
 

  

Abstract - A collaborative optimization model has been 

proposed to enhance the service quality of express rail link 

passenger transportation, addressing the diverse travel 

demands of passengers. The model incorporates decision 

variables such as train departure and arrival stations, train 

numbers, stop and train formation planning, and train 

timetables. It optimizes these variables while considering 

passenger demand and variable coupling constraints. The main 

goal of the model are to minimize the cost of train operation 

and passenger travel costs. The model was reformulated as a 

single-objective optimization problem and solved using the 

adaptive large-scale neighborhood search algorithm. A case 

study on the Yinchuan-Xi’an high-speed railway was 

conducted to validate the model and algorithm, including 

sensitivity analysis. The results demonstrate that co-

optimization of train route planning and timetabling effectively 

meets the diverse travel demands of passengers. Moreover, the 

adaptive large-scale neighborhood (ALSN) search algorithm 

achieved superior solution quality compared to the variable 

neighborhood search and simulated annealing algorithms. 

 

Index Terms - high-speed railway; train line planning; 

train timetabling; multi-dimensional travel demand; adaptive 

large-scale neighborhood search algorithm 

 

I. INTRODUCTION 

ince the early twenty-first century, the global railway 

industry has seen significant development, driven by its 

numerous advantages such as fast, safe, on time, high 

capacity. Railroads are considered by many countries as 

crucial for accelerating economic growth and meeting 

increasing demands. However, due to the complexity of 
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railroad planning, which typically involves multiple stages 

including line planning, train scheduling, vehicle 

management, and crew scheduling (as shown in Figure 1, 

Lusby et al., 2011) [1], several unresolved issues persist. At 

both strategic and tactical levels within railway systems, two 

fundamental and interconnected challenges are the line 

planning problem (LPP) and train timetabling problem 

(TTP). 

 

 
Fig. 1. The railway planning process 

 

Train line planning encompasses crucial aspects such as 

train routing, frequency, stop scheduling, and train 

formation (Lusby et al. (2011) [1], Yan and Goverde [2]). 

Once the train route planning is established, the train 

timetable is optimized using these parameters as inputs. This 

optimization determines the departure and arrival times at 

stations served by each train (Tian et al. (2020) [3]). 

Employing a staged decision-making process has proven 

effective in simplifying problem-solving complexities. 

However, this approach typically yields only the current 

optimal solution at each stage of optimization and may not 

adequately address the multidimensional travel demands of 

passengers. 

In recent years, the personalized travel demands of 

railway passengers have become increasingly diverse, 

encompassing factors such as departure times, travel 

durations, and ticket prices (Sun et al. (2021)). The 

departure times and stopping patterns of trains directly 

influence passenger preferences for departure times and 

ticket costs, while stop planning and train routes impact 

passenger preferences for travel times. Additionally, train 

frequency directly affects overall passenger flow demands. 

Consequently, the decision-making factors involved in train 

line planning and timetabling significantly influence 

passenger travel demands. 

To effectively meet the multidimensional travel demands 

of passengers and simultaneously reduce operational costs, 

train route planning and timetabling processes must be 

integrated and optimized. 

This study presents a methodology aimed at optimizing 

the integrated problem of train route planning and 
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timetabling, while satisfying the different needs of 

passengers. The results of this study are summarized as 

follows: 

(1) This paper presents a mixed integer nonlinear 

programming model for integrating and optimizing train 

route planning and schedule preparation. The objective is to 

minimize both passenger travel costs and operational 

expenses for enterprises, considering constraints such as 

train capacity, number of stops of trains, and operational 

logistics.  

(2) Development of an ALSN search algorithm to solve 

nonlinear mixed-integer programming models. Additionally, 

a passenger flow allocation algorithm based on utility 

functions is proposed. This allocation method effectively 

assists passengers in selecting optimal departure times and 

seat classes. From the passengers' perspective, it reduces 

travel costs, while from the enterprises' perspective, it 

lowers overall operational expenses. 

(3) Application of the method and algorithm in the high-

speed railroad line from Yinchuan to Xi'an North. This 

application serves to validate the efficacy of the algorithms 

developed in this study. In addition, a comparative analysis 

was performed to compare the capability of the ALSN 

search algorithm with that of simulated annealing and 

variable neighborhood search algorithms. 

II.  LITERATURE REVIEW 

In practice, both route planning and train timetables are 

integral to the development of a coherent train operating 

plan. Line planning involves crucial decisions such as 

determination of the optimal number of trains to run, 

selection of the appropriate train type and determination of 

the schedule of stops for each train. These decisions are 

pivotal as they form part of the strategic decision-making 

process at the operational level. 

Extensive research has been conducted over the past few 

decades on the topic of line planning, focusing traditionally 

on two primary objectives that cater to both operators and 

passengers. These objectives involve minimizing 

operational costs and maximizing passenger satisfaction. 

Early studies often addressed these objectives separately. 

Claessens et al. (1998) introduced a mathematical 

calculation model aimed at minimization of operating 

expenses by optimizing parameters such as type of line and 

train length [4]. Bussieck et al. (2004) developed a rapid 

algorithm to handle the nonlinear mixed-integer programs 

associated with cost-optimized line planning problems [5]. 

Goossens et al. (2006) presented alternative formulations of 

integer programming to address variations in stopping 

patterns across different lines [6]. Canca et al. (2016, 2019) 

focused on profit maximization in their line planning 

research, exploring network design integration and route 

planning to maximize net profitability within the planning 

horizon, especially in the context of competing 

transportation modes [7]. Customer-oriented line planning 

models typically prioritize minimizing travel time for 

passengers and maximizing direct travel options. Scholl 

(2006) concentrated on time required for travel for each 

passengers, proposing a integer planning models with details 

to achieve this objective [8]. Schiewe et al. (2019) 

approached the LPP by framing passengers as participants in 

the process, aiming to optimize factors such as travel time, 

transit fines and cost-sharing [9]. Addressing the inherent 

conflict between cost-oriented and customer-oriented 

objectives, researchers have explored integrated approaches. 

Borndörfer et al. constructed a multi-commodity flow model 

using a column generation algorithm to minimize operating 

costs and passenger time of travelling [10]. Similarly, 

Goerigk and Schmidt (2017) addressed both passenger time 

of travelling and the operation costs [11]. They devised a 

model that prioritized passengers completing their journeys 

via the shortest routes, balancing benefits for both customers 

and railroad operating sector. Fu et al. also tackled this issue 

with an integrated grading line planning methodology [12], 

focusing on mutual benefits for customers and railway 

companies. They developed a bi-level programming model 

and crafted heuristic algorithms to efficiently tackle the 

problem. 

Using the provided line plan, a train schedule can be 

meticulously structured to oversee the details of the 

operation of various trains on the railroad. Implementing an 

efficient train timetable is crucial for optimizing the 

utilization of railway infrastructure resources within a 

network or specific line. Extensive research has been 

conducted by numerous scholars focusing on the train 

operational issues from the perspective of railway operators. 

They have developed diverse optimization models aimed at 

minimizing overall travel time across the system. Studies in 

this field have investigated two primary types of timetables: 

cyclic and noncyclic. Cyclic train scheduling is the focus of 

the study and is mainly modeled by the periodic event 

scheduling problem proposed by Serafini and Ukovichc. 

Additionally, researchers have adapted and refined this 

model into the "cycle periodicity formulation" model, 

proposed by Peeters and Kroon in 2003 [13]. 

This modification aims to simplify the scheduling 

process by reducing the number of constraints and variables 

involved. Kroon et al. introduced a stochastic optimization 

model aimed at enhancing the robustness of cyclic schedules 

through the allocation of time supplements and buffer 

periods [14]. This approach optimizes the allocation of these 

resources to enhance the reliability and resilience of the 

timetable. While a cyclic train timetable offers passengers 

convenience with consistent arrival and departure times, it 

can be insensitive to fluctuations in passenger demand. This 

lack of flexibility may lead to prolonged waiting time for a 

train during low-frequency periods and inefficiency in the 

utilization of seats during peak hours. 

When addressing noncyclic train timetabling, significant 

research has been conducted over the years. Szpigel et al. 

led the way in optimizing train scheduling for single-line 

tracks by introducing a linear programming model based on 

job-shop scheduling principles, aimed at reducing overall 

travel time. [15]. Subsequent work by Cai and Gho (1994) 

established the NP-hardness of the timetabling problem, 

underscoring the difficulty in obtaining optimal solutions, 

especially for increasing case sizes [16]. Higgins et al. 

contributed a lower value that enhances the branch and 

bound algorithm's efficiency in discovering optimal 

solutions within feasible timeframes for complex scenarios 

[17]. This lower bound is instrumental in refining the branch 

and bound algorithm's effectiveness when applied to 

timetabling problems characterized by intricate constraints. 

In the realm of train scheduling, Zhou et al. (2005) 

introduced a bi-criteria model considering time consumed 

by the train in acceleration and deceleration [18]. They 

devised a branch-and-bound algorithm incorporating the 

rule of dominance and a beam search algorithm that can 
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evaluate utility, aimed at identifying to effectively identify 

sub-optimal solutions. Zhou and Zhong further focused on 

single-track schedule development, aiming to minimize total 

travel time by proposing constrained lower bounds and 

heuristic methods for finding upper bounds to improve 

computational efficiency [19].Beyond train scheduling, Hou 

and Zhao (year) applied the improved NSGA-II algorithm to 

solve multi-objective school bus routing problems, 

enhancing algorithm-model alignment and overall solution 

efficiency [20] 

In recent times, there has been a noticeable surge in 

passenger demand for improved service quality, coupled 

with an expansion in the operational capacity of rail service 

providers. In response to these developments, researchers 

have increasingly focused on understanding and meeting 

dynamic passenger demands. They have put forth various 

methodologies aimed at maximizing passenger satisfaction 

and benefits, recognizing the crucial need to align rail 

operations with evolving passenger expectations. 

Niu et al. (2013) examined the time-sensitive nature of 

the issue by developing a specialized timetabling model for 

oversaturated conditions [21]. Their goal was to avoid 

reducing excessive passenger wait times by optimizing 

schedules using local boosting algorithms. Additionally, 

they proposed a genetic algorithm to tackle the broader 

challenge of optimizing timetables across entire rail lines. 

These approaches effectively addressed passenger wait 

times and enhanced overall timetabling processes. Sun et al. 

introduced the concept of equivalent time to balance train 

schedules with passenger requirements [22]. They further 

advanced this idea with an integer mixture model that add 

the limitations on the train seats number and thus improves 

the degree of service of the subway service schedule. Metro 

service schedule issues with capacity was efficiently 

resolved using CPLEX optimization software, offering a 

robust solution to timetabling challenges in metro systems. 

Canca et al. introduced an integer nonlinear model to handle 

the fluctuating nature of passenger demand [23]. Notably, 

earlier studies predominantly focused on minimizing 

passenger wait times at stations, often overlooking in-

vehicle travel times. 

Some researchers have recently underscored the 

significance of integration of train preparation plans and 

timetables to improve overall system efficiency and 

effectiveness. Liebchen et al. successfully integrated 

network planning, vehicle scheduling and timetabling 

process. They emphasized the critical nature of this 

integration, which maximized the flexibility provided by the 

Periodic Event Scheduling Problem without excessively 

complicating the overall system. In a similar vein, Kaspi and 

Raviv (2013) designed an integrated model aimed at 

minimizing costs and passengers' total time in travelling. To 

tackle this challenge, they introduced a cross-entropy 

metaheuristic method capable of optimizing the model, 

which employed a dual-objective approach to optimization. 

Their goal was to find an efficient and cohesive solution that 

would simultaneously reduce operational costs and enhance 

passengers' overall travel experience. Yan and Goverde 

adopted a holistic strategy that combines the LPP and TTP 

to address multiple aspects such as reliability of the train 

schedules, and time of passenger travelling. Initially, they 

developed a multi-targeting mixed-integer linear 

programming model for the Multi-Frequency Line Planning 

Problem (MF-LPP) utilizing a predefined route library. 

Subsequently, they proposed a Multi-Period Train 

Timetabling Problem (MP-TTP) model is iteratively 

optimized by incorporating constraints to customize robust 

rail operations solutions. This integrated method aimed to 

concurrently address various factors, thereby improving the 

reliability of the operation. Cacchiani et al. (2020) 

conducted an extensive investigation into the complex 

problem of stop planning and timetables of trains, consider 

the randomness of traveler behavior. They designed three 

robust optimal models, combining light robust techniques, 

specifically designed for addressing the challenges of robust 

stop planning and timetables of trains. They conducted 

several numerical experiments on the Wuhan-Guangzhou 

express rail link to evaluate the proposed method. These 

experiments aimed to validate the effectiveness of the 

developed approaches in enhancing the robustness and 

reliability of stop planning and timetables of trains processes. 

Dong and Gao (year) modeled and studied the minimum 

safe distance of high-speed trains for train control. 

In our view, there is little research on two important areas 

in integrating the optimization of train route planning and 

timetabling problems. Firstly, existing studies typically use 

passengers' Origin-Destination (OD) demands as inputs in 

the optimization process, often neglecting passengers' 

multidimensional preferences such as desired departure slots, 

travel durations, and fares. Secondly, few studies from the 

perspective of passenger demand incorporate the cost 

associated with deviations from desired departure times into 

the optimization objective. Building upon prior research, 

this paper considers passengers' diverse and personalized 

travel needs to develop an optimization model that 

integrates diverse requirements for train route planning and 

train timetables. The purpose of this is to develop timetables 

to control rail operator costs and meet passenger 

requirements. 

III. PROBLEM DESCRIPTION 

In the collaborative optimization of high-speed railway 

train line planning and train timetabling, it is crucial to 

consider multidimensional passenger attributes such as 

departure time, travel duration, and ticket prices. This 

optimization process goes beyond merely factoring in 

operational costs for enterprises; it requires determining 

aspects like train departure and arrival stations, number of 

operational trains, stop planning, train formation, and 

timetable configuration while accommodating passenger 

preferences for departure time, travel duration, and dynamic 

ticket pricing. Moreover, the optimization of train line 

planning and timetabling presents a complex challenge in 

combinatorial optimization. When approached 

collaboratively, the scale of the problem expands, 

intensifying the difficulty of finding solutions. Therefore, 

this paper focuses on addressing these challenges and 

proposes a viable algorithm to optimize both train line 

planning and timetabling effectively. 

This paper focuses exclusively on optimizing the train 

route planning and timetabling for a specific operational 

direction of a double-track railway, as depicted in Fig 1. 

Each station along the route is part of the set 𝑆 =
{𝑆𝑖|𝑖 = 1,2, … , 𝑁} , where N denotes the total number of 

stations. The line intervals are represented by 𝐻 =
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{1,2, … , ℎ, … 𝑁 − 1}, with h indicating the section index; 

thus, the N stations form N-1 intervals sequentially. During 

the study period T in the aforementioned direction, the train 

operations are planned based on line capacity, denoted as 

L={L j |j=1,2,.... M}, where M represents the number of 

alternative trains. For each alternative train, predetermined 

departure times and departure-arrival stations are provided. 

This planning integrates China's current dynamic pricing 

strategy for high-speed railways, incorporating advanced 

ticket price information based on differences in operational 

times. 

In the co-optimization of train route planning and 

schedule, it becomes essential to decide whether to operate 

these alternative trains and determine their specific 

operational times, all while ensuring adequate safety 

intervals between trains. 

 

...S1 S2 S3 SK SN-1 SN

L1

L2
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...

 
Fig. 2. Railway line and the origins and destinations of alternative train 

 

The passenger flow demand considered in this paper 

encompasses the OD attributes of passengers, denoted by 

𝑃 = {1,2,3, … , 𝑝, … , 𝑁𝑝}, where 𝑃  represents the set of all 

travelling passengers, and 𝑁𝑝  represents the number of all 

passengers. For each passenger 𝑝, their departure station is 

𝑜𝑝, and the corresponding arrival station is 𝑑𝑝. In addition, 

the expected departure time attribute 𝑒𝑝 = [𝑙𝑒𝑝
, 𝑢𝑒𝑝

] of each 

passenger 𝑝 is all considered, where 𝑙𝑒𝑝
 represents the lower 

limit of the expected departure time, and 𝑢𝑒𝑝
 represents the 

upper limit of the expected departure time, which are used 

as input data for passenger flow demand. 

This paper utilizes route data, alternative train data, and 

passenger flow demand data as inputs to establish a 

collaborative optimization model for train line planning and 

timetabling. It incorporates sophisticated solving algorithms 

designed to effectively determine the origin-destination 

pairs of trains, the number of operational trains, stop 

planning, train formation planning, as well as departure and 

arrival times. This approach aims to meet the diverse travel 

demands of passengers comprehensively while also 

optimizing operational costs for enterprises. 

IV. METHODOLODY 

A. Model assumption 

In this paper, the following assumptions are made to 

design an optimization model for train route planning and 

timetabling and to satisfy different requirements: 

⚫ Assumption 1. Our model exclusively focuses on 

the second-class seats of Multiple Units and considers 

only these seats for determining the train ticket prices. 

This assumption is essential and commonly adopted in 

demand-oriented train timetable optimization. 

⚫ Assumption 2. Without loss of generality, similar 

to most operational high-speed railway lines, we 

assume that the arrival and departure tracks for up and 

down trains at each station are independent. This 

means up and down trains use separate arrival and 

departure tracks. 

⚫ Assumption 3. Passengers traveling on high-speed 

railway corridors select a single train to complete their 

entire journey, without considering transfers within the 

corridor. 

⚫ Assumption 4. All trains within the high-speed 

railway corridor operate at the same speed level. Hence, 

we do not account for train overtaking within sections. 

B. Mathematical model 

B.1 Model parameters and variables 

The notations used in the optimization model are listed in 

TABLE I. 

 
TABLE I 

NOTATIONS AND PARAMETERS IN THIS PROBLEM 

Notation Definition 

𝑆 

The set of station，𝑆 = {𝑆𝑖|𝑖 =

1,2, … , 𝑁}，𝑁 represents the number of 

stations  

𝐻 

The set of intervals，𝐻 = {1,2, … , ℎ, … 𝑁 −

1}，ℎ represents the interval index, the N 

stations constitute N − 1 intervals in turn. 

𝐿 

The set of alternative train，𝐿 =

{𝐿𝑗|𝑗 = 1,2, … , 𝑀}，𝑀 represents the number 

of alternative trains 

𝑃 

The set of passengers，𝑃 =

{1,2,3, … , 𝑝, … , 𝑁𝑝}，𝑁𝑝 represents the 

number of passengers 

𝐶𝑟𝑢𝑛 Train operational cost 

𝑐𝑏 
The operational cost of formation train in per 

kilometer 

𝑀𝑖𝑙𝑒𝐿𝑗
 The operational mileage of train 𝐿𝑗 

𝜔 
The unit time value of the number of 

converted EMUs hours 

𝑡𝐿𝑗
 The travel time of train 𝐿𝑗 

𝜂𝐿𝑗
 The number of converted EMUs of train 𝐿𝑗  

𝐵𝑃𝑅𝐿𝑗
 The base price rate of train 𝐿𝑗 

𝑀𝑖𝑙𝑒𝑝 The travel mileage of passenger 𝑝 

𝑡𝐿𝑗

𝑑𝑝
 

The arrival time of passenger 𝑝 arrives at the 

destination 𝑑𝑝 by train 𝐿𝑗 

𝑡𝐿𝑗

𝑜𝑝
 

The departure time of passenger 𝑝 by train 𝐿𝑗 

from origin station 𝑜𝑝 

𝑙𝑒𝑝
 

The lower limit of the expected departure 

time of passenger 𝑝 

𝑢𝑒𝑝
 

The upper limit of the anticipated time of 

departure of passenger 𝑝 

𝑡𝐿𝑗

𝑜𝑝
 

The departure time of passenger 𝑝 by train 𝐿𝑗 

from origin station 𝑜𝑝 

𝑦𝐿𝑗

𝑝
 

A decision variable that represents the 

passenger p assignment to the train Lj 

𝑄𝑜,𝑑 
The total passenger flow between any 

passenger flow OD 

𝑧𝐿𝑗

𝑆𝑖  

A decision variable that represents whether 

the train 𝐿𝑗 stops at the station 𝑆𝑖, if it stops, 

equal to 1, otherwise equal to 0 

𝑆𝑜，𝑆𝑑 
The origin and destination station of train 𝐿𝑗 

respectively 

𝑁𝑢𝑚𝐿𝑗
 

The maximum number of allowable stops for 

train 𝐿𝑗 

𝜑𝐿𝑗

𝑝ℎ
 

It represents the relationship between train Lj, 

section ℎ, and passenger p. If train Lj serves p 

passing the section ℎ, then φLj

pℎ
= 1, 
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otherwise φLj

pℎ
= 0 

𝐶𝑎𝑝𝐿𝑗
 

The maximum passenger capacity of the train 

𝐿𝑗 

𝑥𝐿𝑗
 

A decision variable that represents whether 

the train 𝐿𝑗 is operating, if it is operating, then 

𝑥𝐿𝑗
= 1, otherwise 𝑥𝐿𝑗

= 0 

𝑁𝑢𝑚𝑚𝑎𝑥 
The maximum number of trains allowed to 

operate 

𝑏𝐿𝑗
 The formation number of the train 𝐿𝑗 

𝑡𝐿𝑗,𝑂𝐿𝑗

𝑑  
The departure time of the train 𝐿𝑗 at the origin 

station 𝑂𝐿𝑗
 

𝑂𝐿𝑗
 The origin station of the train 𝐿𝑗 

𝑇𝐿𝑗
 The minimum departure time of the train 𝐿𝑗 

∆𝑇𝐿𝑗
 The range of departure time of the train 𝐿𝑗 

𝑡𝐿𝑗,𝑆𝑖

𝑑  
A decision variable that represents the 

departure time of the train 𝐿𝑗 at the station 𝑆𝑖 

𝑡𝐿𝑗,𝑆𝑖+1

𝑎  
The time when the train 𝐿𝑗 arrivals at the 

station 𝑆𝑖+1  

𝑡𝐿𝑗,ℎ
𝑟𝑢𝑛 

The operational time of the train 𝐿𝑗 in the 

section ℎ, ℎ consists of station 𝑆𝑖 and 𝑆𝑖+1 

𝑡𝐿𝑗,𝑆𝑖

𝑎  
A decision variable that represents the arrival 

time of the train 𝐿𝑗 at the station 𝑆𝑖 

𝑇𝑆𝑖

𝑎 
The minimum safe interval time between two 

adjacent trains arriving at the station 𝑆𝑖 

𝑇𝑆𝑖

𝑑 
The minimum safe interval time between two 

adjacent trains departing from the station 𝑆𝑖 

𝛼1、𝛼2 Weight coefficient, where 𝛼1 + 𝛼2 = 1 

 

B.2 Objective function 

We have incorporated two objective functions into our 

analysis. Firstly, from the standpoint of express rail link 

enterprises, our objective is to minimize the operational 

costs associated with all trains. Secondly, from the 

perspective of passengers, we aim to minimize their travel 

expenses. By addressing these dual objectives, we 

effectively meet the multifaceted demands of passengers 

while simultaneously reducing the operating cost of the 

express rail link.  

Below, we outline the detailed compositions of these two 

objective functions: 

(1) Minimize the operating cost of enterprises of express 

rail link  

The operating cost of enterprises of express rail link 

includes the cost of trains' operation and formation. The 

operation cost of enterprises of express rail link 𝑍1,which is 

formulated as: 

min 𝑍1 = 𝐶𝑟𝑢𝑛 + 𝐶𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛                          (1) 

The train operation cost  𝐶𝑟𝑢𝑛  can be expressed as the 

product of the operation trains number and their 

corresponding operation mileage. Among them, the train 

operating cost of per kilometer of trains refer to all 

transportation expenses allocated to each train running 1 km. 

𝐶𝑟𝑢𝑛 = 𝑐𝑏 ∑ 𝑀𝑖𝑙𝑒𝐿𝑗
∙ 𝑥𝐿𝑗

𝑀

𝑗=1

                               (2) 

The operating cost of express rail link trains is also 

relevant to the train formation number, and the hours of 

Multiple Unit represents the related cost of Multiple Unit 

trains formation (Shi et al.). 

𝐶𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝜔 ∑ 𝑡𝐿𝑗

𝑀

𝑗=1

𝜂𝐿𝑗
                             (3) 

Where, 𝜂𝐿𝑗
 is the number of converted Multiple Units of 

the train 𝐿𝑗, and when the train formation 𝑏𝐿𝑗
= 8, 𝜂𝐿𝑗

= 1；

When 𝑏𝐿𝑗
= 16, 1 < 𝜂𝐿𝑗

< 2. 

(2) Minimize general travel costs for passengers 

The passenger travel costs include the fare cost 𝐶𝑓𝑎𝑟𝑒 , 

travel time cost 𝐶𝑡𝑟𝑎𝑣𝑒𝑙 , and the departure time deviation 

cost in expected departure time 𝐶𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  of passengers. 

The generalized travel cost of passengers 𝑍2  , which is 

formulated as: 

min 𝑍2 = 𝐶𝑓𝑎𝑟𝑒 + 𝐶𝑡𝑟𝑎𝑣𝑒𝑙 + 𝐶𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛               (4) 

The passengers fare cost is the ticket expenditure of all 

passengers. Namely, 

𝐶𝑓𝑎𝑟𝑒 = ∑ ∑ 𝐵𝑃𝑅𝐿𝑗
∙ 𝑀𝑖𝑙𝑒𝑝 ∙ 𝑦𝐿𝑗

𝑝

𝑀

𝑗=1

𝑁𝑝

𝑝=1

                 (5) 

The passengers travel time cost is the product of the total 

time of all passengers in travelling and the time value of 

passengers. Namely, 

𝐶𝑡𝑟𝑎𝑣𝑒𝑙 = ∑ ∑ (𝑡𝐿𝑗

𝑑𝑝 − 𝑡𝐿𝑗

𝑜𝑝
) ∙ 𝑦𝐿𝑗

𝑝

𝑀

𝑗=1

𝑁𝑝

𝑝=1

                 (6) 

The departure time deviation cost in expected is the 

product of the deviation time of all passengers and the time 

value of passengers. Namely, 

𝐶𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑚𝑖𝑛 (|𝑙𝑒𝑝
− 𝑡𝐿𝑗

𝑜𝑝| , |𝑢𝑒𝑝
− 𝑡𝐿𝑗

𝑜𝑝|) ∙ 𝑦𝐿𝑗

𝑝

𝑀

𝑗=1

𝑁𝑝

𝑝=1

(7) 

B.3 Constraint condition 

 Passengers demand constraint 

The passenger flow demand in any OD section need to be 

served by the corresponding trains, that is, making sure that 

all passengers are served: 

∑ ∑ 𝑦𝐿𝑗

𝑝

𝑀

𝑗=1

𝑁𝑝

𝑝=1

= 𝑄𝑜,𝑑 ,      ∀𝑜, 𝑑 ∈ 𝑆, 𝑜 < 𝑑           (8) 

Train line planning constraint 

(1) The departure-arrival stations constraint of train  

In our research, trains are given in advance by an 

alternative set, and any train 𝐿𝑗 in the alternative set has a 

stationary arrival-departure station: 

𝑧𝐿𝑗

𝑆𝑜 = 𝑧𝐿𝑗

𝑆𝑑 = 1            ∀𝐿𝑗 ∈ 𝐿                    (9) 

(2) The stop times constraint of train 

In practice, having excessive stops for any train 𝐿𝑗 results 

in the increased operation cost of trains from the perspective 

of operational enterprises of express rail link. Viewed from 

the perspective of the service quality, it increases the travel 

time and reduces the service quality. Therefore, constraining 

the train stops for any train 𝐿𝑗  can achieve the purpose of 

reducing the operation cost of trains and improving the 

service quality for passengers: 

 

∑ 𝑧𝐿𝑗

𝑆𝑖

𝑆𝑖∈𝑆

≤ 𝑁𝑢𝑚𝐿𝑗
,      ∀𝐿𝑗 ∈ 𝐿                        (10) 

(3) The capacity constraint of train 

For passenger flow allocating to the train, it is necessary 

to ensure that the number of passengers getting on the trains 

in each section is no more than the maximum passenger 

capacity of train. For this purpose, an auxiliary variable 𝜑𝐿𝑗

𝑝ℎ
 

is introduced to represent the relationship between train 𝐿𝑗, 

section ℎ , and passenger 𝑝 . If train 𝐿𝑗  serves passenger 𝑝 
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passing the section ℎ , then 𝜑𝐿𝑗

𝑝ℎ
= 1 , otherwise 𝜑𝐿𝑗

𝑝ℎ
= 0 . 

Then the train capacity constraint is formulated as: 

∑ 𝜑𝐿𝑗

𝑝ℎ
𝑦𝐿𝑗

𝑝

𝑁𝑝

𝑝=1

≤ 𝐶𝑎𝑝𝐿𝑗
       ∀ℎ ∈ 𝐻𝐿𝑗

, ∀𝐿𝑗 ∈ 𝐿          (11) 

(4) The number of train operation constraint 

In fact, for the co-optimization of train route planning and 

train schedule, numerous trains will be operated with the 

aim of minimizing the passengers’ travel cost. In order to 

control the operating cost of train within a reasonable range, 

we constrain the number of train operating to ensure that the 

operation cost of enterprises during the planning periods are 

controlled, while catering to the travel demand of passengers. 

∑ 𝑥𝐿𝑗

𝑀

𝑗=1

≤ 𝑁𝑢𝑚𝑚𝑎𝑥                                  (12) 

(5) The train formation constraint 

 In the operational practice of high-speed railway in China, 

train formations are mainly divided into 8 or 16 units. 

Therefore, the constraint of formation 𝑏𝐿𝑗
 for train 𝐿𝑗 ∈ 𝐿 is 

formulated as: 

𝑏𝐿𝑗
∈ {

8 rolling stock units in formation，
16  rolling stock units in formation

} , ∀𝐿𝑗 ∈ 𝐿(13) 

Train timetable constraint 

(1) Departure time range constraint 

In general, multiple trains are required to operate in the 

corridor of railway during the planning period, so the 

preferred(expected) departure time of each train at the 

departure station is expected to be determined in advance, in 

order to ensure the service balance within the range of 

considered time. 

𝑇𝐿𝑗
≤ 𝑡𝐿𝑗,𝑂𝐿𝑗

𝑑 ≤ 𝑇𝐿𝑗
+ ∆𝑇𝐿𝑗

,     ∀𝐿𝑗 ∈ 𝐿                 (14) 

(2) The section operation time constraint 

The travel time of train 𝐿𝑗 from station 𝑆𝑖 to station 𝑆𝑖+1 

equals to the time of train 𝐿𝑗 arriving at station 𝑆𝑖+1 minus 

the departure time from station 𝑆𝑖. That is the constraint of 

the travel time of inter-station is formulated as: 

𝑡𝐿𝑗,𝑆𝑖+1

𝑎 − 𝑡𝐿𝑗,𝑆𝑖

𝑑 = 𝑡𝐿𝑗,ℎ
𝑟𝑢𝑛, ∀𝐿𝑗 ∈ 𝐿, ∀𝑆𝑖 ∈ 𝑆\{𝑆𝑁}∀ℎ ∈ 𝐻𝐿𝑗

(15) 

(3) Train safety interval constraint 

In order to ensure the safety operation of trains, the 

departure and arrival of adjacent trains are required in a 

certain safety interval during the co-optimization process of 

train line planning and timetabling. 

𝑡𝐿𝑗+1,𝑆𝑖

𝑑 − 𝑡𝐿𝑗,𝑆𝑖

𝑑 ≥ 𝑇𝑆𝑖

𝑑 ,     ∀𝐿𝑗 ∈ 𝐿, 𝑆𝑖 ∈ (𝑆\{𝑆𝑁})  (16) 

𝑡𝐿𝑗+1,𝑆𝑖

𝑎 − 𝑡𝐿𝑗,𝑆𝑖

𝑎 ≥ 𝑇𝑆𝑖

𝑎 ,     ∀𝐿𝑗 ∈ 𝐿, 𝑆𝑖 ∈ (𝑆\{1})    (17) 

Coupling constraint of decision variables 

(1) Coupling constraint between the passenger flow 

allocation variable  𝑦𝐿𝑗

𝑝
 and the train operation variable  𝑥𝐿𝑗

 

Only when the train 𝐿𝑗  is operating, the passenger p 

allocates to the train 𝐿𝑗 can be considered. 

𝑦𝐿𝑗

𝑝
≤ 𝑥𝐿𝑗

,     ∀𝑝 ∈ 𝑃, ∀𝐿𝑗 ∈ 𝐿                      (18) 

(2) Coupling constraint between the stopping variable 𝑧𝐿𝑗

𝑆𝑖 

and the train operation variable  𝑥𝐿𝑗
 

Only when the train 𝐿𝑗  is operating, the train 𝐿𝑗  can be 

stopped at the station 𝑆𝑖. 

𝑧𝐿𝑗

𝑆𝑖 ≤ 𝑥𝐿𝑗
,      ∀𝐿𝑗 ∈ 𝐿 , ∀𝑆𝑖 ∈ 𝑆                  (19) 

Variable value constraint 

𝑥𝐿𝑗
∈ {0,1},      ∀𝐿𝑗 ∈ 𝐿                                (20) 

𝑦𝐿𝑗

𝑝
∈ {0,1},      ∀𝑝 ∈ 𝑃, ∀𝐿𝑗 ∈ 𝐿                 (21) 

𝑧𝐿𝑗

𝑆𝑖 ∈ {0,1},      ∀𝐿𝑗 ∈ 𝐿, ∀𝑆𝑖 ∈ 𝑆                (22) 

𝑡𝐿𝑗,𝑆𝑖

𝑑 ∈ ℕ,     ∀𝐿𝑗 ∈ 𝐿, ∀𝑆𝑖 ∈ 𝑆\ {𝐷𝐿𝑗
}      (23) 

𝑡𝐿𝑗,𝑆𝑖

𝑎 ∈ ℕ,     ∀𝐿𝑗 ∈ 𝐿, ∀𝑆𝑖 ∈ 𝑆\ {𝑂𝐿𝑗
}      (24) 

. 

B.4 Transformation of multi-objective model 

𝑍1  and 𝑍2  are transformed into 𝑍  by using the liner 

weighting sum method. Considering the magnitude 

difference between 𝑍1 and 𝑍2, enpowering while enlarging 

𝑍2 by 𝜑 times to achieve the unity of magnitude of 𝑍1 and 

𝑍2. 

𝑚𝑖𝑛𝑍 = 𝛼1 ∙ 𝑍1 + 𝛼2 ∙ 𝜑 ∙ 𝑍2                 (25) 

In conclusion, the objective function of model is 
transformed into formulation (25), and the constraints 
are formulations (1)-(17). 

V. OPTIMIZATION ALGORITHM 

A. Algorithm introduction 

Adaptive Large Neighborhood Search (ALNS) is a 

heuristic method introduced by Ropke and Pisinger in 2006. 

It enhances traditional neighborhood search techniques by 

dynamically adjusting the effectiveness of operators, 

allowing for automated selection of operators that improve 

solutions through both destruction and repair phases. This 

approach increases the likelihood of finding improved 

solutions by balancing exploration and exploitation. ALNS 

effectively addresses limitations seen in other methods such 

as the lower probability of finding optimal solutions in 

simulated annealing or the lack of heuristic guidance in 

Variable Neighborhood Search (VNS), thereby yielding 

higher-quality solutions. 

While ALNS has been extensively studied and applied in 

transportation and organizational contexts within railway 

systems, research specifically focusing on improvements in 

collaboration on train route planning and timetabling remain 

limited. Therefore, this paper designs an algorithm aimed at 

solving the co-optimization model for train line planning 

and timetabling. The adaptability and efficacy of ALNS in 

addressing this model are demonstrated through numerical 

examples. 

B. Initial solution generation 

The initial solution comprises four components: train 

departure times, stop planning, train formation, and 

passenger flow allocation. The solution for model LT is 

presented in formulation (26). 

𝐿𝑇 = [

𝑇𝑇1     𝑆𝑆1   𝑇𝐹1   𝑃𝐴1

𝑇𝑇2    𝑆𝑆2    𝑇𝐹2   𝑃𝐴2

⋮         ⋮        ⋮        ⋮
𝑇𝑇𝑀    𝑆𝑆𝑀   𝑇𝐹𝑀   𝑃𝐴𝑀

]                   (26) 

In the above formulation, 𝑇𝑇𝑀 is the solution of departure 

time for 𝑀  alternative train, 𝑆𝑆𝑀  is the solution of stop 

planning for 𝑀 alternative train, 𝑇𝐹𝑀 is the solution of train 

formation for 𝑀  alternative train, 𝑃𝐴𝑀  is the solution of 

allocated passenger flow for 𝑀 alternative train. 

Initially, guided by the constraint conditions specified in 

formulations (4), (7), and (9), the departure times for trains 

are randomly generated, incorporating the operational 

decisions 𝑥𝐿𝑗
 . Subsequently, the solutions for train stop 

planning and train formation are randomly generated while 

adhering to the constraints outlined in formulations (2), (3), 
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(6), and (12). Finally, the algorithm detailed in Section 5.3 is 

used to generate the passenger flow allocation scheme. 

C. Passenger flow allocation based on greedy algorithm 

In this paper, the passenger flow allocation algorithm is 

an inner algorithm that needs to be executed after generating 

the solution of departure time, stopping planning and 

formation planning. The quality and efficiency of the 

solution of passenger flow allocation directly determine the 

solving quality and efficiency of algorithm. The strategy of 

passenger flow allocation according to the greedy algorithm 

in this paper is proposed to increase the quality of the 

solution of passenger flow allocation. 

Traversing an array of passenger groups with a length of 

𝑁𝑝 , and allocating the passenger to the train with the 

smallest operation cost 𝑍2 . If the passengers number 

allocated to each train dissatisfy the formulation (4), then 

the remaining passengers will be allocated to the train with 

the minor operation cost until all passengers are allocated to 

the train. The algorithm flow is as follows 

Step1：Initialize the solution of passenger flow allocation. 

Generate an initial array of passenger flow allocation of 𝑀 

rows and 𝑁𝑝 columns. 

Step2：Determine the qualification train 𝑄𝑇  of each 

passenger based on their OD information and 𝑆𝑆𝑀. 

Step3：Calculate the travel cost of each passenger p for 

choosing the train with the corresponding qualification. 

Step4: When the formulation (12) is satisfied, the 

passenger groups are optimally allocated to the 

corresponding train according to their travel cost. If the 

passengers’ number on each train after the current passenger 

allocation does not meet the train capacity constraint of 

formulation (12), the current passenger will be skipped and 

the next passenger will continue to be assigned. 

Step5：If some passengers remain unallocated, increase 

the number of operation trains until all passenger flow have 

been allocated. 

D. Executing operator operation 

In the process of solving, the new solution 𝐿𝑇𝑛𝑒𝑤  is 

derived by applying operator operations to the current 

solution. This paper introduces deletion, addition, and 

adjustment operators. The deletion and addition operators 

are adopted from existing literature, while the adjustment 

operators for stop planning and formation planning are 

designed as follows: 

(1) Adjusting operators on stopping planning 

The adjustment operator is mainly used to adjust the stop 

planning of trains. The adjustment operator of OD 

information of unallocated passengers is used to judge the 

arrival-departure station of passenger 𝑝  and randomly 

choose the train 𝑖 for currently unallocated passengers 𝑝. If 

the train 𝑖 does not stop at the departure or arrival station of 

the passenger 𝑝, the stop planning is changed from 0 to 1. 

(2) Adjusting operators on formation planning 

The adjustment operator here is used to adjust the 

formation planning of trains. It mainly adopts two kinds of 

adjustment operators that are random and average 

attendance. The random adjustment operator is randomly 

adjusting the formation planning of the operation train. If 

current formation planning of the train with the highest 

attendance rate is 𝑏𝐿𝑗
= 8, the formation of adjustment train 

𝐿𝑗  is 𝑏𝐿𝑗
= 16 ; On the contrary, if current formation 

planning of the train with the lowest attendance rate is 𝑏𝐿𝑗
=

16, the formation of adjustment train 𝐿𝑗 is 𝑏𝐿𝑗
= 8. 

E. The solving steps of algorithm 

The steps for solving the algorithm are as follows, with 

the detailed process illustrated in Fig. 3. 

Step1 ： Import the basic data, such as line date, 

alternative train data, passenger flow demand data, 

parameter values, etc. 

Step2：Create the initial solution by utilizing the methods 

in Section 5.1, and calculate the objective function 𝑍 

corresponding to the initial solution. 

Step3：Generate the new optimum solution of train route 

planning and train timetabling by utilizing the execution 

operators, and calculate the objective function value 𝑍𝑛𝑒𝑤 

corresponding to the new solution. 

Step4：If the new solution 𝑍𝑛𝑒𝑤 ≤ 𝑍 , then the current 

optimal solution 𝑍𝑜𝑝𝑡 is updated to 𝑍𝑛𝑒𝑤. 

Step5：Update the optimal degree of the new solution, 

and score it. 

Step6：Determine whether the algorithm satisfies the 

termination criterion. If it does, turn to Step 7; Otherwise, go 

to Step 3. 

Step7：Output the optimal solution. 

 

Begin

    line station interval、alternative trains、

passenger demand、parameters

Generating the initial solution LT0，Calculate the 

initial solution corresponding to the objective 

function Z

Computing new solutions LTnew  and new objective 

function Znew using execution operators

Scoring and updating the weights of

 the implementation operators

Whether the end 

condition is met

         Optimal train departure scheme 、

Optimal traffic distribution scheme、
Optimal objective function value

Y

N

End
 

Fig. 3. Algorithm flowchart 
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VI. NUMERICAL EXPERIMENTS 

A. The basic data of example 

This study uses the Yinchuan-Xi’an high-speed railway 

as a case study. The route spans 617 km and includes 17 

stations, as depicted in Figure 4. Detailed information 

regarding interval mileage, operational timings, and train 

types can be found in TABLE II. 

 

Xi an
Xianyang

NingxianQingyang
HuanxianHuianbao

Wuzhong

Yinchuan

Xi an
Xianyang

NingxianQingyang

Huanxian

Huianbao
Wuzhong

Yinchuan

Hedongjichang
Lingwubei

Tianshuibao

Quzi
Qingcheng

Binzhoudong Yongshouxi

Qianxian Liquannan

Fig. 4. The stations of Yin-Xi high-speed railway 

 

TABLE II 

THE INFORMATION OF LINE INTERVAL MILEAGE AND 

OPERATIONAL TIME 

Interval  

number 

Station  

spacing 

/km 

Interval  

operational time 

/min 

1 33 17 

2 22 11 

3 19 10 

4 68 22 

5 40 12 

6 89 27 

7 24 11 

8 39 14 

9 50 18 

10 41 15 

11 59 19 

12 38 13 

13 29 12 

14 13 8 

15 25 11 

16 28 14 

 

A total of 180 alternative trains operate on this route, 

comprising 100 long-distance trains from Yinchuan to Xi’an 

North and 80 short-distance trains from Qingyang to Xi’an 

North. For this study, the passenger flow demand on a 

specific day in 2022 was analyzed. The total number of 

passengers was 11,016, with expected departure times 

within 2 hours before or after the scheduled departure times 

of existing trains. The distribution of passenger flow 

demand is visualized in Figure 5. It can be seen that there is 

significant variability in passenger demand on the route at 

all times of the day. Several of the peak points where 

passenger demand fluctuates are marked on  Figure 5. 

Parameters used in the model and algorithm are detailed in 

TABLE III.. 

 
Fig. 5. The distribution of passenger flow demand 

 
TABLE III 

THE PARAMETER VALUE OF MODEL AND ALGORITHM 

parameter definition value 

𝑁𝑢𝑚𝐿𝑗
 

The maximum number of 

allowable stops for train 

𝐿𝑗/time 

  Long-distance 

train：10 

Short-distance 

train：4 

𝐶𝑎𝑝𝐿𝑗
 

The maximum passenger 

capacity of the train 𝐿𝑗/people 
613 

𝑁𝑢𝑚𝑚𝑎𝑥 
The maximum number of 

trains allowed to operate/train 
15 

∆𝑇𝐿𝑗
 

The range of departure time of 

the train 𝐿𝑗/min 
5 

𝑇𝑆𝑖

𝑑 

The minimum safe interval 

time between two adjacent 

trains departing from the 

station 𝑆𝑖/min 

5 

𝑇𝑆𝑖

𝑎 

The minimum safe interval 

time between two adjacent 

trains arriving at the station 

𝑆𝑖/min 

5 

𝑐𝑏 

The operational cost per 

kilometer of train in 𝑏 

formation/(yuan/km) 

8 trains in 

formation: 6.8 

16 trains in 

formation: 13.6 

𝜔 

The unit time value of the 

number of converted EMUs 

hours/yuan 

820 

𝐵𝑃𝑅𝐿𝑗
 

The base price rate of train 

𝐿𝑗/(yuan/km) 
0.2805 

𝛼1 Weight coefficient 0.5 

𝛼2 Weight coefficient 0.5 

𝛤𝑜 Original temperature 1000 

𝛤𝑒𝑛𝑑 End temperature 0.1 

𝜖 Step size 0.98 

 

B. The analysis of solution results 

The algorithm implemented in this study utilized the C 

language on the Visual Studio 2019 platform. After 700 

iterations, the objective function reached its minimum value 

of 982,643.33, as depicted in Figure 6. Detailed train line 

planning and timetabling information can be found in Table 

IV, with the final train line planning shown in Fig 6. 
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Fig. 6. Iterative process 

 
TABLE IV 

TRAIN LINE PLANNING AND TIMETABLING INFORMATION 

 

Following optimization, there are now 12 long-distance 

trains operating from Yinchuan to Xi’an North and 1 short-

distance train from Qingyang to Xi’an North. On average, 

long-distance trains make 7 stops while short-distance trains 

make 3 stops. The operational fleet includes 2 double-

formation trains and 11 single-formation trains, achieving an 

average train attendance rate of 0.72, indicating balanced 

utilization. 

 

 
Fig. 7. Train timetable 

 

Fig 7 displays the optimized train timetable, where dashed 

lines represent double-formation trains and solid lines 

represent single-formation trains. The first train departs 

Yinchuan station at 8:26, with the last departure scheduled 

for 17:56. Notably, no trains operate during 10:00-11:00, 

12:00-13:00, and 14:00-16:00, aligning with passenger flow 

demand across multiple dimensions. 

Table V compares various indicators before and after 

optimization. Despite an increase of 2 in total operating 

trains post-optimization, the number of double-formation 

units decreased by 11.76%, from 6 to 2. Similarly, although 

total stops increased by 7, the stops per double-formation 

unit decreased by 19.05%. Overall, the objective function 

value decreased by 1.00% after optimization, reflecting 

positive outcomes from the optimization process. 

 
TABLE V  

THE COMPARISION BEFORE AND AFTER OPTMAZATION 

 Before 

optimization 

After 

optimization 

Rate of 

change 

Number of 

operational 

train 

 

11 13 
-

18.18% 

Number of 

EMU unit 

 

136 120 11.76% 

Total stops 

 
81 88 -8.64% 

Number of 

stops of 

per EMU 

unit 

 

1.68 1.36 19.05% 

Train 

operation 

cost 

 

20901.76 10160.47 51.39% 

Passenger 

travel cost 

 

971697.90 972482.86 -0.08% 

Objective 

function 

value 

992599.66 982643.33 1.00% 

 

The attendance rate of the optimized train in each section 

are illustrated in Fig 8. The average attendance rate of the 

train is 68.85%. The seat availability of the train in each 

section appears relatively balanced, and the actual passenger 

flow satisfies the constraint of train capacity. 

 

 

Fig. 8. The passenger load factor of train in each section 
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C. Comparative analysis of parameters 

To examine the impact of 𝛼1 and 𝛼2  on the results, we 

varied these parameters based on the example above to 

assess the optimization outcomes. Setting 𝛼1 = 1, 𝛼2 = 0 

implies that only the operational costs of enterprises are 

considered, excluding the travel costs of passengers. 

Conversely, setting 𝛼1 = 0, 𝛼2 = 1  means that only the 

travel costs of passengers are considered, without regard to 

the operational costs of enterprises. 

Based on our optimization results with 𝛼1 = 1, 𝛼2 = 0, 

the train line planning and scheduling were optimized 

primarily from the perspective of enterprise operational 

costs. This approach yielded 12 operational trains, sufficient 

to meet the travel displacement demands of passengers. As 

𝛼1  decreases, both the operational costs for enterprises and 

the number of operational trains gradually increased, while 

passenger travel costs decreased. Additionally, various costs 

and total expenses for passengers decreased gradually, 

enhancing overall service quality for passengers. 

In contrast, with 𝛼1 = 0, 𝛼2 = 1 , optimization focused 

solely on passenger travel costs, disregarding enterprise 

operational costs. This configuration resulted in 15 

operational trains, the maximum feasible under the 

operational train constraint value defined by Formula (5) in 

this paper. In this scenario, enterprise operational costs were 

highest, yet service quality for passengers was optimized. 

 
TABLE VI  

 THE PARAMETER VALUE OF MODEL AND ALGORITHM 

Parameter  

value 
𝑍 𝑍1 𝑍2 

Operation  

trains 

𝛼1 = 1, 𝛼2 = 0 148158 148158 0 12 

𝛼1 = 0.8, 𝛼2 = 0.2 590567 47452 543114 13 

𝛼1 = 0.6, 𝛼2 = 0.4 974802 24048 950754 13 

𝛼1 = 0.4, 𝛼2 = 0.6 989041 12389 976651 14 

𝛼1 = 0.2, 𝛼2 = 0.8 1003667 9145 994521 13 

𝛼1 = 0, 𝛼2 = 1 937326 0 937326 15 

 

D. Comparison of results from different algorithms 

Simulated Annealing (SA) and Variable Neighborhood 

Search (VNS) algorithms are employed as comparative 

approaches to solve the model in this paper, and their results 

are detailed in TABLE VII. Regarding convergence speed, 

SA demonstrated the fastest convergence, followed by VNS, 

while Adaptive Large Neighborhood Search (ALNS) 

exhibited the slowest convergence. 

In terms of solution quality, ALNS achieved the highest 

quality solutions. Despite its slightly slower convergence 

compared to SA and VNS, ALNS is less prone to falling 

into local optima, resulting in significantly better optimal 

solutions compared to SA and VNS. 

Regarding computational efficiency, both VNS and 

ALNS achieved optimal solutions within 3 minutes, whereas 

SA showed the lowest efficiency in finding solutions. 

 
TABLE VII  

COMPARATIVE ANALYSIS OF DIFFERENT ALGORITHMS 

Algorithm Number of 

iterations/times 
𝑍 Calculation 

time/s 

SA 273 1129438.52 321 

VNS 547 1057481.27 165 

ALNS 700 982643.33 172 

Fig 9 illustrates the iterative convergence process of these 

algorithms during optimization. SA and VNS tended to 

reach local optimal solutions earlier in the iteration process, 

whereas ALNS, though slower to converge initially, 

consistently delivered higher-quality iterative solutions due 

to its adaptive mechanism leveraging historical solution 

information. 

 

 Fig. 9. Convergence curves of different algorithms 

 

VII. CONCLUSION 

To meet the travel demands of high-speed railway 

passengers while considering operational costs for both 

enterprises and passengers, we comprehensively integrated 

constraints such as passenger demand, train line planning, 

train timetabling, and variable coupling. This led to the 

establishment of a collaborative optimization model for train 

line planning and timetabling. Leveraging the model's 

characteristics, we designed an adaptive large-scale 

neighborhood search algorithm and validated both the model 

and algorithm using practical examples. 

In optimizing train route planning and scheduling 

collaboratively, taking into account passengers desired 

departure times effectively and objectively reflects their real 

needs. This approach ensures that the resulting train line 

plans and timetables align better with passenger travel needs. 

In comparison with traditional methods like SA and VNS, 

the ALNS algorithm proposed in this paper significantly 

improves solution quality and efficiency. ALNS effectively 

addresses the collaborative optimization challenges of train 

line planning and timetabling. 

The model and algorithm introduced in this study provide 

theoretical and technical support for high-speed railway 

operators in formulating train timetables, thereby enhancing 

the transportation service level of high-speed railway 

enterprises. 

This study focused solely on the collaborative 

optimization of train route planning and schedule for single-

direction express rail link operations. Future research could 

expand this scope to include bidirectional operations or 

entire railway networks. 
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