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Abstract—This paper considers a non-zero-sum game for
linear discrete-time systems involving two players. Based on
a quadratic value function, we derive coupled algebraic Riccati
equations. Then, we propose both on-policy and off-policy Q-
learning algorithms, which operate without prior knowledge
of the system dynamics, to achieve Nash equilibrium. These
algorithms necessitate the inclusion of probing noise to ensure
the persistence of excitation. We show that the on-policy Q-
learning algorithm may introduce bias to the Nash equilibrium
due to the probing noise, while the off-policy Q-learning
algorithm maintains an unbiased property. Finally, we offer a
numerical example to validate the effectiveness of the presented
on-policy and off-policy Q-learning algorithms.

Index Terms—Non-zero-sum game, Q-learning, Nash equilib-
rium, discrete-time system, probing noise.

I. INTRODUCTION

GAME theory has been widely applied in practical
systems such as drones, autonomous driving, human-

computer interaction, the medical internet of things, etc. [1–
4]. So far, the main focus of research has been on two
types of games: zero-sum games and non-zero-sum games.
All participants strive to maximize their interests in zero-
sum games [5–7]. In many cases, agents pursue team-based
goals while simultaneously pursuing individual selfish goals.
Cooperation and competition coexist among participants in
non-zero-sum games [8, 9]. As a result, non-zero-sum games
provide a better theoretical framework for cooperative and
non-cooperative worlds.

One of the primary objectives of non-zero-sum games
is to identify a set of optimal strategies, known as Nash
equilibria [10]. Adaptive dynamic programming [11, 12],
which is based on the idea of reinforcement learning, has
been extensively adopted to solve optimal control problems.
These methods are utilized to develop adaptive control
algorithms for acquiring solutions to the algebraic Riccati
equations. Notably, for continuous-time systems, Newton-
Leibniz’s formula is applicable, yielding integral-type Bell-
man equations. However, in discrete-time situations, the
Bellman equations are of the infinite sum difference type,
which is more complicated to solve.
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Q-learning serves as a behavior-dependent heuristic dy-
namic programming technique [13]. For discrete-time sys-
tems, Q-learning enables agents to leverage experience data
generated by behavior policies to learn target behaviors,
showcasing strong exploration capabilities within the state
space. Moreover, Q-learning is entirely model-free. In recent
years, Q-learning methods have emerged as viable solutions
for various optimal control problems [14–17]. However, to
our knowledge, there exists a dearth of research concerning
the application of such methods in the pursuit of Nash
equilibria for non-zero-sum games in discrete-time systems,
warranting further investigation.

This paper focuses on a non-zero-sum game for linear
discrete-time systems involving two players. Based on a
quadratic value function, we derive coupled algebraic Riccati
equations. We propose both on-policy and off-policy Q-
learning algorithms, which operate without prior knowl-
edge of the system dynamics, to achieve Nash equilibrium.
Both algorithms necessitate the inclusion of probing noise
to ensure the persistence of excitation. Theoretically, it is
established that the on-policy Q-learning algorithm leads
to bias due to probing noise, whereas the off-policy Q-
learning algorithm remains unaffected. Finally, we provide
a numerical example to validate the effectiveness of the
algorithms.

The remainder of this paper is structured as follows: In
Section II, the non-zero-sum game problem is described, and
the coupled algebraic Riccati equations are then derived. In
Section III, the on-policy Q-learning algorithm is proposed
for the case where the system dynamics are unknown. In
Section IV, the off-policy Q-learning algorithm is developed,
and its robustness against probing noise is proved. In Section
V, simulations are conducted. Finally, our work is concluded
in Section VI.

II. PROBLEM FORMULATION

The notations employed throughout follow established
conventions, as specified in [18, 19]. We consider a linear
discrete-time system as

xk+1 = Axk +Buk +Dvk (1)

where xk ∈ Rn is the system state, uk ∈ Rm1 and vk ∈ Rm2

are control inputs. A ∈ Rn, B ∈ Rm1 , and D ∈ Rm2 are
unknown system matrices.

Define the performance indexes of the two players as

J1(xk) = min
uk

∞∑
k=0

(xT
kQ1xk + uT

kR11uk + vTk R12vk)

J2(xk) = min
wk

∞∑
k=0

(xT
kQ2xk + uT

kR21uk + vTk R22vk)
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where Qi ≥ 0, Rij > 0, Rji > 0, i, j = 1, 2. Note that uk

and vk represent the two players.

Assumption 1. The system (1) is controllable.

Definition 1. (Nash Equilibrium) [20] The policies {u∗, v∗}
are said to constitute a Nash equilibrium for the two-player
game if the following inequalities hold:

J∗
1 (u

∗, v∗) ≤ J∗
1 (u, v

∗)

J∗
2 (u

∗, v∗) ≤ J∗
2 (u

∗, v).

Definition 2. [21] A r-vector sequence h = [h1 ... hr] is said
to be persistently exciting over an interval [k + 1, k + r] if

k+1∑
i=k+1

hih
T
i ≥ βI (2)

holds for some constant β > 0.

Note that if r < q, (2) cannot be satisfied. Define a value
function as

Vi(xk) =
∞∑
j=0

(xT
j Qixj + uT

j Ri1uj + vTj Ri2vj), i = 1, 2.

(3)
By using (3), one has

Vi(xk) = xT
kQixk + uT

kRi1uk + vTk Ri2vk

+

∞∑
j=k+1

(xT
j Qixj + uT

j Ri1uj + vTj Ri2vj)
(4)

which yields the coupled Bellman equation:

Vi(xk) = xT
kQixk + uT

kRi1uk + vTk Ri2vk

+ Vi(xk+1).
(5)

Furthermore, the goal is to identify the saddle point (u∗, v∗)
such that

V ∗
i (xk) = min

uk,vk

{xT
kQixk + uT

kRi1uk + vTk Ri2vk

+ Vi(xk+1)}.
(6)

From [22], (3) can be presented as the following quadratic
form:

Vi(xk) = xT
k Pixk, i = 1, 2.

By utilizing the formula above, (5) can be expressed in the
following form:

xT
k Pixk = xT

kQixk + uT
kRi1uk + vTk Ri2vk + xT

k+1Pixk+1.

The Hamiltonian function is defined as
Hi(xk, uk, vk) = xT

kQixk + uT
kRi1uk + vTk Ri2vk

+ xT
k+1Pixk+1 − xT

k Pixk.

The optimal control inputs u∗
k = K∗xk and v∗k = L∗xk

should satisfy simultaneously ∂H1(xk, uk, vk)/∂uk = 0 and
∂H2(xk, uk, vk)/∂vk = 0. Therefore, one has

K∗ = − [R11 +BTP ∗
1B −BTP ∗

1D(R22 +DTP ∗
2D)−1

×DTP ∗
2B]−1[BTP ∗

1A−BTP ∗
1D

× (R22 +DTP ∗
2D)−1DTP ∗

2A]
(7)

L∗ = − [R22 +DTP ∗
2D −DTP ∗

2B(R11 +BTP ∗
1B)−1

×BTP ∗
1D]−1[DTP ∗

2A−DTP ∗
2B

× (R11 +BTP ∗
1B)−1BTP ∗

1A]
(8)

where P ∗
1 , P ∗

2 satisfie the coupled algebraic Riccati equations

P ∗
i =

[
K∗

L∗

]T [
Ri1 +BTP ∗

i B BTP ∗
i D

DTP ∗
i B Ri2 +DTP ∗

i D

] [
K∗

L∗

]
+

[
K∗

L∗

]T [
BTP ∗

i A
DTP ∗

i A

]
+

[
BTP ∗

i A
DTP ∗

i A

]T [
K∗

L∗

]
+ATP ∗

i A+Qi, i = 1, 2.
(9)

Remark 1. It is noted that (7), (8), and (9) involve the
system parameters. When these parameters are unknown or
uncertain, the desired control gains K∗ and L∗ cannot be
determined by (7), (8), and (9).

III. ON-POLICY Q-LEARNING FOR NON-ZERO-SUM GAME

In this section, we first provide the expression of the Q-
function. Then, we derive the on-policy Q-learning algorithm
for solving the two-player non-zero-sum game. Finally, we
develop a theorem demonstrating that the introduction of
probing noise may cause bias from the desired solution.

Based on (4), the Q-function is defined as

Qi(xk, uk, vk) = xT
kQixk + uT

kRi1uk + vTk Ri2vk

+ xT
k+1Pixk+1, i = 1, 2.

(10)

Similar to (6), we have

Qi(xk, u
∗
k, v

∗
k) = min

uk,vk
{xT

kQixk + uT
kRi1uk + vTk Ri2vk

+ xT
k+1Pixk+1}.

Using the system (1), the Q-function (10) can be written as

Qi (xk, uk, vk) =

 xk

uk

vk

T

Hi

 xk

uk

vk

 (11)

where

Hi =

Hxxi Hxui Hxvi

Huxi Huui Huvi

Hvxi Hvui Hvvi


=

Qi +ATPiA ATPiB ATPiD
BTPiA Ri1 +BTPiB BTPiD
DTPiA DTPiB Ri2 +DTPiD

 .

By applying ∂Q1(xk, uk, vk)/∂uk = 0 and ∂Q2(xk, uk, vk)
/∂vk = 0 to (11), we can obtain the optimal policies

K∗ = − [Huu1 −Huv1Hvv−1
2 Hvu2]

−1

× [Hux1 −Huv1Hvv−1
2 Hvx2]

L∗ = − [Hvv2 −Hvu2Huu−1
1 Huv1]

−1

× [Hvx2 −Hvv2Huu−1
1 Hux1].

From the above deductions, the expressions of optimal
control gains are obtained. Note that the system dynamics
parameters A, B, and D are unnecessary, as only H1 and
H2 are required. Next, the problem is transformed to solve
for the matrices H1 and H2 without reliance on the system
parameters. In Algorithm 1, the inclusion of probing noises is
essential to achieve the persistence of excitation. The actual
control inputs applied to the system are ûj

k = uj
k + ek and

v̂jk = vjk + wk.
However, the introduction of probing noises may lead to

bias, as demonstrated below. Inspired by [23], we can present
the following theorem.
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Algorithm 1 On-policy Q-learning Algorithm
Step 1: Initialize and select initial policies that can ensure
the system stability and let iteration index j = 0.
Step 2: Evaluate policies Kj and Lj by solving

Qj+1
i (xk, uk, vk) = xT

kQixk + uT
kRi1uk + vTk Ri2vk

+ xT
k (A+BKj +DLj)T

×
[
I (Kj)T (Lj)T

]
×Hj+1

i

[
I (Kj)T (Lj)T

]T
× (A+BKj +DLj)xk (12)

for Hi, i = 1, 2.
Step 3: Update the iterative feedback gains Kj and Lj

according

Kj+1 = − [Huuj
1 −Huvj1(Hvvj2)

−1Hvuj
2]

−1

× [Huxj
1 −Huvj1(Hvvj2)

−1Hvxj
2]

Lj+1 = − [Hvvj2 −Hvuj
2(Huuj

1)
−1Huvj1]

−1

× [Hvxj
2 −Hvvj2(Huuj

1)
−1Huxj

1].

Step 4: Let j = j + 1.
Step 5: Stop if ∥Kj −Kj+1∥ ≤ ε1 and ∥Lj − Lj+1∥ ≤
ε2, where εi, i = 1,2, are a predetermined error bound;
otherwise, go to Step 2.

Theorem 1. Let Hj+1
i be the solution to (12) with ek =

wk = 0 and Ĥj+1
i be the solution to (12) with ek ̸= 0 and

wk ̸= 0. Then, Hj+1
i ̸= Ĥj+1

i .

Proof: Rewrite (12) as xk

Kjxk

Ljxk

T

Hj+1
i

 xk

Kjxk

Ljxk


= (uj

k)
TRi1u

j
k + (vjk)

TRi2v
j
k + xT

kQixk + xT
k+1

×

 I
Kj

Lj

T

Hj+1
i

 I
Kj

Lj

xk+1. (13)

By using (1) in (13), we have xk

Kjxk

Ljxk

T

Hj+1
i

 xk

Kjxk

Ljxk


= (uj

k)
TRi1u

j
k + (vjk)

TRi2v
j
k + xT

kQixk + (Axk +Buj
k

+Dvjk)
T

 I
Kj

Lj

T

Hj+1
i

 I
Kj

Lj

 (Axk +Buj
k +Dvjk).

(14)

After introducing the probing noises ek and wk, (13) be-
comes the following xk

Kjxk

Ljxk

T

Ĥj+1
i

 xk

Kjxk

Ljxk


= (uj

k + ek)
TRi1(u

j
k + ek) + (vjk + wk)

TRi2(v
j
k + wk)

+ xT
kQixk + xT

k+1

 I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj

xk+1 (15)

where

xk+1 = Axk +B(uj
k + ek) +D(vjk + wk).

Then, (15) is rewritten as xk

Kjxk

Ljxk

T

Ĥj+1
i

 xk

Kjxk

Ljxk


= (uj

k)
TRi1u

j
k + (vjk)

TRi2v
j
k + xT

kQixk + (Axk +Buj
k

+Dvjk)
T

 I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj

 (Axk +Buj
k +Dvjk)

+G(xk, uk, vk, ek, wk) (16)

where

G(xk, uk, vk, ek, wk)

= (Bek +Dvjk)
T

 I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj

 (Axk +Buj
k

+Dvjk) + (Axk +Buj
k +Dvjk)

T

 I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj


× (Bek +Dvjk) + (Bek +Dvjk)

T

 I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj


× (Bek +Dvjk) + eTkRi1u

j
k + (uj

k)
TRi1ek + eTkRi1ek

+ wT
k Ri2v

j
k + (vjk)

TRi2wk + wT
k Ri2wk.

Since G(xk, uk, vk, ek, wk) ̸= 0 when ek ̸= 0 and wk ̸= 0,
(15) contains additional terms compared to (13). Conse-
quently, Hj+1

i ̸= Ĥj+1
i .

Remark 2. Algorithm 1 exhibits biased characteristics be-
cause uj

k+ek and vjk+wk are applied in the system dynamics
to generate the data, while uj

k and vjk are for value function
evaluation. As a result, the control policies learned from the
data differ from those used for evaluation.

IV. OFF-POLICY Q-LEARNING FOR NON-ZERO-SUM
GAME

In this section, the off-policy Q-learning algorithm is
developed to avoid the bias caused by probing noise. First,
two auxiliary inputs are introduced to derive the new system
equation and establish a new algorithm framework. Next, the
Kronecker product is used to separate the unknown parameter
part from the system data part. Then, the value function is
iterated using the least squares method to find an approximate
solution, eliminating the need for system dynamics. Finally,
the unbiasedness of this algorithm is proven.

Introducing auxiliary variables uj
k = Kjxk and wj

k =
Ljxk into system (1) yields

xk+1 = Āxk +B(uk −Kjxk) +D(vk − Ljxk) (17)

where Ā = A+BKj +DLj . uk and wk are referred to as
behavioral strategies for generating data, whereas uj

k and wj
k

are termed target strategies that require improvement.
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Algorithm 2 Off-policy Q-learning Algorithm
Step 1: Initialize and select the initial policies that can
ensure the system stability.
Step 2: Evaluate policies Kj and Lj by solving (21) for
Hj+1

i , i = 1, 2.
Step 3: Update the iterative feedback gains Kj and Lj

according to (22) and (23).
Step 4: Let j = j + 1.
Step 5: Stop if ∥Kj −Kj+1∥ ≤ ε1 and ∥Lj − Lj+1∥ ≤
ε2, where εi, i = 1, 2, are a predetermined error bound;
otherwise, go to Step 2.

Referring to (11) and the quadratic expression of V (xk),
we can derive

P j+1
i =

 I
Kj

Lj

T

Hj+1
i

 I
Kj

Lj

 , i = 1, 2.

By using (12), (17) yields

Qj+1
i (xk, uk, vk)− [xk+1 −B(uk −Kjxk)−D

× (vk − Ljxk)]
T

 I
Kj

Lj

T

Hj+1
i

 I
Kj

Lj

 [xk+1 −B

× (uk −Kjxk)−D(vk − Ljxk)]

= xT
kQixk + (uj

k)
TRi1u

j
k + (vjk)

TRi2v
j
k, i = 1, 2. (18)

Combining (17) and (18), we have I
Kj

Lj

T

Hj+1
i

 I
Kj

Lj

− (A+BKj +DLj)T

×

 I
Kj

Lj

T

Hj+1
i

 I
Kj

Lj

 (A+BKj +DLj)

= Qi + (Kj)TRi1K
j + (Lj)TRi2L

j , i = 1, 2. (19)

Then, (18) can be formulated as follows

xT
k

 I
Kj

Lj

T

Hj+1
i

 I
Kj

Lj

xk − xT
k+1

 I
Kj

Lj

T

Hj+1
i

×

 I
Kj

Lj

xk+1 + 2xT
kA

TP j+1
i B(uk −Kjxk)

+ 2uT
kB

TP j+1
i B(uk −Kjxk) + 2xT

kA
TP j+1

i D(vk

− Ljxk) + 2vTk D
TP j+1

i D(vk − Ljxk) + 2uT
kB

T

× P j+1
i D(vk − Ljxk)− (vk − Ljxk)

TDTP j+1
i D(vk

− Ljxk)− (uk −Kjxk)
TBTP j+1

i B(uk −Kjxk)

− 2(uk −Kjxk)
TBTP j+1

i D(vk − Ljxk)

+ 2vTk D
TP j+1

i B(uk −Kjxk)

= xT
kQixk + (uj

k)
TRi1u

j
k + (vjk)

TRi2v
j
k, i = 1, 2. (20)

By employing Kronecker product and least squares oper-
ation, (20) is elaborated as follows

θjXj+1
i = ρji , i = 1, 2 (21)

where

Xj+1
i = [vec(Xj+1

1i ) vec(Xj+1
2i ) ... vec(Xj+1

6i )]

Xj+1
1i = Hxxj+1

i , Xj+1
2i = Hxuj+1

i , Xj+1
3i = Hxvj+1

i

Xj+1
4i = Hvuj+1

i , Xj+1
5i = Huuj+1

i , Xj+1
6i = Hvvj+1

i

ρji = xT
kQixk + (uj

k)
TRi1u

j
k + (vjk)

TRi2v
j
k

θj = [θj1 θj2 θj3 θj4 θj5 θj6]

θj1 = xk ⊗ xk − xk+1 ⊗ xk+1

θj2 = 2xk ⊗ uk − 2xk+1 ⊗ (Kjxk+1)

θj3 = 2xk ⊗ vk − 2xk+1 ⊗ (Ljxk+1)

θj4 = vk ⊗ uk − (Kjxk+1)⊗ (Ljxk+1)

θj5 = uk ⊗ uk − (Kjxk+1)⊗ (Kjxk+1)

θj6 = vk ⊗ vk − (Ljxk+1)⊗ (Ljxk+1).

In this way, the updated control gains can be obtained as

Kj = (Huu1 −Hvu1(Hvv2)
−1Hvu2)

−1

× (Hvu1(Hvv2)
−1Hxv2 −Hxu1) (22)

Lj = (Hvv2 −Hvu2(Huu1)
−1Hvu1)

−1

× (Hvu2(Huu1)
−1Hxu1 −Hxv2). (23)

Remark 3. Algorithm 2 is a model-free algorithm designed
for the two-player non-zero-sum game. It is worth noting
that no system parameters are required when updating the
control gains using (22) and (23).

Theorem 2. The obtained Ĥj+1
i matrix is unaffected and

remains unchanged if nonzero probing noises are added to
the control strategies in Algorithm 2.

Proof: After the probing noises ek and wk are added to
the uk and vk, respectively, (17) takes the form:

x̂k+1 = Āx̂k+B(uk+ek−Kj x̂k)+D(vk+wk−Lj x̂k) (24)

where x̂k is the state after adding noises. Then, (19) can be
transformed as

x̂T
k

 I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj

 x̂k − [x̂k+1 −B(uk + ek

−Kj x̂k)−D(vk + wk − Lj x̂k)]
T

 I
Kj

Lj

T

Ĥj+1
i

×

 I
Kj

Lj

 [x̂k+1 −B(uk + ek −Kj x̂k)

−D(vk + wk − Lj x̂k)]

= x̂T
kQix̂k + x̂T

k (K
j)TRi1K

j x̂k + x̂T
k (L

j)TRi2L
j x̂k.

(25)
Substituting (24) into (25), results in

x̂T
k

 I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj

 x̂k

− x̂T
k Ā

 I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj

 Āx̂k

= x̂T
kQix̂k + (uj

k)
TRi1u

j
k + (vjk)

TRi2v
j
k.

(26)
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Since (26) holds for all state trajectories, we have I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj


− Ā

 I
Kj

Lj

T

Ĥj+1
i

 I
Kj

Lj

 Ā

= Qi + (uj
k)

TRi1u
j
k + (vjk)

TRi2v
j
k.

(27)

Note that (27) is equivalent to (19). Since the solution
of (19) matches that of (18), adding probing noises during
the implementation of the proposed off-policy Q-learning
Algorithm 2 does not introduce bias. This completes the
proof.

Remark 4. Compared to Algorithm 1, Algorithm 2 com-
pletely overcomes the defects caused by probing noise. In
terms of noise selection, as outlined in [24], either sinusoidal
or Gaussian noise can be considered as probing noise.

V. SIMULATION

This section provides a numerical example to verify the
proposed algorithm. We consider two types of noise situa-
tions to illustrate the impact of different noises. The linear
system (1) with the following system matrices is considered:

A =

 0.9065 0.0816 −0.0005
0.0743 0.9012 −0.0007

0 0 0.1327


B =

 −0.0015
−0.0096
0.8674

 D =

 0.0095
0.0004

0

 .

It is important to note that the system matrices are only used
to simulate the system and acquire data, not for the control
algorithms. The performance index is considered as (3) with
Q1 = diag(1, 1, 1), Q2 = diag(1, 1, 1), R11 = 1, R12 = 2,
R21 = 2, and R22 = 1. The initial state and the initial gains
are chosen as x0 = [5 − 10 0]T , K0 = [−2 − 2 − 1], and
L0 = [0 0 0]. Now, we analyze the results of the proposed
algorithms 1 and 2 under two cases of probing noises. The
system dynamics are assumed to be completely unknown.

Inspired by the literature [25], the optimal control strate-
gies are determined through a model-based algorithm. Hence,
the gains K∗ and L∗ are given as

K∗ =
[
0.0805 0.0925 −0.0661

]
L∗ =

[
−0.1395 −0.1166 0.0001

]
.

Case 1. The probing noises are chosen as

ek = sin(1.009k) + cos2(0.538k) + sin(0.9k)

wk = sin(2k) + cos(k)cos(2k) + sin(k) + cos(8k)

Fig. 1 depicts the convergence of the control gains ob-
tained from Algorithm 1 during the learning process. It
can be observed that the control gains are influenced by
noise and do not approach the optimal values. Figs. 2 and
3 depict the evolution of the control gains and the system
state trajectories, respectively, based on Algorithm 2. Fig. 2
shows that the control gains converge to the optimal values.
The probing noise is removed after 400 time steps. Fig. 3
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Fig. 1. Convergence of parameters Kj and Lj in on-policy Q-learning
for Case 1.

5 10 15 20 25 30 35 40

0

1

2

3

5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

Fig. 2. Convergence of parameters Kj and Lj in off-policy Q-learning
for Case 1.
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Fig. 3. System state trajectories in off-policy Q-learning for Case 1.

demonstrates that the state trajectories converge to zero as
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Fig. 4. Convergence of parameters Kj and Lj in on-policy Q-learning
for Case 2.
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Fig. 5. Convergence of parameters Kj and Lj in off-policy Q-learning
for Case 2.
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Fig. 6. System state trajectories in off-policy Q-learning for Case 2.

expected.

Case 2. The probing noises are chosen as

ek = 2(randn(1)− 1) wk = 2(randn(1)− 1)

where randn(·) is a MATLAB function that generates random
numbers from a standard normal distribution, which has a
mean of 0 and a standard deviation of 1.

Figs. 4, 5, and 6 show simulations of Case 2. Similar to
Case 1, Fig. 5 shows that the control gains obtained from
Algorithm 1 do not converge to the optimal solutions, while
Figs. 5 and 6 illustrate the desired convergence of the control
gains and state trajectories based on Algorithm 2.

VI. CONCLUSION

This paper considered the non-zero-sum game for linear
discrete-time systems. Based on a quadratic value function,
we derived coupled algebraic Riccati equations in (9). Then,
we proposed both on-policy and off-policy Q-learning al-
gorithms to achieve Nash equilibrium, which are model-
free algorithms. To ensure the persistence of excitation, we
introduced probing noise into the control input. We presented
two theorems demonstrating that the on-policy Q-learning
algorithm may introduce bias to the Nash equilibrium due to
probing noise, whereas the off-policy Q-learning algorithm
maintains an unbiased property. Finally, simulation results
validated the effectiveness of the algorithms.
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