= = 

−
=

−
  . 

We have,  
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( ) ( )
1 1,

0,0 ,0
tt

i
j

j i i j i j

x
g g x

x x= = 

=
−

    

and  

( ) ( )
1 1,

1
1,1 ,1

tt
i

j

j i i j j i

x
g g x

x x= = 

−
=

−
  . 

So,  

( )

( )

( )

1

1 1,

1,

mod

0

1
1 mod

t

j

j

tt
i

j

j i i j i j

t
i

j

i i j j i

C q

x
S

x x

x
b S q

x x

=

= = 

= 


= 

−

−
+ 

− 



 



 

 (0,0) (1,1) modg b g q S= + = . 

This proves our theorem-1. 

 

Theorem-2[13] The unitary operator applied on two-qubit 

quantum state satisfies the following relation  

        ( ) ( ) ( )1 2 1 2s sA T A A T   + = . 

Correctness of our scheme: Suppose each qubit's initial state 

in the sequence is  : 1, 2,3,...,sT s m= . When dealer 

and any t  out of n  participants have completed their 

corresponding operations  

( ) , 0,1,...,kA k t = , on  : 1, 2,...,sT s m= , then the 

initial state  : 1, 2,...,sT s m=  will be recovered, 

because of the equation below  

( )

0

1

1

t

k s

k

t

k s

k

s

s

A T

A C S T
q

A T

T

 





=

=

 
+ 

 

  
= −  

  

=

=



 . 

 

V. CONCRETE ILLUSTRATION OF THE PROPOSED METHOD 

The following example, which is a  ( )3,5 − threshold QSS 

scheme over a finite field 
7 ,F  will be used to justify our 

proposed schemes. 

A. Key Distribution Phase 

In this phase, Alice (dealer) produces private keys for himself 

and each participant with the help of the following steps: 

(1) Dealer chooses a random SBP 

( ) ( )2 2, 3 mod 7g x y x y xy x y= + + + + +  of degree 

two over 7F , with the secret information      

         ( ) ( )0,0 3 1,1 mod 7 6S g g = + =  . 

(2) Dealer chooses the public key 1kx k= +  for 

participant , 1,2,3,4,5kN k = . Then, dealer calculates 

( ),k kg g x y=  using the polynomial  

( ) ( )2 2, 3 mod 7g x y x y xy x y= + + + + +   

with the relation ( ),k kg g x y= , as follows: 

       
( ) ( ) 2

1 1, 2, 2 3S g x y g y y y= = = + +
 

       
( ) ( ) 2

2 2 , 3, 1 4S g x y g y y y= = = + +
 

       
( ) ( ) 2

3 3 , 4, 2 5S g x y g y y y= = = + +
 

       ( ) ( ) 2

4 4 , 5, 5 6S g x y g y y y= = = + +          

       ( ) ( ) 2

5 5 , 6, 3S g x y g y y= = = + . 

(3) Now, dealer sends the shares  

2

1 2 3g y y= + +
, 

2

2 1 4g y y= + +
,  

2

3 2 5g y y= + +

, 
2

4 5 6g y y= + +  and 
2

5 3g y= +  to the participants 
1N

, 2N , 3N , 4N  and 5N  respectively through [14-16]. 

B. Sharing of Quantum State Phase 

In this phase, firstly dealer performs his unitary operation P, 

0

6

7

S

q

 


− −
= =  on the sequence of two-qubits 

 : 1, 2,..., .sT s m= Then, he distributes the sequence 

into n  members as we did in Sharing of quantum states 

phase of section III. 

 

C. Recovery Phase 

Suppose 
1N , 3N  and 5N  wish to recover the secret 

information  : 1, 2,..., .sT s m=  For this, participants 

1N , 3N  and 5N  respectively calculate 1C , 
2C  and 

5C  

using interpolation method as follow: 

( )

( )

1 1

3 1

1

3 1

3 5

3 1 5 1

3 5

3 1 5 1

0

1
1 mod 7

2

1 1
18 mod 7

3.

t
i

i i

t
i

i i

x
C S

x x

x
b S

x x

x x

x x x x

x x

x x x x

=

=


= 

−

−
+ 

− 


= 

− −

− −
+ 

− − 

=




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( )

( )

3 3

1, 3 3

3

1, 3 3

51

1 3 5 3

51

3 1 3 1

0

1
1 mod 7

2

11
3 mod 7

6.

t
i

i i i

t
i

i i i

x
C S

x x

x
b S

x x

xx

x x x x

xx

x x x x

= 

= 


= 

−

−
+ 

− 


= 

− −

−−
+ 

− − 

=




 

( )

( )

5 5

1, 5 5

5

1, 5 5

31

1 5 3 5

31

5 1 5 3

0

1
1 mod 7

3

11
12 mod 7

4.

t
i

i i i

t
i

i i i

x
C S

x x

x
b S

x x

xx

x x x x

xx

x x x x

= 

= 


= 

−

−
+ 

− 


= 

− −

−−
+ 

− − 

=





 

 Using these above values, we get 

3 51
1 3 5

3 6 4
, ,

7 7 7

C CC

q q q

    
  = = = = = = . 

Now, 
1N , 3N  and 5N  performs their corresponding unitary 

operations on encoded sequence  0 : 1, 2,..., .sT s m= . 

Then, we get 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

3 0

5 3 1

5 3 1 0

5 3 1 0

4 6 3 6

7 7 7 7

.

s s

s

s

s

s

T A A A T

A A A A T

A T

A T

T

  

   

   

   

=

=

= + + +

 
= + + − 

 

=

 

Hence, 3 out of 5 participants can recover the initial 

information. 

 

VI. SECURITY 

This study uses the Lagrange interpolation method and phase 

shift operation to construct a symmetric bivariate polynomial-

based QSS scheme. Attacks are classified as either internal or 

external, depending on how a message is retrieved. This 

research focuses on external threats and investigates how an 

eavesdropper can acquire secret or large data without being 

caught. For internal attacks, the scheme investigates whether 

a single participant can rebuild the initial information on their 

own or whether a group of participants can do so when the 

number of participants is fewer than t . 

External attack: This section will focus on the intercept-and-

resend attack, a scenario where an unauthorized individual 

intercepts the quantum state transmitted by the dealer and 

retransmits a modified quantum state without notice. Before 

Alice transmits the sequence of quantum states to the 

individuals involved in sharing the quantum state phase, they 

must randomly introduce decoy particles into the sequence of 

quantum states. 

  1 2

00 11 00 11
, ,

2 2
  

 + −
= = = 
 

 

                                    

1 2

01 10 01 10
,

2 2
  

 + − 
= = = 

 

. 

Alice keeps track of the participants’ positions and 

communicates the sequence to them, instructing them to 

measure the particles in the bell bases according to the 

instructions and then checking the measurement results with 

them. Because an eavesdropper will be unfamiliar with the 

position and condition of the decoy particles, they may 

mismeasure them. For each decoy particle, an eavesdropper 

will be discovered with a probability of 
5

1
8

d

 
−  
 

 [17], 

where the number of decoy particles is represented by d . The 

likelihood of detecting eavesdroppers will converge to 1 

when d  is large enough, ensuring 100% eavesdropper 

detection. Decoy qubits [18] can be used to defend against 

this attack.   

Another attack that an eavesdropper can mount the proposed 

scheme is entangle-and-measure attack. Suppose, an 

eavesdropper intercepts the transmitting particle transferred 

from participant r 1N −  to participant rN  and applies a phase 

shift operation DA  on the particle D . Since, decoy particle 

is chosen from mutually unbiased bases   and  , therefore, 

if decoy particle belongs to  -basis, then, after performing 

phase shift operation DA  on the entangled aider particle, the 

measurements of eavesdropper are given as 

    1 00 00 01 0100 01DA D e e  = +  

02 02 03 0310 11e e + +  

2 10 10 11 1100 01DA D e e  = +  

12 12 13 1310 11e e + +  

where ije are the states determined by DA  with

, {0,1,2,3}i j , 

2 2 2 2

00 01 02 03| | | | | | | | 1   + + + = and  

2 2 2 2

10 11 12 13| | | | | | | | 1   + + + = . 

If an eavesdropper wants to avoid eavesdropping checking, 

he/she equates  

01 02 0 = =  and 10 13 0 = = . 
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Thus, the simplified decoy particle after applying DA  is 

given as follows 

1 00 00 03 0300 11DA D e e  = +  

and 

2 11 11 12 1201 10DA D e e  = + . 

Further, if decoy particle is taken from  -basis then after 

applying DA  on the entangled particle, the measurements of 

an eavesdropper are given by

1 00 00 01 0100 01DA D e e  = +  

                  02 02 03 0310 11e e + +  

2 10 10 11 1100 01DA D e e  = +  

                         12 12 13 1310 11e e + +  

where ije are the states determined by DA  with

, {0,1,2,3}i j , 

        
2 2 2 2

00 01 02 03| | | | | | | | 1   + + + =  

and  

        
2 2 2 2

10 11 12 13| | | | | | | | 1   + + + = . 

If eavesdropper wants to avoid eavesdropping checking, 

he/she equates  

01 02 0 = =  and 
10 13 0 = = . 

It is evident from the above computations; the proposed 

scheme could resist the entangle-and-measure attack. 

Internal attack: This section discusses a typical attack that 

participants can use, called the “participant attack.” In this 

attack, with only one share, the participant iN  cannot 

recreate the value S  that the dealer had previously encoded 

in qubits because of the perfectness [19] of [1]. In other 

words, fewer than t  participants cannot recover any 

information in [1].  

VII. COMPARISON 

There are numerous QSS schemes, but the majority are two-

level [8, 20, 21] and structural [22, 23]. For example, the 

developers of the scheme [23] have employed a phase 

operation to implant the information into a qubit, allowing the 

information to be recovered once all participants have 

completed their operations. In [24], a specific QSS based on 

the Grover method was presented. However, compared to 4-

level and structure designs, these 2-level schemes are less 

general and practicable. QSS plans are less flexible than 

others in that all shareholders must be present to reconstruct 

the information. Our four-level threshold QSS scheme is 

more versatile, general, and practical than these schemes. Qin 

et al. [11, 25] presented two threshold SSSs based on 

Shamir’s Lagrange interpolation method. One significant 

difference between our proposed QSS and most existing [11, 

25] QSSs is that our scheme is based on an SBP, whereas [11, 

25] depends on a univariate polynomial. In our scheme, we 

used a SBP to generate shares for each participant compared 

to a univariate polynomial. Furthermore, under our proposed 

framework, the created shares are represented as univariate 

polynomials of degree 1t − . In contrast, the existing schemes 

[11, 12] generate shares that are represented as integer values. 

In our technique, decoy particles are used to deceive the third 

party throughout the particle transmission process, 

preventing it from obtaining beneficial particles without a 

valid measurement basis. In other words, our system can 

withstand an eavesdropping examination. In this scheme, 

every shareholder must store a share, which is a 1t −  degree 

univariate polynomial. Before performing unitary operations, 

each shareholder must compute the Lagrange component. All 

of these evaluations are substantially faster than typical 

public-key evaluations because they involve small-modulus 

multiplications and additions, whereas public-key 

computations involve large-modulus modular 

exponentiations 

      VIII. CONCLUSION 

This study introduces a QSS system based on SBP. In contrast 

to the majority of current schemes, our proposed method 

produces a 1t −  degree polynomial as a share for each 

participant. In order to guarantee the confidentiality of 

confidential communication, we employ a decoy particle, 

namely a two-qubit in a four-dimensional Hilbert space. The 

permission structure that we suggest exhibits enhanced 

flexibility, scalability with respect to participant numbers, 

realism, and ease of implementation. Moreover, it suffices to 

perform a unitary transformation to securely transmit 

confidential data. 
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Fig 1. Graphical Representation of the Proposed Scheme
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