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Abstract—A queueing inventory system with impatient cus-
tomers and working vacations is studied in this article.
Customers have two kinds of impatient behaviors when the
inventory is zero and the server is on a working vacation.
The stability condition, steady-state probability vectors and the
performance measures are obtained by quasi-birth-and-birth
process theory and Neuts-Rao truncation method. The cost
function is established, and the system constrained optimization
problem is solved by a genetic algorithm. Finally, the impact of
the parameters on performance measures, optimal strategy and
minimum cost are illustrated by numerical example analysis.

Index Terms—queueing inventory system; impatient cus-
tomers; working vacations; Neuts-Rao truncation; cost function.

I. INTRODUCTION

W ITH the development of fierce competition in the
market business, more and more companies have

changed their business model to one that can provide prod-
ucts and services to customers at the same time. Therefore,
it is vital for companies to design a new business model that
can satisfy customers’ two kinds of needs and can reduce
company’s operating costs also.

Krishnamoorthy and Viswanath [1] investigated a pro-
duction inventory model. They used the (s, S) production
policy. Then they analyzed the system stability condition and
conducted numerical experiments to analyze the impact of s
and S on the system’s out of inventory time and the expected
rate of loss to customers. Subsequently, Krishnamoorthy and
Viswanath [2] studied the optimal values of s and S and
obtain analytical expressions for the optimal values. Beak
and Moon [3] investigated an M/M/1 model of an attach
production inventory and sales losses. The system had both
external replenishment and internal production strategies:
the external replenishment used the (r, Q) replenishment
strategy, the internal production strategy obeyed a Poisson
arrival process. They obtained a continuous joint distribution
for both the queue length and the current inventory, and
finally performed a numerical analysis to derive the optimal
cost. Later, Beak and Moon [4] built on this foundation and
investigated the M/M/c production service inventory system
with sales loss. Gayon et al. [5] investigated a production-
inventory system with product returns and two disposal op-
tions. They established an optimal control strategy with three
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threshold parameters. The numerical results show that the
two disposal options are complementary. Kocer and Ozkar
[6] studied a production inventory model which have priority
customer and a server. They built a five-dimensional Markov
chain to give the steady-state conditions and steady-state
probabilities. Through numerical experiments, they obtained
the optimal inventory and minimum cost.

In the classical server vacation strategy, server does not
provide any service in the vacation period. However, in real
life, this vacation often leads to customer dissatisfaction,
so the working vacation policy has attracted the attention
of many scholars. The concept of working vacation was
proposed by Servi and Finn [7]. They investigated an M/M/1
working vacation queueing system, derived the steady-state
performance measures, then applied them to the perfor-
mance analysis of communication networks. Since then,
many scholars have conducted in-depth studies on work-
ing vacation queueing systems. Majid et al. [8] considered
an M/M/1 queueing model with working vacation policy.
Random decomposition expressions for queue length and
wait time were obtained. Manikandan and Nair [9] inves-
tigated a system containing working vacations and vacation
interruptions. They got the system stability condition, and
analyzed busy period. Li and Li [10] studied a retrial queue
with working vacation, orbit search and balking system.
Majid [11] investigated a system with the variable working
vacations policy. He used the constant form of the function
and degenerate hyper geometric function to get the steady-
state probability, and derived the performance measures,
which is in contrast to the general multiple working va-
cations. This model sets a maximum frequency of K of
consecutive working vacations, and the server keeps idle
after reaching the maximum frequency. Karthick and Suvitha
[12] considered three servers with different service rates,
and given the stationary conditions and boundary probability
vectors of the model. Lv et al. [13] took into account the
different customer arrival rates, and derived the conditional
stochastic decomposition framework for queue length and
waiting time.

Impatience is the most prominent feature of the queueing
model. The waiting customers are always frustrated and
dissatisfied. Therefore, customers either decide not to enter
the queue when they arrive, or join a queue, but lose patience
after some time and choose to leave. That leads to a loss
of customer base. Some scholars have studied impatient
customers in the early days.

Perry and Stadje [14] studied inventory systems that have
impatient customers and perishable products, obtaining the
steady-state probability distributions and cost function of
system. Altman and Yechiali [15] investigated three queueing
systems with single-server and multi-server . They focused
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on customer impatience behavior when servers are on va-
cation. They also compared the percentage of customers
abandoning under a single and multiple vacations, yielded
that the proportion of customers renunciation is smaller
under a single vacation system. Later, Altman and Yechiali
[16] extended the impatience phenomenon investigated in
the above studies to an infinite server system. Benjaafar
et al. [17] researched a production inventory system with
impatient customers. They used two thresholds to describe
the optimal strategy: the production level base inventory,
which determines when it will be produced, and the entry
threshold, which determines when to accept orders. Hamadi
et al. [18] researched a perishable product inventory system,
and solved the optimal control of service in a service facility
with impatient customers based on the (s, Q) replenishment
policy. They obtained the optimal service rate through the
Markov decision process and linear programming algorithm.
Melikov et al. [19] studied a queueing inventory system
with impatient customers, considering the cases of finite
and infinite captains, and proposed exact and approximate
algorithms for the model. Koroliuk et al. [20] studied a
perishable queueing inventory system with impatient cus-
tomers and server vacations, and the replenishment policy
obeys a two-level strategy. Shajin and Krishnamoorthy [21]
conducted research on a queueing inventory system involving
impatient customers as well as reservations, cancellations,
and overbookings. They obtained the stability condition and
the associated performance measures. In addition, they gave
a specific case where all distributions are exponential, getting
solutions in the form of asymptotic products of the system.
Zhang et al. [22] studied a queueing inventory system with
impatient customers and mixed sales. And they made use of
the Bright-Taylor truncated approximation for attaining the
steady-state probability, and carried out an analysis of the
impact of the parameters on the performance measures, the
optimal policy as well as the optimal cost. Mathew et al. [23]
studied a production inventory system with server failures
and impatient customers. By performance measures, they
deduced the distribution of five important performance char-
acteristics. Among them, customer impatience is generated
by server maintenance. In this model, each inventory product
has to go through k production stages, and the production
time of each production stage follows the phase distribution.

Based on the above, a production queueing inventory sys-
tem with multiple working vacations and impatient customers
is investigated. We mainly consider two kinds of situations
of customers’ impatience. The first one, assuming that the
inventory is zero, the customers will become impatient, if
the customer not served in the impatience time, and then the
customer will leave the system at any time; the second one,
if the inventory is not zero, during a working vacation, the
customers will become impatient, if the customer not served
in the impatience time, the customer will leave the system
at any time. Both impatience times follow an exponential
distribution.

The rest of the paper is organized as follows: The system
model is described in section 2. In Section 3, we get the
steady-state conditions and the steady-state probabilities’
matrix geometry solution by using the Neuts-Rao truncation
method. Performance measures and cost function are given
in Section 4. Section 5 is numerical analysis. The conclusion

and future prospects of the paper are presented in Section 6.

II. MODEL DESCRIPTION

We research a production queueing inventory system with
impatient customers and working vocations, and the model
is described as follows:

1) The arrival of customers obey a Poisson process with
rate λ. A queue is formed when the number of cus-
tomers is more than one. Each customer needs only one
product after serviced. Therefore, the system inventory
will reduce one unit after serving a customer.

2) The system has one server. During the regular busy
period, the service time follows an exponential dis-
tribution with the parameter µb. The service rule is
First-Come-First-Served(FCFS). If the number of cus-
tomers is zero, the server begins a working vacation.
During the working vacation period, the service time
follows an exponential distribution with the parameter
µv (µv < µb). The system adopts multiple working va-
cations policy: If there are still customers in the system
after a working vacation, the server will immediately
start a regular busy period. Otherwise, the server starts
another working vacation. The vacation time obeys an
exponential distribution with a parameter θ.

3) The system has only one equipment for providing
products and adopts (s, S) product supply strategy:
The production equipment starts producing when the
system inventory level drops to s. And equipment
produces one by one. A finished product will be sent
to the system immediately. The production equipment
stops when the inventory level reaches S. We hy-
pothesize that the production time of a single unit
product conforms to the exponential distribution with
the parameter η.

4) When the inventory is zero, the customer waiting in
the system will become impatient, and the impatient
waiting time T1 follows the exponential distribution
with the parameter ξ1. Furthermore, if the inventory
is not zero but in a working vacation period, the
customer becomes impatient also, and the waiting time
T2 follows an exponential distribution with parameter
ξ2.

5) During a working vacation, the customer impatient
waiting time changes between T2 and T1 according
to the inventory level is zero or not.

6) Let us consider that the inter-arrival times, service
durations, vacation periods, impatience durations, and
production times are all mutually independent.

III. STEADY PERFORMANCE ANALYSIS

III.i State Processes of the System

Define Ψ(t) = {N (t) , I (t) , J (t) , C (t) , t ≥ 0} is the
state process of system, where N (t) means the number of
customers in the system at time t, I (t) means the inventory
level in the system at time t, J (t) means the state of server
in the system at time t. J (t)=0 means that the server is in a
working vocation at time t. J (t)=1 means that the server is
in a regular busy period at time t. C (t) denotes the state of
production equipment in the system at time t. Let C (t)=0
denote that the production equipment is stop at time t. Let
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C (t)=1 denote that the production equipment is working
at time t. The state space of the system is Ω = Ω1

⋃
Ω2,

where,
Ω1 = {(0, i, 0, 1), 0 ≤ i ≤ S − 1}

⋃
{(0, i, 0, 0), s + 1 ≤

i ≤ S}, Ω2 = {(n, i, j, 1), n ≥ 1, 0 ≤ i ≤ S − 1, j =
0, 1}

⋃
{(n, i, j, 0), n ≥ 1, s+ 1 ≤ i ≤ S, j = 0, 1}.

Ψ(t) is a Markov process on the state space, and its
infinitesimal generator is as follows:

Q =



A0 C0

B1 A1 C

. . . . . . . . .

Bn An C

Bn+1 An+1 C

. . . . . . . . .


,

where A0 is a (2S − s) × (2S − s) dimensional matrix,
C0 is a (2S − s) × (4S − 2s) dimensional matrix, B1

is a matrix of order (4S − 2s) × (2S − s), the rest are
(4S − 2s) × (4S − 2s) order matrices. And they are given
by

A0 =



−d η 0 · · · 0 0 0 · · · 0 0
0 d η · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · d D3 0 · · · 0 0
0 0 0 · · · 0 D0 D2 · · · 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · 0 0 0 · · · D0 D2

0 0 0 · · · 0 0 0 · · · 0 D1


,

C0 =


λ 0 0 0 · · · 0 0

0 0 λ 0 · · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · λ 0

 ,

B1 =



E0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0
F0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 F0 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 0 F0 · · · 0 0 0 0 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · F0 0 0 0 0 · · · 0 0 0 0
0 0 0 · · · 0 F0 0 0 0 · · · 0 0 0 0
0 0 0 · · · 0 F0 0 0 0 · · · 0 0 0 0
0 0 0 · · · 0 0 F0 0 0 · · · 0 0 0 0
0 0 0 · · · 0 0 0 F0 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 0 0 · · · 0 0 0 0 0 · · · F0 0 0 0
0 0 0 · · · 0 0 0 0 0 · · · 0 F0 0 0



,

C = λI,

An =



Gn0 H0 · · · 0 0 0 0 · · · 0 0 0
0 Gn1 · · · 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 · · ·Gn1 H0 0 0 · · · 0 0 0
0 0 · · · 0 Gn1 0 H0 · · · 0 0 0
0 0 · · · 0 0 Gn2 0 · · · 0 0 0
0 0 · · · 0 0 0 Gn1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 0 · · · 0 H0 0
0 0 · · · 0 0 0 0 · · ·Gn2 0 0
0 0 · · · 0 0 0 0 · · · 0 Gn1 H0

0 0 · · · 0 0 0 0 · · · 0 0 Gn2



,

n ≥ 1,

Bn =



En1 0 · · · 0 0 0 0 · · · 0 0 0
F1 En2 · · · 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · F1 En2 0 0 · · · 0 0 0
0 0 · · · F1 0 En2 0 · · · 0 0 0
0 0 · · · 0 F1 0 En2 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 0 · · ·En2 0 0
0 0 · · · 0 0 0 0 · · · 0 En2 0
0 0 · · · 0 0 0 0 · · · F1 0 En2



,

n ≥ 2,
where I is an identity matrix of the order (4S-2s),
d = − (λ+ η) ,
g1 = −(λ+ η + θ + nξ1),
g2 = −(λ+ η + nξ1),
gn1 = −[λ+ η + θ + (n− 1)ξ2 + µν ],
gn2 = − (λ+ η + µb) ,

D0 =

( 0, j, 0, 1 0, j + 1, 0, 0

0, j, 0, 1 d 0
0, j + 1, 0, 0 0 −λ

)
,

s ≤ j ≤ S − 2,

D1 =

( 0, S − 1, 0, 1 0, S, 0, 0

0, S − 1, 0, 1 d η
0, S, 0, 0 0 −λ

)
,

D2 =

( 0, j + 1, 0, 1 0, j + 2, 0, 0

0, j, 0, 1 η 0
0, j + 1, 0, 0 0 0

)
,

s ≤ j ≤ S − 2,

D3 =
( 0, s, 0, 1 0, s+ 1, 0, 0

0, s− 1, 0, 1 η 0
)
,

E0 =

( 0, 0, 0, 1

1, 0, 0, 1 ξ1
1, 0, 1, 0 ξ1

)
,

F0 =

( 0, s, 0, 1

1, s+ 1, 0, 0 µν

1, s+ 1, 1, 0 µb

)
,

F0 =

( 0, j − 1, 0, c

1, j, 0, c µν

1, j, 1, c µb

)
, c = 0, 1.

If c = 0, then s+ 2 ≤ j ≤ S; if c = 1, then 1 ≤ j ≤ S − 1.
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H0 =

(n, j + 1, 0, 1 n, j + 1, 1, 1

n, j, 0, 1 η 0
n, j, 1, 1 0 η

)
,

0 ≤ j ≤ S − 2,

H0 =

(n, S, 0, 0 n, S, 1, 0

n, S − 1, 0, 1 η 0
n, S − 1, 1, 1 0 η

)
,

Gn0 =

(n, 0, 0, 1 n, 0, 1, 1

n, 0, 0, 1 g1 θ
n, 0, 1, 1 0 g2

)
,

Gn1 =

(n, j, 0, 1 n, j, 1, 1

n, j, 0, 1 gn1 θ
n, j, 1, 1 0 gn2

)
,

1 ≤ j ≤ S − 1,

Gn2 =

(n, j, 0, 0 n, j, 1, 0

n, j, 0, 0 gn1 − η θ
n, j, 1, 0 0 gn2 − η

)
,

s+ 1 ≤ j ≤ S,

F1 =

(n− 1, s, 0, 1 n, s, 1, 1

n, s+ 1, 0, 0 µν 0
n, s+ 1, 1, 0 0 µb

)
,

F1 =

(n− 1, j − 1, 0, c n, j − 1, 1, c

n, j, 0, c µν 0
n, j, 1, c 0 µb

)
,

c = 0, 1.
If c = 0, then s+ 2 ≤ j ≤ S; if c = 1, then 1 ≤ j ≤ S − 1.

En1 =

(n− 1, 0, 0, 0 n, 0, 1, 0

n, 0, 0, 0 nξ1 0
n, 0, 1, 0 0 nξ1

)
,

En2 =

(n− 1, j, 0, c n, j, 1, c

n, j, 0, c (n− 1)ξ2 0
n, j, 1, c 0 0

)
, c = 0, 1.

If c = 0, then s+ 1 ≤ j ≤ S; if c = 1, then 1 ≤ j ≤ S − 1.

III.ii Stability conditions of the system

In this thesis, the Neuts-Rao truncation method [24] is
used to solve the steady-state probability vector, assuming
that the quasi-birth-and-birth process is no longer changing
from a certain level, at which time the infinitesimal generator
of the process is

Q∗ =



A0 C0

B1 A1 C

B2 A2 C

. . . . . . . . .

BN AN C

BN AN C

. . . . . . . . .


.

From the matrix of Q∗, the process Ψ(t) =
{N (t) , I (t) , J (t) , C (t) , t ≥ 0} is a quasi-birth-and-
birth process. Let H = AN +BN + C, then we have

H =



G0H0 0 · · · 0 0 0 0 0 0 · · · 0 0 0
F1 G1H0 · · · 0 0 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · ·G1H0 0 0 0 0 · · · 0 0 0
0 0 0 · · ·F1 G1 0 H0 0 0 · · · 0 0 0
0 0 0 · · · 0 F1 G2 0 0 0 · · · 0 0 0
0 0 0 · · · 0 F1 0 G1 0 H0 · · · 0 0 0
0 0 0 · · · 0 0 F1 0 G2 0 · · · 0 0 0
0 0 0 · · · 0 0 0 F1 0 G1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · 0 0 0 0 0 0 · · ·G2 0 0
0 0 0 · · · 0 0 0 0 0 0 · · · 0 G1H0

0 0 0 · · · 0 0 0 0 0 0 · · ·F1 0 G2



,

where,

G0 =

( 0, 0, 1 0, 1, 1

0, 0, 1 −(η + θ) θ
0, 1, 1 0 −η

)
,

G1 =

( j, 0, 1 j, 1, 1

j, 0, 1 −(µν + η + θ) θ
j, 1, 1 0 −(µb + η)

)
, 1 ≤ j ≤ S −

1,

G2 =

( j, 0, 0 j, 1, 0

j, 0, 0 −(µν + θ) θ
j, 1, 0 0 −(µb)

)
, s+ 1 ≤ j ≤ S,

F1 and H0 are defined above.
Let α = (α01, α11, · · · , αs1, αs+1,0, αs+1,1, · · · , αS−1,0,

αS−1,1, αS,0) be H’s steady-state probability vector,
where,
αi0 = (α(i, 0, 0), α(i, 1, 0)), s+ 1 ≤ i < S,
αi1 = (α(i, 0, 1), α(i, 1, 1)), 0 ≤ i < S − 1.

Then, α satisfies the balance equations{
αH = 0,

αe = 1,
(1)

e is a column vector with (4S−2s)×(4S−2s) dimensional
elements all 1.

Theorem 1. If and only if

λ <(−1)SαS0[WS − (F1G2
−1)S−s−1Z0]

(
Nξ1

Nξ1

)

+ αS0[
S−1∑
i=1

(−1)
i
Wi

+
S−1∑

i=S−s+1

(−1)
i−1

(F1G2
−1)

S−s−1
ZS−i

+
S−s−1∑
i=0

(−1)
i
(F1G2

−1)
i
]

(
µν + (N − 1)ξ2

µb

)
,

the quasi-birth-and-birth process returns normally. Which

αS0 =[
S∑

i=1

(−1)
i
Wie1

+
S∑

i=S−s+1

(−1)
i−1

(F1G2
−1)

S−s−1
ZS−ie1

+

S−s−1∑
i=0

(−1)
i
(F1G2

−1)
i
e1]

−1,
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Wi =


1
ηG2, i = 1,
1
ηG2G1, i = 2,
1
ηWi−1G1 − 1

ηWi−2F1, 3 ≤ i ≤ S,

Zj =


1
ηF1, j = s− 1,
1
ηF1G1, j = s− 2,
1
ηZj+1G1 − 1

ηZj+2F1, 0 ≤ j ≤ s− 3.

Proof According to equation αH = 0, we can obtain that

α01G0 + α11F1 = 0, (2)

αi−1,1H0 + αi1G1 + αi+1,1F1 = 0, 1 ≤ i ≤ s− 1, (3)

αs−1,1H0 + αs1G1 + αs+1,1F1 + αs+1,0F1 = 0, (4)

αi0G2 + αi+1,0F1 = 0, s+ 1 ≤ i ≤ S − 1, (5)

αi−1,1H0 + αi1G1 + αi+1,1F1 = 0, s+ 1 ≤ i ≤ S − 2,

(6)
αS−2,1H0 + αS−1,1G1 = 0, (7)

αS−1,1H0 + αS0G2 = 0. (8)

From Eq. (8), we can obtain that

αS−1 = −αS0
1
ηG2. (9)

Substituting Eq. (9) into Eq. (7), we have

αS−2 = (−1)2αS0
1
η2G2G1. (10)

Taking i=S-2, substituting Eq. (9) and Eq. (10) into Eq.
(6), we have

αS−3 = (−1)3αS0[
1
η (

1
η2G2G1)G1 − 1

η (
1
ηG2)F1]. (11)

Taking i=S-3, substituting Eq. (10) and Eq. (11) into Eq.
(6), we have

αS−4 =(−1)4αS0{
1

η
[
1

η
(
1

η2
G2G1)G1

− 1

η
(
1

η
G2)F1]G1 −

1

η
(
1

η2
G2G1)F1}.

(12)

And so on to obtain

αS−i,1 = (−1)iαS0Wi, 1 ≤ i ≤ S − s, (13)

which,

Wi =


1
ηG2, i = 1,
1
ηG2G1, i = 2,
1
ηWi−1G1 − 1

ηWi−2F1, 3 ≤ i ≤ S.

From Eq. (5), we can obtain that

αS−i,0 = (−1)iαS0(F1G2
−1)i, 0 ≤ i ≤ S − s− 1. (14)

From Eq. (4), we can obtain that

αs−1,1 =(−1)S−s+1αS0(
1

η
WS−sG1 −

1

η
WS−s−1F1)

+ (−1)S−sαS0(F1G2
−1)S−s−1Zs−1,

(15)

where Zs−1 = 1
ηF1.

Let WS−s+1 = 1
ηWS−sG1 − 1

ηWS−s−1F1, taking i =
s-1, substituting Eq. (15) and αs1 into Eq. (3), we have

αs−2,1 =(−1)S−s+2αS0(
1

η
WS−s+1G1 −

1

η
WS−sF1)

+ (−1)S−s+1αS0(F1G2
−1)S−s−1Zs−2,

(16)

where Zs−2 = 1
η2F1G1.

Let WS−s+2 = 1
ηWS−s+1G1 − 1

ηWS−sF1, taking i =
s-2, substituting Eq. (16) and Eq. (15) into Eq. (3), we have

αs−3,1 =(−1)S−s+3αS0(
1

η
WS−s+2G1 −

1

η
WS−s+1F1)

+ (−1)S−s+2αS0(F1G2
−1)S−s−1Zs−3,

(17)

where Zs−3 = ( 1ηZs−2G1 − 1
ηZs−1F1).

Let WS−s+3 = 1
ηWS−s+2G1 − 1

ηWS−s+1F1, taking i
= s-3, substituting Eq. (17) and Eq. (16) into Eq. (3), we have

αs−4,1 =(−1)S−s+4αS0(
1

η
WS−s+3G1 −

1

η
WS−s+2F1)

+ (−1)S−s+3αS0(F1G2
−1)S−s−1Zs−4,

(18)

where,Zs−4 = ( 1ηZs−3G1 − 1
ηZs−2F1).

And so on, eventually obtaining

αS−i,1 =(−1)iαS0Wi + (−1)i−1αS0(F1G2
−1)S−s−1ZS−i,

S − s+ 1 ≤ i ≤ S,
(19)

where,

Wi =
1

η
Wi−1G1 −

1

η
Wi−2F1, S − s+ 1 ≤ i ≤ S,

Zj =


1
ηF1, j = s− 1,
1
ηF1G1, j = s− 2,
1
ηZj+1G1 − 1

ηZj+2F1, 0 ≤ j ≤ s− 3.

So far, all components of the steady-state probability
vector α of H have been represented by the vector αS0

component.
According to equation αe = 1, we can obtain that

αS0 =[
S∑

i=1

(−1)
i
Wie1

+
S∑

i=S−s+1

(−1)
i−1

(F1G2
−1)

S−s−1
ZS−ie1

+
S−s−1∑
i=0

(−1)
i
(F1G2

−1)
i
e1]

−1.

(20)

From the literature [25], the sufficiently necessary condi-
tion for the quasi-birth-and-birth process is

αCe < αBNe. (21)
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Substituting the steady-state probability vector α and
matrix into Eq. (21), we have

λ <(−1)SαS0[WS − (F1G2
−1)S−s−1Z0]

(
Nξ1

Nξ1

)

+ αS0[
S−1∑
i=1

(−1)
i
Wi

+
S−1∑

i=S−s+1

(−1)
i−1

(F1G2
−1)

S−s−1
ZS−i

+
S−s−1∑
i=0

(−1)
i
(F1G2

−1)
i
]

(
µν + (N − 1)ξ2

µb

)
.

(22)

III.iii Matrix Geometry Solution

Define X = (X0, X1, · · · , Xn, · · · ) as the steady-state
probability of the system, which satisfies the balance
equation {

XQ = 0,

Xe = 1,
(23)

which,

X0 = (X0 (0, 0, 1) , X0 (1, 0, 1) , · · · , X0 (s, 0, 1) ,

X0 (s+ 1, 0, 0) , X0 (s+ 1, 0, 1) , · · · ,
X0 (S − 1, 0, 0) , X0 (S − 1, 0, 1) , X0 (S, 0, 0)),

Xn = (Xn (0, 0, 1) , Xn (0, 1, 1) , · · · , Xn (s, 0, 1) ,

Xn (s, 1, 1) , Xn (s+ 1, 0, 0) , Xn (s+ 1, 1, 0) ,

Xn (s+ 1, 0, 1) , Xn (s+ 1, 1, 1) , · · ·
Xn (S − 1, 0, 0) , Xn (S − 1, 1, 0) , Xn (S − 1, 0, 1) ,

Xn (S − 1, 1, 1) , Xn (S, 0, 0) , Xn (S, 1, 0)),

n = 1, 2, · · · ,

e is a column vector with elements equal to 1 of the
appropriate dimension.

From the literature [23], the system state process returns
normally. If and only if the minimal non-negative solution
R of the matrix quadratic equation R2BN +RAN + C = 0
has a positive solution with spectral radius sp(R) < 1 and
(X0, X1, · · · , XN )B[R] = 0, where,

B[R] =


A0 C0

B1 A1 C
. . . . . . . . .

BN−1 AN−1 C
BN RBN +AN

 .

The steady-state probability vector of the system has the
following matrix geometric solution form

Xk = XNRk−N , k ≥ N,

and satisfies the following equation
(X0, X1, · · · , XN )B[R] = 0,

Xk = XNRk−N , k ≥ N,

(
N−1∑
i=1

Xi +XN (I −R)
−1

)e = 1,

where I is an identity matrix of the order 4S-2s, e is the col-
umn vector whose elements of the appropriate dimension are
equal to one. The key to solving the steady-state probability
vector lies in the solution of the rate matrix R. We adopted
the cyclic reduction algorithm to solve the rate matrix R,
which is described in detail in the literature [26].

IV. SYSTEM PERFORMANCE MEASURES AND COST
FUNCTIONS

IV.i System performance measures

1) The mean number of customers is given by

Eq =
∞∑
i=1

iXie.

2) The mean inventory level is given by

Einv =
∞∑
i=0

S−1∑
j=0

j [Xi (j, 0, 1) +Xi (j, 1, 1)]

+
∞∑
i=0

S∑
j=s+1

j [Xi (j, 0, 0) +Xi (j, 1, 0)].

3) The mean number of customers lost due to impatience
arising from inventory is given by

Eloss
1 =

∞∑
i=1

(i− 1)[Xi (0, 0, 1) +Xi (0, 1, 1)]ξ1.

4) The mean number of customers lost due to impatience
arising from server’s working vacation is given by

Eloss
2 =[

∞∑
i=1

S−1∑
j=0

(i− 1)Xi (j, 0, 1)

+
∞∑
i=1

S∑
j=s+1

(i− 1)Xi (j, 0, 0)]ξ2.

5) The mean customers loss rate is given by

Eloss = Eloss
1 + Eloss

2.

6) The mean production start-up rate is given by

Eopen =µν

∞∑
i=1

Xi (s+ 1, 0, 0)

+ µb

∞∑
i=1

Xi (s+ 1, 1, 0) .

7) The mean productivity is given by

Epro = η

∞∑
i=0

S−1∑
j=0

(Xi (j, 0, 1) +Xi (j, 1, 1)).

8) The mean working vacation rate is given by

Evac = θ[

∞∑
i=0

S−1∑
j=0

Xi(j, 0, 1)+

∞∑
i=0

S∑
j=s+1

Xi(j, 0, 0)].
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IV.ii Cost analysis

According to the performance measures, the cost function
per time of the system can be established following:

C(s, S) = c0Eq + c1Einv + c2Eloss + c3Epro + c4Eopen.

Where c0 is a waiting cost per unit of time per customer,
c1 is the storage cost of unit product per unit of time, c2 is
the cost of loss per unit of customer per unit of time, c3 is
the production cost of unit product per unit of time, and c4
is a fixed cost for each restart of the equipment.

Based on practical considerations, the customers loss rate
cannot be too large, otherwise it will cause great losses to the
system. Therefore, when optimizing the above cost function,
a constraint is added to it so that the optimal policy and
minimum cost can be derived when the mean customers loss
rate is less than a certain range. Due to the characteristic of
the cost function, a genetic algorithm is employed to obtain
the optimal solution of the function optimization problem
that has constraints. In this paper, the population size is
set to 200, the crossover rate is 0.8, the variation rate is
0.01, and the termination condition is 100 iterations. After
repeated experiments, 100 iterations can converge to the
optimal solution stably.

The specific steps of the algorithm are following:
Step 1: Define the objective function and constraints.

The objective function is the function to be minimized or
maximized. Constraints are defined, which can be either
equality constraints or inequality constraints. Step 2: Select
the appropriate coding scheme. According to the character-
istics of the problem choose the appropriate coding scheme
to represent the candidate solution space. Step 3: Initialise
the population. Initialise the population using an appropriate
method to ensure that the individuals in the population
meet the constraints. Step 4: Evaluate the fitness function.
Calculate the fitness value for each individual based on
the objective function. The fitness value can be used to
evaluate how good or bad an individual is based on the
objective function value and the constraints. Step 5: Selection
operation. Use the selection operation to choose the better-
adapted individual from the population as the parent. Step
6: Crossover Operation. Use crossover operation to generate
offspring by combining the chromosome information of the
parents. Step 7: Mutation Operation. Use mutation operation
to make random changes in the offspring to increase the
diversity of the population. Step 8: Update the population.
Update the population based on the results of selection,
crossover, and mutation operations. Step 9: Determine ter-
mination conditions. Repeat steps 5 to 8 until the maximum
number of iterations is reached. Step 10: Output optimal solu-
tion. Output the optimal solution that satisfies the constraints.

Table 1: Parameters corresponding to Figures 1-4.

Figs Parameters

Fig. 1 (λ, θ, η, µν , µb, ξ2, s, S) = (5, 5, 7, 5, 10, 1, 3, 10)

Fig. 2 (λ, θ, η, µν , µb, ξ1, s, S) = (5, 5, 7, 5, 10, 1, 3, 10)

Fig. 3 (λ, θ, µν , µb, ξ1, ξ2, s, S) = (5, 5, 5, 10, 1, 1, 3, 10)

Fig. 4 (λ, η, µν , µb, ξ1, ξ2, s, S) = (5, 7, 5, 10, 1, 1, 3, 10)

Fig. 1: The effect of changes in impatience rate ξ1.

V. NUMERICAL ANALYSIS

V.i Analysis of performance measures

In this section, the impact of system parameters change on
various performance measures is analyzed through numerical
examples. Figs. 1-4 Parameter settings details in Table 1.
Tables 2-4 Parameters settings details in Table 5.

As shown in Fig. 1 and Fig. 2, ξ1 and ξ2 have the same
effect on the system performance measures. When ξ1 and
ξ2 increase, Einv , Eloss, Evac and Eopen all increase, the
remaining performance measures decrease. Because of when

Fig. 2: The effect of changes in impatience rate ξ2.

ξ1 and ξ2 increase, the mean customers’ impatience time
decreases, the probability of customers leaving the system
becomes greater, resulting in fewer customers waiting in
the queue, fewer customers needing fewer products, Einv

increases. By looking at Figs. 5-10, it is found that the
effect of parameter ξ2 on the system is higher than the effect
of parameter ξ1. In other words, the customers’ impatience
caused by working vacation has a higher impact than the
customers’ impatience caused by zero inventory.

As shown in Fig. 3, when η increases, Einv , Epro,
Eopen and Evac all increase, and the remaining performance
measures decrease.
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Fig. 3: The effect of changes in impatience rate η.

Fig. 4: The effect of changes in impatience rate θ.

As shown in Fig. 4, when parameter θ increases, Evac

andEpro increase, the remaining performance measures de-
crease. That is because when θ increases, the server’s va-
cation decreases, the impatient customers’ number leaving
the system decreases, resulting in a decrease in Einv . The
efficiency of service when server is during a regular busy
period is much greater than when server is during a working
vacation. Therefore, Eq decreases. The customers’ number
becomes larger, and the number of products needed to be
stocked increases, so Epro increases.

From Table 2, as the parameter µν increases, Eq , Eloss

and Eopen decrease, Einv first increases and then decreases,
Epro and Evac increase. Parameter µν has a greater effect
on Eq , Eloss and Evac.

As shown in Table 3, as the parameter µb increase, Eq

decreases, Einv , Eloss and Eopen all decrease and then
increase, and Evac increases. Parameter µb has a greater
effect on Eq and Evac of server.

As shown in Table 4, as the parameter λ increases, Eq ,
Eloss and Epro increase, Einv , Eopen and Evac decrease.
That is because the parameter λ increases, the waiting
customers’ number becomes larger, the products required by
the customers becomes larger, and the production system
produces more products, increasing Eq and a decrease in

Fig. 5: The effect of ξ1 and ξ2 on mean number of
customers Eq .

Fig. 6: The effect of ξ1 and ξ2 on mean inventory level
Einv .

Fig. 7: The effect of ξ1 and ξ2 on ean customers loss rate
Eloss.
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Fig. 8: The effect of ξ1 and ξ2 on ean production start-up
rate Eopen.

Fig. 9: The effect of ξ1 and ξ2 on mean productivity Epro.

Fig. 10: The effect of ξ1 and ξ2 on mean working vacation
rate Evac.

Table 2: The effect of the parameter µν on various
measures.

µν Eq Einv Eloss Epro Eopen Evac

0 1.8954 5.2620 0.2765 4.6818 0.2276 2.4669

0.5 1.8367 5.2624 0.2646 4.6943 0.2269 2.5251

1 1.7798 5.2625 0.2532 4.7063 0.2262 2.5827

1.5 1.7249 5.2625 0.2423 4.7177 0.2255 2.6396

2 1.6719 5.2623 0.2319 4.7286 0.2249 2.6956

2.5 1.6210 5.2618 0.2220 4.7389 0.2242 2.7504

3 1.5720 5.2612 0.2126 4.7487 0.2236 2.8041

3.5 1.5251 5.2605 0.2037 4.7579 0.2231 2.8564

4 1.4802 5.2596 0.1953 4.7666 0.2225 2.9072

4.5 1.4373 5.2586 0.1873 4.7748 0.2220 2.9566

5 1.3962 5.2574 0.1799 4.7825 0.2215 3.0045

Table 3: The effect of the parameter µb on various
measures.

µb Eq Einv Eloss Epro Eopen Evac

6 4.7268 5.2834 0.1867 4.7944 0.2236 1.2325

6.5 3.4399 5.2665 0.1692 4.8017 0.2220 1.6081

7 2.7208 5.2584 0.1648 4.8017 0.2212 1.9199

7.5 2.2768 5.2552 0.1652 4.7995 0.2209 2.1797

8 1.9797 5.2542 0.1676 4.7963 0.2208 2.3982

8.5 1.7687 5.2543 0.1706 4.7928 0.2209 2.5841

9 1.6120 5.2550 0.1738 4.7892 0.2210 2.7440

9.5 1.4915 5.2561 0.1769 4.7857 0.2212 2.8828

10 1.3962 5.2574 0.1799 4.7825 0.2215 3.0045

10.5 1.3192 5.2590 0.1826 4.7795 0.2217 3.1119

11 1.2557 5.2606 0.1852 4.7767 0.2220 3.2075

Einv . From Table 4, it can be seen that parameter λ has a
relatively large impact.

V.ii Optimal inventory and cost analysis

It is assumed that the parameter c0 = 50, c1 = 20, c2 =
150, c3 = 100, c4 = 1000 and Eloss are restricted to be less
than 0.15, and the rest of the parameter settings are detailed
in Table 5.

Combined Tables 6-12 we can obtain:

Table 4: The effect of the parameter λ on various measures.

λ Eq Einv Eloss Epro Eopen Evac

4 0.9232 5.9235 0.1086 3.8785 0.2497 3.5761

4.4 1.0879 5.6836 0.1322 4.2474 0.2420 3.3636

4.8 1.2836 5.4084 0.1619 4.6071 0.2294 3.1299

5.2 1.5207 5.0978 0.2006 4.9541 0.2125 2.8731

5.6 1.8126 4.7546 0.2528 5.2836 0.1921 2.5925

6 2.1756 4.3858 0.3238 5.5901 0.1694 2.2899

6.4 2.6286 4.0029 0.4200 5.8679 0.1455 1.9709

6.8 3.1914 3.6216 0.5484 6.1118 0.1219 1.6448

7.2 3.8823 3.2600 0.7158 6.3182 0.1000 1.3247

7.6 4.7145 2.9358 0.9285 6.4862 0.0809 1.0256

8 5.6927 2.6622 1.1919 6.6180 0.0653 0.7611
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Table 5: Tables 6-12 show the corresponding parameters.

Table Parameters

Table 2 (λ, θ, η, µb, ξ1, ξ2, s, S)=(5,5,7,10,1,1,3,10)

Table 3 (λ, θ, η, µν , ξ1, ξ2, s, S) = (5,5,7,5,1,1,3,10)

Table 4 (θ, η, µν , µb, ξ1, ξ2, s, S) = (5,7,5,10,1,1,3,10)

Table 6 (λ, θ, η, µν , µb, ξ2) = (5,5,7,5,10,1)

Table 7 (λ, θ, η, µν , µb, ξ1) = (5,5,7,5,10,1)

Table 8 (θ, η, µν , µb, ξ1, ξ2) = (5,7,5,10,1,1)

Table 9 (λ, θ, µν , µb, ξ1, ξ2) = (5,5,5,10,1,1)

Table 10 (λ, η, µν , µb, ξ1, ξ2) = (5,7,5,10,1,1)

Table 11 (λ, η, θ, µb, ξ1, ξ2)= (5,7,5,10,1,1)

Table 12 (λ, η, θ, µν , ξ1, ξ2)= (5,7,5,5,1,1)

Table 6: The effect of the ξ2 on safety inventory, maximum
inventory and minimum cost.

ξ2 0.1 0.3 0.5 0.7 0.9 1.1

(s, S) (1,14) (1,14) (1,14) (1,16) (2,19) (5,22)

C (s, S) 825.7600 827.0018 828.2016 831.4052 850.2960 893.1953

Table 7: The effect of the ξ1 on safety inventory, maximum
inventory and minimum cost.

ξ1 0.1 0.3 0.5 0.7 0.9 1.1

(s, S) (1,14) (1,16) (3,17) (3,19) (3,20) (4,17)

C(s, S) 835.5587 834.9533 854.5932 859.8781 863.8324 866.5782

Table 8: The effect of the λ on safety inventory, maximum
inventory and minimum cost.

λ 4.5 4.7 4.9 5.1 5.3 5.5

(s, S) (1,14) (2,18) (3,17) (4,21) (6,23) (9,26)

C (s, S) 784.5623 819.9469 845.7170 886.1870 931.6207 992.8955

Table 9: The effect of the η on safety inventory, maximum
inventory and minimum cost.

η 5.5 5.7 5.9 6.1 6.3 6.5

(s, S) (15,29) (12,25) (9,24) (8,20) (6,22) (5,20)

C (s, S) 913.0728 889.8227 875.01807 866.3208 866.2811 859.4551

Table 10: The effect of the θ on safety inventory, maximum
inventory and minimum cost.

θ 4.5 5 5.5 6 6.5 7

(s, S) (8,20) (4,17) (2,18) (2,15) (1,16) (1,14)

C (s, S) 930.5628 866.6005 845.0227 837.3806 828.1802 824.8397

Table 11: The effect of the µν on safety inventory,
maximum inventory and minimum cost.

µν 4.2 4.4 4.6 4.8 5 5.2

(s, S) (6,20) (5,19) (4,21) (4,18) (4,17) (3,19)

C (s, S) 902.4437 885.8823 880.0002 868.9471 866.6005 858.7131

Table 12: The effect of the µb on safety inventory,
maximum inventory and minimum cost.

µb 7 8 9 10 11 12

(s, S) (2,15) (2,17) (3,16) (4,17) (5,18) (7,20)

C (s, S) 906.8008 871.0157 862.9165 866.6005 874.7581 900.7313

1) As the parameters ξ2 and ξ1 increase, the safety stock,
the maximum inventory, and the minimum cost in-
crease, and it can be seen from the degree of change in
the inventory and the minimum cost that the parameter
ξ2 effects the system more than the effect of ξ1 on the
system.

2) When parameter λ increases, safety inventory level,
maximum inventory level and minimum cost also in-
crease. Because of when the number of arriving cus-
tomers increases, the quantity of products required also
rises, the inventory consumption becomes larger, and
the mean cost of waiting customers, the customers’ loss
cost, the storing the products cost and the production
of the product cost are all increased. Therefore, the
system cost also increases.

3) When the parameter η increases, both the inventory
level and minimum cost decrease. It means that with
the production rate of the system increases, more prod-
ucts are produced per unit of time, a lower inventory
level is sufficient to satisfy the demand of the system,
and the storing products cost decreases, thus reducing
the system cost.

4) As the parameter θ increases, both the inventory level
and minimum cost of the system decrease. This indi-
cates that with the mean working vacation decreases,
the probability of customers leaving the system de-
creases, the storing products cost and the customers’
loss cost decreases. So the system’s required cost
decreases as a result.

5) As µν increases, the safety inventory level, maximum
inventory level and minimum cost decrease. It indicates
that with the working vacation service rate increases,
Eq decreases, the mean waiting cost and the storing
products cost decreases, so the system’s required cost
decreases as a result.

6) As µb increases, the safety inventory, and maximum
inventory increase, and the minimum cost decreases
and then increases, which shows that during the the
regular busy period, µb is not the faster, the better. µb

needs to choose the right value, which can make the
system require the lowest cost.

VI. CONCLUSION

In this paper, an M/M/1 production queueing inventory
system with impatient customers and server on multiple
working vacations is investigated. And we mainly consider
the effect on the system of the customers’ impatient in two
situations: When the inventory is zero and when the server is
on working vacations. A four-dimensional Markov process
was established. And the steady-state conditions, the steady-
state probabilities and performance measures of the system
were obtained by applying Neuts-Rao truncation method.
Create a cost function and constrain the mean customers
loss rate. Numerical experiments are conducted to analyze
the effect of different parameter variations on performance
measures, optimal inventory policy and minimum cost. The
experimental results show that the impatience of customers
during the working vacation period has a greater impact on
the system; the service rate during the regular busy period
is not as fast as possible, and the correct value chooses to
minimize the cost spent on the system. Therefore, business
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decision-makers need to consider the efficiency of server
during the regular busy periods in addition to customer
impatience when making decisions. In the course of con-
ducting numerical experiments, we found that optimization
with genetic algorithms can take a long time. Consequently,
it remains to investigate how to choose a more appropriate
algorithm for optimisation. In addition, extending the dis-
tribution of service time and production time to phase-type
distribution is also a direction we want to expand in the
future.
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