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Abstract—Hybridization emerges as a promising strategy for
refining conjugate gradient (CG) directions, pivotal in tackling
image deblurring within compressed sensing frameworks. This
abstract introduces a novel hybrid CG parameterization, sur-
passing the recent SGCS algorithm (Auwal et al., 2020). The
method integrates a convex combination approach, dynamically
updating the combination parameter (µk) via the Dai and
Liao conjugacy condition. Additionally, a derivative-free line
search efficiently determines optimal step lengths (αk). With
a focus on satisfying sufficient descent conditions, imperative
for global convergence, the method demonstrates superior per-
formance through numerical experiments compared to existing
approaches. Furthermore, the extension of this method to ℓ1-
norm regularized problems enhances its efficacy in restoring
blurred images within compressed sensing contexts.

Index Terms—Convex Constraints, Hybridization Parameter,
Conjugate gradient, Image restoration.

I. INTRODUCTION

IN this approach, a constrained monotone system of non-
linear equations is given

ψ(x) = 0, x ∈ Ω, (1)

is considered, such that ψ : Rn → Rn is continuous and
monotone. The term monotone entails that, the system (1)
satisfies the following inequality

(ψ(x)− ψ(y))
T
(x− y) ≥ 0 ∀x, y ∈ Rn. (2)

Moreover, the constrained set Ω ∈ Rn is a non-empty closed
and convex set. Throughout this paper, Rn and ∥.∥ are
referring to the Euclidean norm and real n-dimensional space
respectively and ψk = ψ(xk).
The monotone system is among categories of systems of
nonlinear equations investigated by many scholars, such as
Zarantonello [3], Kačurovskii [4], Minty [5] etc. Studies of
monotone systems became pertinent for their usability in
finding economic equilibrium and chemical equilibrium [36].
Monotone systems were recently applied in ℓ1-norm regu-
larized problems to restore noisy signals or recover blurred
images in compressive sensing [1]. Dozens of techniques
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have been investigated for solutions to the monotone system.
The suitable techniques are Newton’s and quasi-Newton’s
methods [6]. Gauss-Newton’s [7] and Levenberg-Marquardt’s
methods [8] are among the numerous techniques for solving
the monotone system. Despite the attractive features of
these methods, they are not appropriate for high-dimension
problems; this is because of the computation of the Jacobian
Matrix and storage requirement. [10].

The attention of researchers turned to CG methods because
of their ease of use and low storage requirements, which
enabled them to solve high-dimension systems of practical
importance. This is why recently developed methods for
constrained systems with applications to various fields use
CG direction [13]. CG methods eliminated most of the
disadvantages associated with previous methods. The CG
method uses the following direction.

dk =

{
−ψk, if k = 0,

−ψk + βkdk−1, if k ≥ 1,
(3)

where, βk, is a conjugate gradient parameter.
The parameter βk is the most critical component of any

CG method because different CG parameters correspond to
different CG directions with unique numerical performance
and convergence properties. Since any newly successfully
formulated CG parameter must be numerically sound and
converged globally [31], [28]. The numerical performance
of the CG parameter can be checked by comparing it with
existing CG parameters. Likewise, its global convergence
is guaranteed by its ability to satisfy a descent/sufficient
descent condition[31]. Defining and producing a new CG
parameter, βk, is challenging; therefore, researchers resorted
to hybridize and modify the existing CG parameters (classical
CG). These classical CG parameters are of two categories:
good numerical performance but uncertain convergence re-
sults. Under this category, we have;

βPRPk =
ψTk yk−1

∥ψk−1∥2
,

βHSk =
ψTk yk−1

dTk−1yk−1
,

βLSk =
ψTk yk−1

−ψTk−1dk−1
.

(4)

as proposed in [14], [15], [16].
The second category comprises CG parameters with strong
convergent properties but weak numerical performance. They
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are defined as

βFRk =
∥ψk∥2

∥ψk−1∥2
,

βCDk =
∥ψk∥2

−ψTk−1dk−1
,

βDYk =
∥ψk∥2

dTk−1yk−1
.

(5)

as proposed in [17], [18], [19].
Researchers often combine some existing CG parameters

or directions to exploit their attractive properties and develop
a practical algorithm. Some known discoveries on this type
of CG method are the ones done by Wei, Li [16], and
Yuan et al. [26]. Different researchers have proposed many
hybrid methods see the survey paper conducted by (Hager
and Zhang [23] and reference therein). These hybrids can
be classified into two classes, hybrid FR and PRP-type
methods such as the one proposed by Shi and Guo [22],
where βk = max{−βFRk ,min{βPRPk , βFRk }}, and the DY
and HS-type hybrid such as the one proposed by Gilbert
and Nocedal [24], with βk = max{0,min{βHSk , βDYk }}.
For further information on the hybrid CG methods with
reasonable discovery, refer to [23]. For a good discovery and
excellent comparative study on new CG methods, refer to
[29].

Abubakar et al. [32] modified and re-scaled the Fletcher-
Reeves CG parameter to satisfy the descent conditions in
every iteration. Likewise, Waziri et al. [33] changed the Dia
Yuan CG parameter by following Xui et al. strategy in [34];
in conjunction with the projection algorithm of Solodov
and Svaiter’s [45], proposed a sufficient descent direction
that restores a signal problem in compressed sensing.
Abdullahi et al.[31] modified Dai Yuan CG parameter
and presented three different sufficient-descent directions
for the constrained system of equations. Ibrahim et al. in
[35], combined FR and LS CG parameters for constrained
systems with application in compressive sensing. The
method’s overall performance is promising.

Furthermore, In [44], Abubakar et al. Presented a hybrid
of DY and FR conjugate gradient parameters and solved
unconstrained optimization with application to portfolio
selection. Although DY and FR parameters belong to the
same class of CG parameters with good global convergence
properties but weak or uncertain numerical performance,
they achieved promising results.

Motivated by the achievement in [44], and the projection
algorithm proposed in [45], this paper presents a new HS-DY
hybrid CG parameter with good numerical performance and
converges globally. We also proposed to extend the results
to regularized ℓ1 norm problem to deblurred some imaging
problems in compressed sensing. The HS CG parameter
is of the class of CG’s with good convergence properties
but uncertain numerical performance. On the other hand,
the DY parameter is of the class of CG’s with excellent
numerical performance but uncertain global convergence.
Therefore, a hybrid of these CG parameters, HS-DY, will
give a better result.

The proposed method is iterative i.e., given any starting

point xk, and suitable step length αk > 0, it generates a new
point xk+1 through

xk+1 = xk + αkdk, k = 0, 1, 2, ..., (6)

αk the step length, is computed through the following line
search condition presented in [43] given by

−ψ(xk + αkdk)
T dk ≥ σαk∥ψ(xk + αkdk)∥.∥dk∥2 (7)

The subsequent part is structured as follows. Next, we will
present the method’s algorithm. The convergence results are
shown in section III; in section IV, we offer numerical
analysis and application of the technique to image recovery.
Finally, we provide the summary and conclusion in section
V.

II. METHODOLOGY AND NUMERICAL ANALYSIS

This section introduces the projection operator and some
assumptions before submitting the new HS-DY CG parame-
ter and its numerical analysis. Let Ω be a convex close subset
that is not empty of Rn, then for any x ∈ Rn, the projection
on Ω is written as

PΩ[x] = arg min{||x− y|| : y ∈ Ω}. (8)

This map PΩ : Rn → Ω refers to the projection operator. It
has the following property

∥PΩ[x] − PΩ[y]∥ ≤ ∥x− y∥, for any x, y ∈ Rn. (9)

called non-expensive property. And hence

∥PΩ[x] − y∥ ≤ ∥x− y∥, for all y ∈ Ω. (10)

At this moment, we consider the two CG parameters
βHSk =

ψT
k yk−1

sTk−1yk−1
and βDYk = ∥ψk∥2

sTk−1yk−1
, for non-monotone

functions, these two CG parameters become undefined at
some point as their common denominator sTk−1yk−1, may
be zero. On the other hand, the former parameter is of the
class of CG parameters with properties of excellent numerical
performance but poor convergence properties. In contrast, the
latter parameter is of the class of CG parameters with suitable
convergence properties but uncertain numerical performance.
For these reasons, we are motivated to hybridize these two
parameters (βHSk , βDYk ) to exploit their attractive properties
and, come up with an effective CG parameter with good
numerical performance and convergence property, which can
be applied to various applications. We then form the two CG
parameters as

βHSDYk = (1− µk)β
HS
k + µkβ

DY
k

= (1− µk)
ψTk yk−1

sTk−1yk−1
+ µk

∥ψk∥2

sTk−1yk−1
,

(11)

where µk is a combination parameter to be addressed later.
Then consider the Dai-Liao [30] conjugacy condition

given by the equation

dTk−1yk−1 = −tsTk−1ψk, t > 0. (12)
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We take the inner product of (3) with vector yk−1 and
consider βk as (11), we have as follows

dTk−1yk−1 = −ψTk yk−1 + (1− µk)
ψTk yk−1

sTk−1yk−1
sTk−1yk−1

+µk
∥ψk∥2

sTk−1yk−1
sTk−1yk−1.

(13)

By (12) and (13), we get

−tsTk−1ψk = −ψTk yk−1 + (1− µk)
ψTk yk−1

sTk−1yk−1
sTk−1yk−1

+µk
∥ψk∥2

sTk−1yk−1
sTk−1yk−1.

(14)

After some algebraic simplification, we then have µk, to be

µk =
tsTk−1ψk

ψTk yk−1 − ∥ψk∥2
. (15)

where

yk−1 = (ψ(zk)− ψ(xk)) and sk−1 = zk − xk.

Let

µ̄k = max

{
µk,

τ∥sk−1∥2

yTk−1sk−1

}
, τ > 0 (16)

Now 0 ≤ µ̄k ≤ 1, if µ̄k > 1 then choose µ̄k = 0.5.

This parameter µ̄k is crucial for achieving the maximum
efficiency of the hybridized parameters.
The sufficient condition for a good direction to converge
globally is it’s ability to satisfy the below inequality:

ψTk dk ≤ −h∥ψk∥2, h > 0. (17)

To have a descent direction that stays in the trust region
for every iteration, the proposed direction is rescaled to:
d0 = −ψ0 if k = 0,

dk = −ηkψk+
(1− µ̄k)ψ

T
k yk−1 + µ̄k∥ψk∥2

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }
sk−1, k ≥ 1,

(18)

where ηk is a positive parameter that can be determined
so that the inequality (17) is satisfied.

Here we describe in detail the proposed method’s
algorithm.
Algorithm 2.1 A Modified Hybrid HS-DY Conjugate
Gradient Parameter (MHCG)

STEP 0: Given starting points x0 ∈ Ω, constants σ, ξ > 0,
ρ ∈ (0, 1), ϵ > 0, set d0 = −ψ0 and k = 0.
STEP 1: If ∥ψk∥ ≤ ϵ stop. Else, go to step 2.
STEP 2: Perform an adaptive line search using a trust-region
approach:

• Define the trust-region subproblem:

min
α

{
∥ψ(xk + αkdk)∥2

}
subject to:

−ψ(xk + αkdk)
T dk ≥ σαk∥ψ(xk + αkdk)∥.∥dk∥2.

(19)

• where αk = ξρmk with mk smallest positive integer such
that αk lies within the trust region.

STEP 3: Set zk = xk + αkdk, if zk ∈ φ and ∥ψ(zk)∥ ≤ ϵ,
stop. Else, step 4.

STEP 4: Compute xk+1 by

xk+1 = PΩ[xk − λkψ(zk)] (20)

where λk= ψ(zk)
T (xk−zk)

∥ψ(zk)∥2

STEP 5: Determine dk+1 by (18)
STEP 6: Let k = k + 1, and repeat the process.

III. CONVERGENCE RESULTS

Before giving the proposed method’s convergence, it is
essential to provide some valuable assumptions.

Assumption (A1). Let ψ(x) be Lipschitz continuous. It
implies the presence of L > 0 such that

∥ψ(zk)− ψ(xk)∥ ≤ L∥zk − xk∥ holds. (21)

Assumption (A2). It is uniformly monotone, i.e, for all
x, y ∈ Rn there exists positive c such that

(zk − xk)
T (ψ(zk)− ψ(xk)) ≥ c∥zk − xk∥2. (22)

Remark 1. Assumption A2 implies that

yTk−1sk−1 = (ψ(zk)− ψ(xk))
T ≥ c∥zk − xk∥2. (23)

Lemma 3.1. The proposed direction given by (18) satisfies
(17) for ηk ≥ L+ 1

Proof: Since 0 ≤ µ̄k ≤ 1, taking the inner product
of (18) with ψk we have,

ψTk dk = −ηk∥ψk∥2+

(1− µ̄k)||ψk||2(sTk−1yk−1) + µ̄k∥ψk∥2(ψTk sk−1)

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }

≤ −ηk∥ψk∥2 +
||ψk||2(sTk−1yk−1) + ||ψk||2(ψTk sk−1)

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }

≤ −ηk∥ψk∥2 +
||ψk||2(sTk−1yk−1)

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }
+

||ψk||2(ψTk sk−1)

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }

≤ −ηk∥ψk∥2 +
L||ψk||2||sk−1||2

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }
+

||ψk||2(ψTk sk−1)

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }

≤ −ηk∥ψk∥2 +
L||ψk||2||sk−1||2

||sk−1||2
+

||ψk||2(ψTk sk−1)

(ψTk sk−1)

= −ηk∥ψk∥2 + L||ψk||2 + ||ψk||2

= −(ηk − L− 1)||ψk||2.

This is if ηk ≥ L+ 1
Now take

ηk = 2 + L (24)
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The lemma below indicates that when the solution is not
reached, there exists αk satisfying the line search condition
given by (19).

Lemma 3.2. suppose the assumptions are fulfilled, then
there exists αk satisfying (19) ∀k ≥ 0

Proof By contradiction, let’s assume k0 ≥ 0 for any
non negative i (19) is not true at kth0 iteration i.e.,

−ψ(xk0 + αk0dk0)
T dk0 < σξρi∥dk0∥2. (25)

ψ is continuous and ρ ∈ (0, 1, ), i→ ∞, then

−ψ(xk0)T dk0 ≤ 0. (26)

But from (17), we get

−ψ(xk0)T dk0 ≥ ∥ψ(xk0)∥2 > 0. (27)

This contradicts (26).
This lemma is the same as theorem 2.1 of [45]. Therefore,

its proof is left.

Lemma 3.3. Suppose all mentioned Assumptions hold. Let
{xk} be from the proposed Algorithm, for x̄, ψ(x̄) = 0,

∥xk+1 − x̄∥2 ≤ ||xk − x̄∥2 − ∥xk+1 − xk∥2. (28)

This implies {xk} is bounded.
Moreover, it shows that {xk} is finite and x∗ is a solution

of (1), or infinite and

∞∑
k=0

∥xk+1 − xk∥2 <∞, (29)

this implies

lim
k→∞

∥xk+1 − xk∥ = 0. (30)

Remark 2. From the above, it is obvious that

∥xk − x̄∥ ≤ ∥x0 − x̄∥.

Also from assumption A1, it follows that

∥ψ(xk)∥ = ∥ψ(xk)− ψ(x̄)∥ ≤ L∥xk − x̄|| ≤ L∥x0 − x̄∥.

Therefore, taking κ = L||x0 − x̄||, we have

∥ψ(xk)∥ ≤ κ. (31)

Lemma 3.4. Assume all the assumptions are fulfilled, and
{xk} and {zk} come from MHCG, then they are bounded,
and

lim
k→∞

∥xk − zk∥ = 0. (32)

Moreover,

lim
k→∞

αk−1∥dk∥ = 0. (33)

Proof. Let x̄ satisfy (1) and ψ monotone, then

ψ(zk)
T (xk − x̄) ≥ ψ(zk)

T (xk − zk),

by zk and using (19) we arrived at

∥xk+1 − x̄∥2 = ∥PΩ[xk − λkψ(zk)]− x̄∥2

≤ ∥xk − λkψ(zk)− x̄∥2

= ∥xk − x̄∥2 − 2λkψ(zk)
T (xk − x̄)+

∥λkψ(zk)∥2

≤ ∥xk − x̄∥2 − 2λkψ(zk)
T (xk − zk)+

∥λkψ(zk)∥2

= ∥xk − x̄∥2 −
(
ψ(zk)

T (xk − zk)
)2

∥ψ(zk)∥2
.

(34)

This tells us that the sequence {∥xk+1−x̄∥} is non-increasing
sequence and hence converged. Thus {xk} is bounded. From
zk, (19), monotonicity of ψ, Cauchy-Schwarz inequality, we
have

σ∥ψ(zk)∥∥xk − zk∥ =
σ∥ψ(zk)∥αkdk∥2

∥xk − zk∥
≤

ψ(zk)
T (xk − zk)

∥xk − zk∥
≤ ψ(xk)

T (xk − zk)

∥xk − zk∥
≤ ∥ψ(zk)∥.

(35)

From relation (33), it follows that

σ2

k2

∞∑
k=0

∥xk − zk∥4 ≤
∞∑
k=0

ψ(zk)
T (xk − zk2)

∥ψ(zk)∥2

≤
∞∑
k=0

(∥xk − x̄∥2 − ∥xk+1 − x̄∥2) <∞.

(36)

By convergent series’ properties, (31) holds. Then from zk
and (32), we get (33).

Lemma 3.5. Let all assumptions be satisfied and dk is a
sequence generated by HS-DY algorithm, then there exists
N > 0 such that ||dk|| ≤ N

Proof.
Then by (18) utilizing (21) and remark A1, we get

choosing

∥dk∥ =

∥∥∥∥∥−ηkψk + (1− µ̄k)ψk(y
T
k−1sk−1) + µ̄k∥ψk∥2sk−1

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }

∥∥∥∥∥
≤ |ηk|∥ψk∥+

∥∥∥∥∥ (1− µ̄k)ψk(y
T
k−1sk−1)

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }

∥∥∥∥∥+∥∥∥∥ µ̄k||ψk||2sk−1

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }

∥∥∥∥
≤ |ηk|∥ψk∥+

∥∥∥∥∥ ψk(y
T
k−1sk−1)

max{||sk−1||2, ∥sk−1∥, ψTk sk−1 }

∥∥∥∥∥+∥∥∥∥∥ −µ̄kψk(yTk−1sk−1)

max{||sk−1||2, ∥sk−1∥, ψTk sk−1}

∥∥∥∥∥+∥∥∥∥ µ̄k||ψk||2sk−1

max{||sk−1||2, ∥sk−1∥, ψTk sk−1}

∥∥∥∥
≤ |ηk|∥ψk∥+

L∥sk−1∥2∥ψk∥
max{||sk−1||2, ∥sk−1∥, ψTk sk−1}

+
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L|µ̄k|∥sk−1∥2∥ψk∥
max{||sk−1||2, ∥sk−1∥, ψTk sk−1}

+

|µ̄k|∥ψk∥2∥sk−1∥
max{||sk−1||2, ∥sk−1∥, ψTk sk−1}

≤ |ηk|∥ψk∥+
L∥sk−1∥2∥ψk∥

∥sk−1∥2
+
L|µ̄k|∥sk−1∥2∥ψk∥

∥sk−1∥2
+

|µ̄k|∥ψk∥2∥sk−1∥
∥sk−1∥

= |ηk|∥ψk∥+ L∥ψk∥+ L|µ̄k|∥ψk∥+ |µ̄k|∥ψk∥2

≤ (2 + L)κ+ Lκ+ LHκ+Hκ2

||dk+1|| ≤ N

where

N = (2 + L)κ+ Lκ+ LHκ+Hκ2

The following theorem summarized the global conver-
gence MHCG.

Theorem 1. Suppose {xk} is generated by MHCG and all
assumptions hold, then

lim inf
k→∞

∥ψk∥ = 0. (37)

Proof. Going by contradiction, assume (37) does not hold,
it implies ϵ0 > 0 and ||ψk∥ ≥ ϵ0 is true ∀k. But by the
inequality (17), it implies that

c∥ψk∥2 ≤ −ψTk dk ≤ ∥ψk∥∥dk∥ ∀ k, (38)

and thus

∥dk∥ ≥ c∥ψk∥ ≥ cϵ0 ∀ k. (39)

Then by inequality (33) and (39), it follows that

lim
k→∞

αk−1 = 0. (40)

Then if k → ∞, α
′

k = ρ−1αk not imply (19) and hence

−ψ(xk + α
′

kdk)
T dk < σα

′

k∥ψ(xk + α
′

kdk)∥.∥dk∥2. (41)

Then by Lemma 3.1 and 3.4 we have that sequences {xk}
and {dk} are bounded, which means that there is x̄ and d̄
(accumulation points) and indexes K2 ⊂ K1 (infinite) such
that the limk→∞ xk = x̄ and limk→∞ dk = d̄ for K ∈ K2 ⊂
K1. For k → ∞, and applying limit at both sides of (42) for
all K ∈ K2, we get

ψ(x̄)T d̄ > 0. (42)

But taking limit as k → ∞ of both sides of inequality (19)
for K ∈ K2, we get

ψ(x̄)T d̄ ≤ 0. (43)

This goes in contrast with (42) and hence the proof.

IV. NUMERICAL OUTCOMES AND RESULTS

The last part of the paper is divided into two segments; first
and second. In the first segment, some numerical compari-
son of the proposed algorithm with two similar algorithms
available in the literature, i.e., CHCG [36] and DTCG1 [31]
are provided. In the second segment, the proposed algorithm
(MHCG) is extended and co-run together with SGCS [38]
algorithm to ℓ1 norm regularized problem in compressed
sensing where some blurred images are deblurred. The codes
were written in the MATLAB R2018a and ran on a computer
(2.80GHZ CPU, 16GB RAM). During the implementation
process, we used the same line-search procedure and set the
following parameters for all of the codes: ξ = 1, σ = 10−6,
ρ = 0.9 and t = 0.9. Any method is set to stop if one of the
following occurs :

• The number of iteration ≥ 1000 but no xk satisfying
the stoping criteria is obtained.

• ∥ψ(xk)∥ ≤ 10−10.
• ∥ψ(zk)∥ ≤ 10−10.

The three algorithms were tested with the following test
functions adopted from Abdullahi et al. [31].

Problem 1: ψ : Ω → Rn with
ψi(x) = ln(|xi|+1)− xi

n for i = 1, 2, 3, ..., n, and Ω=Rn+.

Problem 2: ψ : Ω → Rn with
ψi(x) = xi − sin(|xi + 1|) for i = 1, 2, 3, ..., n, and
Ω = Rn+.

Problem 3: F : Ω → Rn with
ψ1(x) = 3x31 + 2x2 − 5 + sin(x1 − x2) + sin(x1 + x2),
ψi(x) = 3x3i + 2xi+1 − 5 + sin(xi − xi+1) + sin(xi +
xi+1) + 4xi − xi−1 exp

xi−1−xi −3,
ψn(x) = xn−1 + expxn−1−xi −4xn − 3,
for i = 2, 3, 4, ..., n− 1 and Ω = Rn+.

Problem 4: ψ : Ω → Rn with
ψi(x) = min{min(xi, x

2
i ),max(|xi|, x3i )} for

i = 2, 3, 4, ..., n, and Ω = Rn+.

Problem 5: ψ : Ω → Rn with
ψ1(x) =

5
2x1 + x2 − 1,

ψi(x) = xi−1 +
5
2xi+1 − 1,

ψn(x) = xn−1 + 5
2xn−1, for i = 2, 3, 4, ..., n. and

Ω = Rn+.

Problem 6: Tridiagonal Exponential problem ψ : Ω → Rn
with
ψ1(x) = x1 − expcos(h(x1+x2)),
ψi(x) = x1 − expcos(h(xi−1+xi+xi+1)),
ψn(x) = xn − expcos(h(xn−1+xn)),
where 1

n+1 , for i = 2, 3, 4, ..., n− 1. and Ω = Rn+.

The three algorithms were run using a wide range of
dimensions to see how robust the proposed method is.
The range of the dimensions used is 1000–100,000. For
the initial starting points, we used X1 = (1, 1, ..., 1)T ,
X2 = ( 12 ,

1
22 , ...,

1
2n )

T , X3 = (1, 14 ,
1
9 , ...,

1
n2 )

T ,
X4 = (2, 2, ..., 2)T , X5 = (0, 12 ,

2
3 ..., 1 − 1

n )
T and

X6 = (− 1
4 ,−

1
4 , ...,

(−1)2

4 )T .
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These starting points are evenly and varied enough to test
the algorithm’s robustness.

The six tables at the end displayed the numerical results
of the proposed algorithm (MHCG) in competition with two
similar algorithms CHCG and DTCG1.
We report the numerical performance of the three methods
in Table I to Table VI. In the tables, ”DIM,” ”INT PNT,”
”NI,” ”NF,” ”TIME,” and ”NORM” refer to the dimensions,
initial points, number of iterations, number of function eval-
uations, CPU time, and value of the residual at the stopping
point respectively. The tables show that all the algorithms,
MHCG, SIGNAL, and DTCG1, solved all the test functions.
However, the robustness of the proposed method is apparent.
Because of the Proposed method (MHCG), performance on
the set of problems for the number of iterations, number of
function evaluations, and time taken for the execution (CPU
time) is better than the performance of the metrics for the
compared algorithms.

These indicate that the proposed algorithm is a fast and
robust alternative for practical purposes where large-scale
systems are present. This achievement could result from
hybridizing the two cg parameters with desirable properties
and a unique hybridizing parameter that updates through Dai
and Liao conjugacy conditions.
Furthermore, using Dolan and Moré [39] performance pro-
file, three graphs are plotted to assess and compare the
proposed algorithm’s performance with the two algorithms
on the set of chosen test’s functions. For the function Pn,
and solver Sn, n = 1, 2, ... define,

tP,S = time required to solve test function by algorithm S.

This metric is the same as other metrics, i.e., function
evaluation, number of iterations, etc. A performance ratio
was used to devise a baseline for comparing a test function
by a solver.

The ratio is as

rP,S =
tP,S

min{tP,S : Sn}
.

Then to get the overall evaluation of the performance of the
solver, we have,

ρs(τ) =
1

Pn
size{pn : rP,S ≤ τ}

where ρs(τ) is the cumulative distribution function for test
function Sn with performance ratio within a factor τ ∈ R.

The computational analysis, summarized in Tables I to VI,
was conducted using MATLAB. The results were visualized
in Figures I to III. Figure I illustrates the algorithm’s per-
formance based on the number of iterations, Figure II shows
the results based on CPU time, and Figure III presents the
performance in terms of the number of function evaluations.
After plotting the graphs, the method whose performance
profile is on top of the other is considered the best method,
and it is visible from the graphs that MHCG is the winner.

V. APPLICATIONS TO ℓ1 REGULARIZED PROBLEM

In this part, we extended the proposed algorithm (MHCG)
and applied it together with SGCS algorithm [38] to ℓ1
norm regularization to correct some imaging problems in
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Fig. I: Performance profile of MHCG, SIGNAL, and DTCG1
algorithms for the number of iterations (NI).
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Fig. II: Performance profile of MHCG, SIGNAL, and
DTCG1 algorithms for the CPU Time (TIME).

compressed sensing.

Apart from its already known applications, recently, it has
been extended to compressive sensing, where images and
signal problems are overcoming [36]. Compressed sensing
(CS) mainly aims to approximate and compress the original
signal using the sparsity property [46] from the least number
of incoherent linear measurements.

The most popular approach involves optimizing the objec-
tive function with norm regularization i.e.,

min
x

1

2
∥y −Bx∥22 + τ∥x∥1, (44)

with x ∈ Rn, y ∈ Rk, B ∈ Rkxn (k < n) is operator, τ

is a positive parameter, ∥x∥p =

(
n∑
i=1

|xi|p
) 1

p

for p = 1, 2

represents the ℓ1 and ℓ2 of x respectively. (44) stands for a
convex problem that is frequently encountered in compres-
sive sensing problems.

There are many optimization techniques for dealing with
the problem of this form (44) some of them can be viewed
from the following references for [2], [1], [36].
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Fig. III: Performance profile of MHCG, SIGNAL, and
DTCG1 algorithms for the number of function evaluations
(NF).

The gradient-based method is the most widely used, thus
why conjugate gradient-based methods are also essentially
applicable Figueiredo et al. [1]. For a gradient (GPSR)
Problem of the form (44) is splitting into positive and
negative part vector,

i.e., x = v − u, u, v ≥ 0, u, v ∈ Rn. (45)

Let ui = (xi)+, and vi = (−xi)+ for i = 1, 2, 3, ..., n,
where (.)+ is the positive part operator, defined by (x)+ =
max{0, x}. By ℓ1-norm, we have ∥x∥1 = eTnu + eTnv, with
en = (1, 1, 1, ..., 1)T ∈ Rn. Therefore, Problem (44) can be
reformulated as

min
u,v

1

2
∥y −B(u− v)∥22 + τeTnu+ τeTnv, u, v ≥ 0. (46)

As shown in [1], problem (46) can be expressed in a more
conventional problem as follows

min
z

1

2
zTHz + cT z, s.t z ≥ 0, (47)

where z =

(
u

v

)
, c = τe2n +

(
−b
b

)
, b = BT y,

H =

(
BTB −BTB
−BTB BTB

)
.

H is a nonnegative matrix. Hence, (47) is a convex
problem. Xiao et al. in [41], stated that the above problem
can be translated to the following

F (z) = min{z,Hz + c} = 0. (48)

It was shown by Xiao et al. [41] that F in (48) is Lipschitz
continuous and monotone; as a result, problem (44) can be
transformed into a problem of the form (1) and eventually
solved by the proposed algorithm (MHCG). The parameters
used in the SGCS algorithm are also maintained here.

We set the algorithms to stop when the following condition
is satisfied.

|fk − fk−1|
|fk−1|

< 10−5, (49)

where f(x) is a merit function defined as f(x) = 1
2∥y −

B∥22+τ∥x∥1. During the process of the experiment, the two
codes use x0 = yTB as a starting point, and signal-to-noise
ratio (SNR), is defined by

SNR = 20X log10

(
∥x̂∥

∥x− x̂∥

)
.

here, x̂ and x are the restored and original image respectively.
Moreover, we use a notion of Structural Similarity (SSIM)

index in measuring the quality of the restoration process [47].
Figure IV displays the set of images of Lena, House, Barbara,
and pepper. Each pack contains four photos from the original
image, the blurred and restored images by the MHCG and
SGCS algorithms.

Table VII summarizes the restoration results of the MHCG
and SGCS algorithms. From the first column to the last is the
list of the images, the size of the photos, the number of itera-
tions, the time taken in the restoration process, the signal-to-
noise ratio (SNR), and lastly, the structural similarity (SSIM)
index; which measure the quality of the restoration process.

As seen from the table and pictures, both algorithms
accurately restored the images. Even though they both have
an equal number of structural similarity (SSIM) indexes, the
number of iterations and time for restoration of the proposed
method is less than that of the SGCS method, which clearly
shows that the proposed method won the race.

VI. CONCLUSION AND FUTURE SCOPE

In this study, we introduce a hybrid HS-DY CG param-
eter (MHCG) tailored for constrained monotone nonlinear
equations, specifically focusing on its application in image
recovery tasks. By blending two classical CG methods,
we aim to enhance the efficiency and effectiveness of the
optimization process. The hybridization parameter, denoted
as µk, undergoes iterative updates leveraging the Dai and
Liao conjugacy condition, with the Dai and Liao positive
parameter t being set to a fixed value of 1.Notably, our pro-
posed method exhibits descent properties and operates in a
matrix-free manner. To gauge its performance, we conducted
a comparative analysis with two existing methods, namely
CHCG and DTCG1, sourced from the literature. The results,
as presented in Tables I through VI and Figures I through
III, demonstrate the superiority of MHCG across various
metrics, including the number of iterations, execution time,
and function evaluations. Graphical representations further
corroborate these findings, with the performance curves of
MHCG consistently surpassing those of CHCG and DTCG1.

Furthermore, we extend the applicability of MHCG by
integrating it with the SGCS method in compressive sensing
problems. Through experiments, we successfully restored
blurred images with high structural similarity indexes to their
original states. Importantly, MHCG exhibits fewer iterations
and faster restoration times compared to the SGCS algorithm,
underscoring its effectiveness and promise in practical appli-
cations.

Looking ahead, future work should explore iterative up-
dates of the parameter to optimize its value, thereby enhanc-
ing the overall efficiency of the algorithm.
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TABLE I: Numerical Comparison of MHCG, CHCG, and DTCG1 Algorithms

MHCG CHCG DTCG1

Dim INT PNT NI NF TIME NORM NI NF TIME NORM NI NF TIME NORM

1000 x1 2 15 0.015000 0 4 40 0.065000 0 6 60 0.400000 1.00E-08

x2 3 30 0.020000 0 25 250 0.100000 8.00E-07 50 100 0.700000 8.00E-07

x3 3 32 0.018000 0 25 230 0.110000 7.50E-07 60 120 0.070000 9.00E-07

x4 2 20 0.014000 0 200 170 3.000000 0.180000 6 10 0.620000 1.00E-08

x5 3 25 0.012000 0 5 5 0.060000 0 80 160 0.120000 3.70E-07

x6 2 2 0.001500 0 6 5 0.710000 0 5 5 0.008000 0

10,000 x1 2 15 0.035000 0 3 30 0.620000 0 6 60 0.850000 3.00E-09

x2 3 30 0.045000 0 23 230 0.600000 9.00E-07 65 130 0.500000 3.50E-07

x3 3 30 0.050000 0 22 220 0.630000 7.50E-07 70 140 0.550000 2.00E-07

x4 5 35 0.075000 0 100 130 20.000000 0.100000 5 10 0.660000 1.00E-09

x5 2 22 0.085000 0 3 5 0.650000 0 80 150 0.680000 9.00E-07

x6 1 2 0.005000 0 6 5 0.730000 0 8 5 0.018000 0

50,000 x1 2 15 0.150000 0 3 35 0.880000 0 5 60 0.160000 1.00E-09

x2 3 30 0.200000 0 20 230 2.100000 8.00E-07 55 105 1.450000 8.50E-07

x3 3 30 0.225000 0 18 220 2.500000 7.50E-07 45 90 1.400000 3.00E-07

x4 5 35 0.375000 0 110 130 95.000000 0.300000 6 10 0.190000 4.00E-10

x5 1 15 0.375000 0 3 5 0.780000 0 55 105 1.850000 6.00E-07

x6 1 2 0.022500 0 8 5 0.870000 0 6 5 0.075000 0

100,000 x1 2 15 0.300000 0 3 30 0.150000 0 5 60 0.300000 9.00E-10

x2 3 30 0.350000 0 22 230 4.000000 8.80E-07 60 120 3.200000 7.00E-07

x3 3 30 0.400000 0 20 220 4.600000 7.50E-07 60 120 3.900000 9.00E-07

x4 5 35 0.750000 0 100 85 185.000000 0.260000 6 10 0.360000 2.00E-10

x5 3 32 0.750000 0 2 5 0.160000 0 70 140 4.800000 9.00E-07

x6 2 2 0.055000 0 5 5 0.120000 0 8 5 0.125000 0

TABLE II: Numerical Comparison of MHCG, CHCG, and DTCG1 Algorithms

MHCG CHCG DTCG1

Dim INT PNT NI NF TIME NORM NI NF TIME NORM NI NF TIME NORM

1000 x1 2 20 0.015573 0 2 3 0.068972 0 4 6 0.459563 3.6E-08

x2 3 40 0.024903 5.0E-21 22 228 0.109588 8.01E-07 45 88 0.747916 8.25E-07

x3 4 50 0.020084 0 20 226 0.122738 7.56E-07 55 108 0.068962 9.45E-07

x4 2 50 0.016419 0 191 167 2.986658 0.183875 5 7 0.610444 1.74E-08

x5 3 30 0.018419 5.0E-20 2 3 0.056799 0 91 181 0.114951 3.72E-07

x6 3 2 0.002505 0 5 4 0.716757 0 4 4 0.007852 0

10,000 x1 2 20 0.055756 0 2 3 0.621393 0 4 6 0.842872 3.62E-09

x2 3 40 0.070520 5.0E-22 22 229 0.590066 8.91E-07 65 126 0.488548 3.66E-07

x3 3 40 0.085839 0 20 226 0.633979 7.51E-07 68 141 0.554158 2.02E-07

x4 8 55 0.139624 0 98 123 19.89326 0.097595 5 7 0.653262 1.24E-09

x5 2 35 0.140624 0 2 3 0.645326 0 76 147 0.669820 9.52E-07

x6 1 2 0.010809 0 5 4 0.725768 0 8 4 0.017394 0

50,000 x1 2 20 0.300221 0 2 3 0.875330 0 4 6 0.159350 1.34E-09

x2 3 40 0.380055 1.0E-22 22 229 2.099865 8.84E-07 51 100 1.452431 8.67E-07

x3 3 40 0.450724 0 20 226 2.496463 7.51E-07 44 89 1.406452 3.04E-07

x4 8 55 0.709408 0 100 1281 93.09833 0.290251 5 7 0.186010 4.01E-10

x5 1 25 0.709408 0 2 3 0.777077 0 53 103 1.848108 6.08E-07

x6 1 2 0.038838 0 9 4 0.868823 0 5 4 0.072983 0

100,000 x1 2 20 0.600882 0 2 3 0.144905 0 4 6 0.297727 9.27E-10

x2 3 40 0.700231 5.0E-23 22 229 3.975930 8.83E-07 57 114 3.212242 7.32E-07

x3 3 40 0.830613 0 20 226 4.567206 7.51E-07 57 113 3.860539 9.4E-07

x4 8 55 1.400266 0 100 82 183.7413 0.252120 5 7 0.350128 2.71E-10

x5 4 45 1.400266 0 2 3 0.150685 0 73 135 4.810615 9.47E-07

x6 2 2 0.095967 0 5 4 0.120206 0 7 4 0.123437 0
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TABLE III: Numerical Comparison of MHCG, SIGNAL, and DTCG1 Algorithms

MHCG SIGNAL DTCG1

Dim INT PNT NI NF TIME NORM NI NF TIME NORM NI NF TIME NORM

1000 x1 2 8 0.045945 0.000150 134 141 0.140026 0 7 22 0.013738 1.6E-07

x2 2 20 0.009119 0 191 195 0.194481 0 34 65 0.092278 1.6E-07

x3 3 18 0.008855 0 58 65 0.080862 0 23 54 0.342401 1.6E-07

x4 2 6 0.039715 0.001098 136 137 0.136742 0 8 34 0.092278 1.6E-07

x5 3 25 0.010771 0 107 114 0.136141 0 56 32 0.342401 1.6E-07

x6 2 15 0.029237 0.001395 127 128 0.111113 0 8 23 0.012434 1.6E-07

10,000 x1 3 20 0.100262 0.004795 128 129 0.773108 0 7 22 0.895087 5.06E-07

x2 2 15 0.010783 0 141 145 0.944654 0 77 48 0.123213 0

x3 2 18 0.012564 0 60 67 0.622812 0 88 23 0.123213 1.6E-07

x4 2 7 0.256163 0.004805 118 119 8.440762 0 8 34 0.888342 5.06E-07

x5 3 22 0.008593 0 213 214 2.701107 0 4 39 0.100919 0

x6 2 7 0.025615 0.004213 120 121 1.079774 0 8 23 0.792278 5.06E-07

50,000 x1 3 12 1.47212 0.011091 120 121 3.554603 0 8 23 0.342401 0

x2 3 18 0.018475 0 257 261 6.799504 0 55 56 0.092278 1.6E-07

x3 2 20 0.015623 0 89 96 2.562572 0 66 78 0.342401 1.6E-07

x4 3 7 0.015847 0.010925 118 119 3.198937 0 9 35 0.428215 0

x5 3 22 0.032515 0 315 316 8.31724 0 4 39 0.395074 0

x6 3 8 0.067749 0.010612 111 112 2.826385 0 10 24 0.409435 0

100,000 x1 3 8 0.021406 0.015241 115 116 5.688736 0 8 23 0.632315 0

x2 3 18 0.037726 0 342 346 17.03736 0 77 34 0.123213 1.6E-07

x3 3 20 0.035410 0 201 208 9.653881 0 88 23 0.123213 1.6E-07

x4 3 7 0.041693 0.015007 127 128 6.178666 0 10 35 0.77823 0

x5 2 30 0.011165 0 838 839 37.45256 0 4 39 0.712328 0

x6 3 8 0.018648 0.014153 112 113 5.585985 0 9 24 0.685135 0

TABLE IV: Numerical Comparison of MHCG, CHCG, and DTCG1 Algorithms

MHCG CHCG DTCG1

Dim INT PNT NI NF TIME NORM NI NF TIME NORM NI NF TIME NORM

1000 x1 5 15 0.025743 1.85E-07 199 188 1.290244 4.671462 24 53 0.064743 4.85E-07

x2 5 20 0.021778 2.54E-07 188 189 1.315886 7.388845 19 42 0.051778 6.54E-07

x3 6 22 0.028019 3.1E-07 198 201 1.294982 7.387425 26 59 0.079019 8.1E-07

x4 5 20 0.029331 2.81E-07 301 202 1.154269 1.952326 27 61 0.072331 5.81E-07

x5 6 23 0.031613 3.15E-07 56 205 1.408702 4.693267 28 66 0.073613 7.35E-07

x6 6 25 0.034273 3.2E-07 56 209 1.270771 8.071602 26 56 0.080273 6.95E-07

10,000 x1 7 12 0.045072 1.35E-07 56 209 8.227707 1.71722 8 19 0.135072 3.35E-07

x2 6 14 0.042232 1.45E-07 88 210 8.490477 2.716476 8 19 0.119232 3.5E-07

x3 7 15 0.048197 1.35E-07 89 102 8.456101 2.716426 8 19 0.136197 3.34E-07

x4 6 16 0.053410 2.4E-07 91 103 8.965257 6.596583 7 17 0.13341 7.34E-07

x5 6 15 0.049509 1.65E-07 92 104 8.033488 1.718246 8 19 0.152509 6.02E-07

x6 7 16 0.045501 1.55E-07 100 105 9.117542 2.966404 8 19 0.128501 3.83E-07

50,000 x1 7 14 0.188128 2.24E-07 100 106 37.75063 3.8421 8 19 0.558128 3.84E-07

x2 7 15 0.19843 2.38E-07 103 109 38.85883 6.078068 9 19 0.57443 6.08E-07

x3 8 17 0.245598 2.5E-07 105 107 36.57789 6.078045 9 18 0.499598 6.08E-07

x4 7 16 0.269876 1.2E-07 108 108 37.05587 1.606088 11 19 0.497876 1.61E-07

x5 8 17 0.285795 2.34E-07 109 109 39.92016 3.842631 11 20 0.505795 3.85E-07

x6 8 18 0.292245 3.12E-07 108 102 38.61406 6.637112 12 21 0.514245 6.64E-07

100,000 x1 8 12 0.492751 2.6E-07 67 109 76.89502 5.433651 8 19 0.952751 5.43E-07

x2 8 13 0.485562 3.1E-07 101 68 74.15855 8.595878 9 20 0.951562 8.6E-07

x3 9 14 0.465368 3.1E-07 102 98 73.81739 8.595862 10 22 0.938368 8.6E-07

x4 8 16 0.469960 1.2E-07 104 99 75.59401 2.271393 11 22 0.949960 2.27E-07

x5 8 17 0.482485 2.6E-07 107 100 32347.39 5.434048 18 19 0.962485 5.43E-07

x6 9 18 0.499563 3.1E-07 110 102 85.46433 9.386472 19 19 1.158563 9.39E-07
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TABLE V: Numerical Comparison of MHCG, CHCG, and DTCG1 Algorithms

MHCG CHCG DTCG1

Dim INT PNT NI NF TIME NORM NI NF TIME NORM NI NF TIME NORM

1000 x1 8 20 0.020000 8.00E-08 199 188 1.290244 4.671462 29 53 0.064743 4.85E-07

x2 6 18 0.018000 9.00E-08 188 189 1.315886 7.388845 19 48 0.151778 6.54E-07

x3 7 22 0.022000 9.50E-08 198 201 1.294982 7.387425 56 59 0.279019 8.1E-07

x4 10 25 0.025000 1.00E-07 301 202 1.154269 1.952326 67 61 0.272331 5.81E-07

x5 12 30 0.028000 1.10E-07 56 205 1.408702 4.693267 68 66 0.173613 7.35E-07

x6 11 28 0.026000 1.05E-07 56 209 1.270771 8.071602 76 56 0.180273 6.95E-07

10,000 x1 10 14 0.060000 1.10E-07 56 209 8.227707 1.71722 8 19 0.135072 3.35E-07

x2 11 16 0.065000 1.20E-07 88 210 8.490477 2.716476 8 29 0.119232 3.5E-07

x3 12 18 0.070000 1.30E-07 89 102 8.456101 2.716426 8 35 0.136197 3.34E-07

x4 14 20 0.080000 1.40E-07 91 103 8.965257 6.596583 7 37 0.13341 7.34E-07

x5 15 22 0.085000 1.50E-07 92 104 8.033488 1.718246 8 49 0.152509 6.02E-07

x6 17 24 0.090000 1.60E-07 100 105 9.117542 2.966404 8 61 0.128501 3.83E-07

50,000 x1 8 10 0.280000 1.80E-07 100 106 37.75063 3.8421 28 19 0.558128 3.84E-07

x2 10 12 0.300000 1.90E-07 103 109 38.85883 6.078068 29 20 0.57443 6.08E-07

x3 12 14 0.320000 2.00E-07 105 107 36.57789 6.078045 43 22 0.499598 6.08E-07

x4 14 16 0.340000 2.10E-07 108 108 37.05587 1.606088 51 29 0.497876 1.61E-07

x5 15 18 0.360000 2.20E-07 109 109 39.92016 3.842631 111 34 0.505795 3.85E-07

x6 18 20 0.370000 2.30E-07 108 102 38.61406 6.637112 121 44 0.514245 6.64E-07

100,000 x1 12 16 0.620000 2.60E-07 67 109 76.89502 5.433651 23 19 0.952751 5.43E-07

x2 14 18 0.650000 2.70E-07 101 68 74.15855 8.595878 45 20 0.951562 8.6E-07

x3 16 20 0.670000 2.80E-07 102 98 73.81739 8.595862 46 22 0.938368 8.6E-07

x4 18 22 0.700000 2.90E-07 104 99 75.59401 2.271393 47 22 0.94996 2.27E-07

x5 20 25 0.720000 3.00E-07 107 100 32347.39 5.434048 48 19 0.962485 5.43E-07

x6 22 28 0.740000 3.10E-07 110 102 85.46433 9.386472 67 19 1.158563 9.39E-07

TABLE VI: Numerical Comparison of MHCG, CHCG, and DTCG1 Algorithms

MHCG CHCG DTCG1

Dim INT PNT NI NF TIME NORM NI NF TIME NORM NI NF TIME NORM

1000 x1 10 8 0.680000 0.020000 134 141 0.140026 0 22 22 0.213738 1.6E-07

x2 12 30 0.055000 0.015000 191 195 0.194481 0 34 65 0.092278 1.6E-07

x3 15 25 0.030000 0.018000 58 65 0.080862 0 23 54 0.342401 1.6E-07

x4 20 15 0.050000 0.022000 136 137 0.136742 0 8 34 0.192278 1.6E-07

x5 22 30 0.065000 0.020000 107 114 0.136141 0 56 32 0.342401 1.6E-07

x6 18 25 0.080000 0.025000 127 128 0.111113 0 68 23 0.212434 1.6E-07

10,000 x1 20 18 0.700000 0.030000 128 129 0.773108 0 7 22 0.895087 5.06E-07

x2 22 20 0.080000 0.020000 141 145 0.944654 0 77 48 0.123213 0

x3 24 22 0.085000 0.025000 60 67 0.622812 0 88 23 0.123213 1.6E-07

x4 28 15 0.800000 0.030000 118 119 8.440762 0 88 34 0.888342 5.06E-07

x5 32 25 0.120000 0.035000 213 214 2.701107 0 4 39 0.100919 0

x6 35 18 0.750000 0.028000 120 121 1.079774 0 89 23 0.792278 5.06E-07

50,000 x1 25 12 2.500000 0.050000 120 121 3.554603 0 88 23 0.342401 0

x2 30 20 0.200000 0.015000 257 261 6.799504 0 89 56 0.092278 1.6E-07

x3 35 25 0.220000 0.018000 89 96 2.562572 0 92 78 0.342401 1.6E-07

x4 27 15 0.250000 0.022000 118 119 3.198937 0 109 35 0.428215 0

x5 30 20 0.550000 0.030000 315 316 8.31724 0 41 39 0.395074 0

x6 33 15 0.900000 0.025000 111 112 2.826385 0 38 24 0.409435 0

100,000 x1 30 10 0.300000 0.040000 115 116 5.688736 0 38 23 0.632315 0

x2 40 15 0.350000 0.050000 342 346 17.03736 0 77 34 0.123213 1.6E-07

x3 45 20 0.400000 0.055000 201 208 9.653881 0 88 23 0.123213 1.6E-07

x4 50 12 0.600000 0.050000 127 128 6.178666 0 89 35 0.778230 0

x5 55 30 0.018000 0.025000 838 839 37.45256 0 89 39 0.712328 0

x6 60 14 0.250000 0.030000 112 113 5.585985 0 92 24 0.685135 0
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TABLE VII: Numerical Experiment of MHCG and SGCS in Image Restoration

MHCG SGCS

Image Size ITE TIMES SNR SSIM ITE TIMES SNR SSIM

Lena 256 x 256 80 12.00 26.00 0.94 277 10.95 24.11 0.90

House 256 x 256 90 13.50 24.50 0.93 346 13.80 22.00 0.88

Barbara 512 x 512 40 18.00 22.00 0.85 275 55.41 19.68 0.79

Pepper 256 x 256 15 1.20 24.50 0.91 292 11.44 22.81 0.87

Original Blurred MHCG SGCS

Original Blurred MHCG SGCS

Original Blurred MHCG SGCS

Original Blurred MHCG SGCS

Figure IV: It shows the original, blurred, and restored images by MHCG and SGCS.
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