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Abstract—This paper presents a qualitative analysis of the
critical set of semilinear equations with Dirichlet boundary
conditions in multiply-connected two-dimensional domains with
corners, employing the method of moving planes to examine
nodal lines associated with the solution. Additionally, compre-
hensive numerical investigations are conducted to validate the
theoretical findings.
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equations, semilinear problems, Dirichlet conditions, Poisson’s
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I. INTRODUCTION

Let us consider the boundary value problem given by the
equation:

∆u = f(u) in Ω,
u = 0 on ∂Ω.

(1)

The solution to this problem is generally not well known
as it significantly depends on the domain Ω. Only in very
few cases, an explicit solution for u is known. Therefore,
a qualitative analysis of the solution is sought through the
study of the critical set, defined as:

K = {x ∈ Ω : ∇u(x) = 0}.

The study of K has been extensively documented in cases
where it is assumed that Ω is a convex planar region with
a smooth boundary. Influential research in this area includes
the work of Makar-Limanov [15] and Cabré and Chanillo
[5]. Further references that explore the problem under the
convexity condition include [8] and [14].

However, when the convexity assumption is removed from
the domain Ω, studying the solution to (1) becomes more
complex. Recent research in this context includes the work of
Finn [8], Arango and Gómez [2], [3], as well as contributions
from Grossi and Molle [12], Gladiali and Grossi [10] and
Grecco [11]. Furthermore, in [4], the critical set of (1) is
investigated in the three-dimensional case.

Analyzing the qualitative aspects of problem (1) becomes
more intricate when the boundary contains vertices, i.e.,
when Ω is a domain with a non-smooth boundary. This re-
search specifically aims to contribute to the study of cases in
which Ω is an annular region whose outer boundary contains
vertices. In particular, this study focuses on scenarios where
Ω represents a ”nut-like” domain, distinguished by its outer
boundary taking the shape of a regular convex polygon, with
its inner edge being a circle centered within the polygon.

Furthermore, we will analyze the critical set for solutions
to the boundary value problem (1) when f is a constant
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equal to w, a positive constant. To provide valuable insights
into this examination, we will present multiple simulations
illustrating the anticipated characteristics of the critical set
within non-concentric annular domains.

II. GENERAL ASSUMPTIONS

The objective of this study is to expand upon the results
presented by Arango and Gómez to encompass domains
featuring cornered geometries. To achieve this, we will em-
ploy a methodology reminiscent of the one described in [1],
while enhancing the underlying assumptions and providing
numerical calculations to bolster our argument.

In the absence of specific declarations to the contrary,
it shall be understood that the function f : R → R is
a real-analytic, non-decreasing function with f(0) > 0.
Additionally, Ω denotes an open region with a ring-like
shape and its boundary denoted as ∂Ω comprises two Jordan
curves, both possessing a convex interior. We propose that the
external border is a Lipschitz continuous curve composed of
analytic pieces and a limited number of vertices. In contrast,
the internal boundary is described as a smooth curve.

A point p on the boundary will be termed a corner or
vertex point if there exist functions gk of class C1 defined
on the interval I = [0, 1] and with values in ∂Ω, k = 1, 2,
such that g1(I) ∩ g2(I) = {p},

g1(1) = g2(0) = p and lim
t→1−

g′1(t) ̸= lim
t→0+

g′2(t).

We will further elaborate on the results presented in [3,
Theorem 3.1] by proving that the set K consists of a finite
number of discrete points and at most, a single Jordan curve.
Additionally, we will establish that domains falling under
the category of nut-like do not encompass critical curves.
Consequently, K will be finite in such domains.

III. THEORETICAL FRAMEWORK-MOVING PLANES
TECHNIQUE

To establish a theoretical framework that supports the
numerical evidence presented later, which is the main con-
tribution of this manuscript, we will start by ensuring the
smoothness, existence, and uniqueness of the solution to the
equation represented by (1). In this regard, we will follow
the standard propositions and lemmas previously described
in Section II of [1], [2], [4].

Proposition 3.1: A solution u to problem (1) exists and
is unique. This solution u is characterized by the following
features: negativity, real analyticity within the domain Ω and
continuity over the closure of Ω, denoted as Ω.
The verification of Proposition 3.1 can be found dispersed
across the specialized texts dedicated to elliptic equations.
Notably, pertinent results regarding existence and uniqueness
can be located in [9, Theorems 8.15 and 12.5]. The analytic
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nature of the solution can be cross-referenced in [17]. For
a more comprehensive exploration of the aspects related to
existence and uniqueness, we advise interested readers to
consult [19, Theorem 1.16]. Let’s initiate with foundational
findings concerning K.

Lemma 3.1: Let Ω ⊂ R2 be a bounded planar domain and
let f ∈ C1(R) be a non-decreasing function with 0 < f(0).
A solution u of equation (1) satisfies ∆u > 0. Additionally,
the Hessian matrix Hu does not vanish anywhere within Ω.
The demonstration closely follows the approach delineated in
Lemma 2 and Corollary 1 of [2]. Furthermore, we draw upon
[3], which presents a slightly broader rendition of Lemma
3.1. The insights from Lemma 3.1 define the critical points
as ”semi-Morse”, locations where the Hessian matrix Hu

remains non-singular. For a more comprehensive understand-
ing, additional insights can be found in [2] and [3].

Proposition 3.2: [1, Proposition 2] A Jordan critical curve
within the domain Ω signifies the absence of simple con-
nectedness in Ω. Moreover, the existence of multiple Jordan
critical curves within Ω is ruled out. In the scenario where
a Jordan critical curve does exist, it will form a solitary,
non-intersecting loop encircling the internal edge of ∂Ω.

When Ω exhibits a smooth boundary, a direct application
of Lemma 3.1 combined with Hopf’s boundary point lemma
(as stated in [18, Theorem 2.8.3]) leads to the conclusion
that u doesn’t exhibit any critical points at the boundary.
Nevertheless, when there are corner points present at the
boundary, the situation undergoes a significant alteration. See
examples 2, 3 and 4.

In the subsequent section, our aim is to prove the non-
existence of critical points that accumulate at the boundary.
When the boundary displays a smooth contour, this assertion
directly stems from the implications of Hopf’s lemma. How-
ever, in situations involving corner points, we are obliged
to employ the moving plane method. For a more detailed
exposition of this technique, we direct interested readers to
the seminal work by Serrin [20].

Lemma 3.2: A critical point on the boundary of the solu-
tion u for equation (1) is necessarily a corner. Moreover,
boundary points are not limit points of K. Therefore, a
compact set S contained within Ω encompasses all interior
critical points of the solution u for (1).

Proof: For p ∈ ∂Ω excluding corners, Lemma 3.1
facilitates the direct application of Hopf’s lemma, leading
to the ensuing assertion:

∂u

∂ν
(p) ̸= 0,

where ∂u/∂ν denotes the outer normal derivative. Conse-
quently, this implies ∇u(p) ̸= 0 and as a result, critical
points cannot accumulate at point p.

Let’s proceed by contradiction. Assume p ∈ ∂Ω is a
corner, and consider (pn)n as a sequence in K converging to
p. As Ω constitutes an annular region with a convex interior
along its outer boundary, for every x sufficiently close to p,
there exists a line L such that Ω(L) ⊂ Ω and Ω∗(L) ⊂ Ω.
Here, Ω(L) stands for the region inside Ω, bordered by L
and ∂Ω, encompassing point p, whereas Ω∗(L) refers to the
mirrored counterpart (reflection) of Ω(L) in relation to L.
Consequently, if n is sufficiently large, we can select L such

that pn ∈ L. Inside Ω∗(L), we introduce the function:

τ(x) = u(x)− u(x∗),

here, x∗ indicates the point x mirrored in relation to the line
L. Upon a simple computation, the following is obtained:
∆τ(x) = f ′(g(x))τ(x), In this context, g(x) ∈ C∞(Ω) that
relies on both u(x) and u(x∗). A straightforward calculation
confirms that τ satisfies:

∆ τ − f ′(g(x))τ = 0 in Ω∗(L),

τ < 0 on ∂Ω∗(L) \ L,
τ = 0 on L ∩ ∂Ω∗(L).

As f ′ is non-negative, applying the maximum principle
we can conclude that τ attains its maximum value on the
boundary ∂Ω∗(L). In other words, τ reaches its maximum
along L. Furthermore, as a consequence of Hopf’s boundary
point lemma:

∂τ

∂η
> 0 on L ∩ ∂Ω∗(L).

Since pn ∈ L, this leads to a contradiction.

IV. PRIMARY FINDINGS

With the necessary groundwork established, we can now
outline the primary results of this research.

Theorem 4.1: If u is the solution to the boundary problem
(1), then its critical set is formed by a finite collection of
individual points and at most, a single Jordan curve.

Proof: According to Lemma 3.2, there exists a compact
set S within Ω that encompasses all internal critical points
of u. Now, consider δ0 positive such that f(−δ0) > 0 and
supS u < −δ0. In the context of 0 < δ < δ0, we define γ
as the level curve −δ of u, that is u(x) = −δ. It’s crucial
to note that γ is composed of precisely two smooth curves,
outlining the edge of an open annular domain denoted as Ωδ .
Next, let’s define:

τ(x) = u(x) + δ, x ∈ Ωδ.

According to Proposition 3.2, there can be at most a single
critical curve.

Now, if we consider h(z) = f(z − δ), we note that
h(0) = f(−δ) > 0. Additionally, since Hu = Hτ in Ωδ , we
can apply Lemma 3.1 to conclude that Hτ does not vanish.
Consequently, the function τ satisfies:

∆ τ = h(τ) in Ωδ,
τ = 0 on ∂Ωδ.

Referring to Theorem [3, Theorem 3.1], we can deduce that
τ has a finite count of isolated critical points and at most,
a single Jordan critical curve. Additionally, it’s noteworthy
that both u and τ have identical critical points within Ωδ .
Outside Ωδ , any critical points of u, if present, are restricted
to the corners.

In case the external edge of a nut-like domain Ω assumes
the shape of a regular convex n-sided figure (regular convex
polygon), the rays ei kπ/n establish axes of symmetry de-
noted as Lk within the domain Ω, where k ranges from 1 to
n. Moreover, these symmetries are reflected in the solution
u for Problem (1). This implies that, for any x within Ω and
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for every k, u(x) is equal to u(x(k)), with x(k) signifying
the reflection of x over the axis Lk.

Theorem 4.2: If Ω is a nut-like domain, then K does not
contain any Jordan curve.

Proof: We will proceed with the proof under the as-
sumption that the outer boundary is a square, which allows
us to describe Ω as follows:{
x = (x1, x2) : ∥x∥2 > r2, −ℓ < x1 < ℓ, −ℓ < x2 < ℓ

}
,

in this context, r and ℓ are constants such that 0 < r < ℓ.
Let R represent the π/4 rotation and define Ω∗ = R(Ω). We
also introduce Q as the intersection of Ω and Ω∗, as depicted
in Figure 1. Now, we can express u∗ = u ◦ R−1 and it’s
worth noting that u∗ satisfies (1) within Ω∗. Examining Q,
we can divide it into 8 congruent regions, as illustrated in
Figure 1. One of these regions, which contains the x2 axis
and lies above the x1 axis, is denoted as E. Additionally,
it’s important to observe that ∂E can be decomposed into
the following components: T1, T2, α and β. In this scenario,
T1 and T2 represent sections along the directions of ei 3π/8

and ei 5π/8, respectively. The parameter α signifies an arc
r ei θ, where θ ∈ (3π/8, 5π/8). The parameter β represents
a section along the line x2 = ℓ line, confined between the
directions defined by ei 3π/8 and ei 5π/8.

We exclude the edges of β in a way that guarantees
R−1(β) ⊂ Ω. Given that u∗(β) = u ◦ R−1(β), Proposition
3.1 indicates the negativity of u∗(x) for x ∈ β. Additionally,
each symmetry axis within the domain Ω also acts as a
symmetry axis for u. Next, let’s define

τ(x) = u(x)− u∗(x),

and notice that:
• τ(x) = 0 on T1 ∪ T2.
• τ(x) = 0 on α.
• τ(x) > 0 on β.

Hence, the conclusion is:

τ ≥ 0 on ∂E.

Subsequently, a simple computation shows that τ satisfies:

∆τ = f ′ (g (x)) τ in E,

here g(x) is a function that depends on τ(x) (i.e., on
both u(x) and u∗(x)). It’s important to note that f ′ (g (x))
remains non-negative throughout the region E. Utilizing
a conventional approach based on the maximum principle
(illustrated for instance in [18, Theorem 2.1.1]), we can infer
that:

τ > 0 in E.

To conclude the proof, let’s consider a contradiction where
a critical curve Γ exists. According to Proposition 3.2, Γ
encircles the inner boundary of Ω, implying the presence of
a point p ∈ Ω ∩ Γ ∩ T1. Notably, at this point ∇τ(p) = 0.
However, employing Hopf’s lemma results in an inconsis-
tency.

To produce graphical representations and perform the ma-
jority of numerical analysis for the solution of the semilinear
equation (1), we utilized the finite element method through
the PDE Toolbox routine within the MATLAB software

T2 T1

E

Q

R−1(E)

x2

x1

Fig. 1. Q and E regions in the proof of Theorem 4.2.

[13]. It is noteworthy that this software is provided by the
university for the benefit of the academic community.

Example 1: In the Equation (1), consider the function
f(z) = 2 + (z − 1)3, where z ∈ (−1, 1). In this case,
we define Ω as an annular region with an outer boundary
represented by a regular pentagon whose vertices lie on the
unit circle and an inner boundary defined by a circle with a
radius of 0.3. Figure 2 illustrates the graph of the solution
u to (1) within this domain, displaying 5 minimum and 5
saddle points, totaling 10 critical points.

Fig. 2. Graph of the solution u in Example 1.

Example 2: Let u represent the solution to equation (1)
within the domain

Ω =
{
(x1, x2) ∈ R2 :

√
3|x1| < 5√

3
− x2, x2 +

5
2
√
3
> 0

}
\
{
(x, y) ∈ R2 : x2

1 + x2
2 < 1/4

}
,

here f(z) = ln(z + 2), z ∈ (−1, 1). Using the MatLab
program, we plotted the solution u. As evident in Figure 3,
there are 3 minimum points and 3 saddle points, totaling 6
critical points.

Examples 1 and 2 support the theoretical result of Theorem
4.2 by demonstrating that the solution to the boundary
problem (1) does not exhibit a critical curve when Ω is a
nut-type domain.
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Fig. 3. Graph of the solution u of Example 2.

V. NODAL SETS AND NUMERICAL CALCULATIONS

In this section we will focus on a specific case of Equation
(1), where f ≡ w is a positive constant. In other words, we
consider the following problem:

∆u = w in Ω,
u = 0 on ∂Ω.

(2)

To characterize the set K, we will utilize an analytical
technique based on the study of nodal sets of directional
derivatives. For θ ∈ S1, let us denote

uθ(x) = ∇u(x) · θ, Nθ = {x ∈ Ω : uθ(x) = 0}.

Observe that for each θ ∈ S1, we have K ⊂ Nθ. Moreover,
if θ and ϕ are two non-collinear directions in S1, then K =
Nθ∩Nϕ. In fact, if x ∈ Nθ∩Nϕ, then ∇u(x) is perpendicular
to both θ and ϕ, hence ∇u(x) = 0 and thus x ∈ K. Keeping
in mind that u satisfies (2), it is clear that the mapping

x → RHu(x)θ, R =

(
0 1
−1 0

)
,

belongs to C(Ω), where R is the π/2-rotation matrix. If
p ∈ Nθ is a regular point of uθ, then Nθ can be locally
parameterized by the solution of the ODE:

x′(t) = RHu(x(t))θ, x(0) = p.

Indeed, ∇uθ = Huθ is orthogonal to the level curve Nθ and
by taking its rotation, we obtain a tangent vector to Nθ. The
aforementioned ordinary differential equation satisfies the
conditions of the Picard’s existence and uniqueness theorem
for initial value problems of ordinary differential equations,
see [16, Theorem 3.1].

Example 3: Let us consider the rectangular region of sides
a and b

Ω =

{
(x1, x2) ∈ R2 : |x1| <

a

2
, |x2| <

b

2

}
,

substituting w ≡ 1 into (2). An explicit formula in terms
of elementary functions for the solution of problem (2) in
this region remains elusive. However, it’s established that
the solution can be represented by a Fourier series:

u(x) =
∞∑

m,n=0

umn cos
( (2n+ 1)πx1

a

)
cos

( (2m+ 1)πx2

b

)
,

where x = (x1, x2) and

umn =
16a2b2(−1)m+n+1

π4(2m+ 1)(2n+ 1)
(
(2m+ 1)2a2 + (2n+ 1)2b2

) .
Since an explicit solution is unavailable, it’s necessary to
obtain information about the critical points through the nodal
curves. It can be observed that in this instance, the nodal
curves intersect at the corners. See Figure 4.

∂Ω

Nπ
4

Nπ
3

N 7π
4

Nπ

Nπ
2

Fig. 4. Nodal sets and corresponding curves of the functions uθ associated
with the solution of Example 3 for various values of θ, with a = 4 and
b = 2.

The subsequent example has been previously employed in
[1, Example 1]; nevertheless, its inclusion at this juncture
is pivotal for two reasons. First, we possess an explicit
expression for the solution to (1). Second, it is meant to
enable a comparison with another example in a nut-like
domain, as demonstrated in Example 2.

Example 4: Let Ω represent the interior region of an
equilateral triangle centered at the origin with a side length
of 2

√
3:

Ω =

{
(x1, x2) ∈ R2 : 0 < x2 + 1, |x1| <

2− x2√
3

}
.

Substituting w ≡ 1 into (2), the solution u is expressed as:

u(x1, x2) =
(x2 + 1)

(
3x2

1 −
(
x2 − 2

)2)
12

.

Upon direct computation, it becomes evident that the gradient
of u, denoted as ∇u, becomes zero at the points (0, 2),
(
√
3,−1) and (−

√
3,−1). These points happen to coincide

with the corners.
Remark 5.1: In figure 4, the color scheme for the nodal

curves of the functions uθ associated with the solution of
Example 3 is as follows: the black line denotes the boundary
∂Ω, the red line represents the nodal set Nπ , the orange line
corresponds to Nπ

2
, the pink line indicates Nπ

3
, the gray line

represents N 7π
4

, and the green line denotes Nπ
4

.
In figure 5, the color scheme for the nodal curves of the

functions uθ associated with Example 4 is as follows: the
black line denotes the boundary ∂Ω, the red line represents
the nodal set Nπ , the orange line corresponds to Nπ

2
, the

gray line indicates N 7π
6

, the pink line represents Nπ
3

, the
brown line denotes N 15π

9
, and the blue line represents the

line defined by x2 = −1√
3
x1. It is important to note that the

nodal lines intersect at the vertices and at the centroid of the
triangle, where the function reaches its minimum.
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∂Ω
N 7π

6
N 15π

9

Nπ
3

Nπ

Nπ
2

Fig. 5. Nodal sets and curves of the functions uθ associated with Example
4 for various values of θ, with intersections at the vertices and centroid of
the triangle.

Let’s delve into the local structure of Nθ near a critical
point of uθ. If u satisfies (2), note that uθ is harmonic, i.e.,
∆uθ = 0. A harmonic function can be approximated by
harmonic polynomials. Particularly, from [6, Lemma 2.1], it
follows that the nodal lines of a harmonic function can be
approximated by those of a harmonic polynomial of degree
m, where its nodal set consists of m straight lines intersecting
at the origin and forming an equiangular system of 2m rays.

Lemma 5.1: If u satisfies (2) with w > 0, then u is a
semi-Morse function. Therefore, given a point q ∈ K, there
exists at most one direction θ such that q is a critical point
for uθ .

Proof: ∆u > 0, then u is a semi-Morse function and
∇uθ = Hu(q)θ.

Lemma 5.2: Suppose that u satisfies (2) with w > 0. If
for some θ, Nθ contains a Jordan curve Γ ⊂ Ω, then the
subregion of Ω inside Γ is not simply connected.

Proof: Let ΩΓ denote the subregion of Ω contained
within Γ. In the case where ΩΓ is simply connected, we
would expect Γ to coincide with the boundary ∂ΩΓ. How-
ever, since uθ is a harmonic function in ΩΓ and satisfies
uθ = 0 on Γ, it would imply that uθ identically vanishes
throughout ΩΓ. Nevertheless, due to the analyticity of u, this
would mean that uθ must vanish over the entire domain Ω,
thereby contradicting Hopf’s boundary point lemma.

As per Theorem 4.1, it’s established that K consists of a
limited set of individual points and a finite count of Jordan
curves. Additionally, the presence of an analytic Jordan curve
within the critical set indicates that the domain Ω cannot be
simple connected.

A. Numerical Examples

This section presents a collection of numerical examples
that illustrate the investigation of the critical set of equations
(2), showcasing significant original and unpublished contri-
butions.

Example 5: Considering that Ω is the circle of radius R,
we can easily characterize the set K by explicitly writing the
function u as follows:

u(x1, x2) =
w

4
(x2

1 + x2
2 −R2).

In this case, there is a unique critical point, and we have
K = (0, 0).

Example 6: For 0 < r1 < 1, let us consider the case of
a concentric ring, Ω = {x ∈ R2 : r1 < ∥x∥ < 1}. We can
switch to polar coordinates using the transformation:

urr +
1

r
ur +

1

r2
uθθ = w in Ω,

u(r1, θ) = 0, on ∂Ω,
u(1, θ) = 0, on ∂Ω,

(3)

and we look for a radially symmetric solution, u(r, θ) =
u(r). For this situation, we need to solve the following
ordinary differential equation (ODE):

d2u

dr2
+

1

r

du

dr
= w in Ω,

u(r1) = u(1) = 0 on ∂Ω,

which leads to the solution:

u(r, θ) = u(r) =
w

4 ln r1

(
(r2 − 1) ln r1 + (1− r21) ln r

)
.

In this case the critical set is a curve, that is K ={
x ∈ R2 : ∥x∥2 =

r21 − 1

2 ln(r1)

}
.

Fig. 6. Graph of the solution of equation (3) with r1 = 1/2 and w = 1
in Example 6, indicating the minimum value on the critical curve.

Remark 5.2: Examples 5 and 6 highlight the significance
of a seemingly small variation in the domain Ω, which results
in a remarkable impact on the set K. Instead of being a
single point, the set undergoes a substantial transformation
and becomes a Jordan curve.

Moreover, consider 0 < r1 < 1, ur1 as the solution from
Example 6, and u as the solution from Example 5 with R =
1. It can be observed that:

ur1 → u pointwise, as r1 → 0.

Similarly, this convergence behavior is observed for the
corresponding set K.

Example 7: Let’s consider an ϵ-perturbation in the har-
monic part of the solution presented in Example 6.

u(x1, x2) =
w

8

(
2(r2 − 1) +

1− r21
ln r1

ln(r2 + ϵ2 − 2x1ϵ)
)
,

where r2 = x2
1 + x2

2, let’s examine the level curve Γ =
{(x1, x2) ∈ R2 : u(x1, x2) = 0}. We define Ω as the
connected region bounded by Γ, indicating that Γ = ∂Ω.
Notably, it is important to observe that Ω is dependent on
the parameters r1 and ϵ.

The three nodal lines, denoted as Nπ
4

, Nπ and Nπ
2

,
intersect only at two interior points within Ω. As stated
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earlier, the condition K = Nθ∩Nϕ remains valid when θ and
ϕ are non-collinear, indicating that the critical set consists
solely of these points. Refer to Figure 7 for a representation.

∂Ω
Nπ

4

Nπ

Nπ
2

Fig. 7. Nodal sets and curves of the functions uθ associated with the
solution in Example 7 for various values of θ. Parameters: w = 1, ϵ = 1

5
,

and r1 = 1
10

.

Remark 5.3: Although an explicit expression for the so-
lution of (2) is unknown when Ω = B(0; 1) \ {(x1, x2) ∈
R2 : (x1 − ϵ)2 + x2

2 = r21}, Example 7 provides insight into
the behavior of the critical set for such a solution.

Example 8: If

u(x1, x2) = w
x2
2

2
+3x4

1−x3
1x2−18x2

1x
2
2+x1x

3
2+3x4

2−
1

125
,

let’s define Ω as the connected interior region of ∂Ω =
{(x1, x2) ∈ R2 : u(x1, x2) = 0}. Through a simple
calculation, it can be observed that u satisfies (2). It is

∂Ω

Nπ
4 Nπ

Nπ
2

Fig. 8. Nodal sets and curves of the functions uθ associated with the
solution in Example 8 for various values of θ. Here, w = 2.

noteworthy that by calculating the nodal lines (Figure 8),
we can conclude the following:

K = {(x1, x2) ∈ Ω : ∇u(x1, x2) = 0} = {(0, 0)},

while the Hessian matrix Hu(x1, x2) is given by:(
36x2

1 − 6x1x2 − 36x2
2 3x2

2 − 72x1x2 − 3x2
1

3x2
2 − 72x1x2 − 3x2

1 w − 36x2
1 + 6x1x2 + 36x2

2

)
,

indicating that Hu(0, 0) is a singular matrix.
Remark 5.4: It is important to observe that the function u

in Example 8 takes the form:

u(x1, x2) = w
x2
2

2
+Q(x1, x2),

where Q is a homogeneous harmonic polynomial of degree
4. The polynomial Q is obtained by appropriately combining
the real and imaginary parts of (x1 + ix2)

4. Note that in
Example 6, each critical point is degenerate; however, in that
case, it corresponds to a curve rather than an isolated point.

Example 9: Now, we will consider two perturbations
ϵ1, ϵ2 in the harmonic part of the solution in Example 6.

u(x) =
w

8

[
2(r2 − 1) +

1− r21
ln r1

(
ln(r2 + ϵ21 − 2x1ϵ1)+

ln(r2 + ϵ22 − 2x1ϵ2)
)]

,

where x = (x1, x2) and r2 = x2
1+x2

2. As before, let us con-
sider the level curve Γ = {(x1, x2) ∈ R2 : u(x1, x2) = 0}.
We define Ω as the connected region with Γ as its boundary,
specifically Γ = ∂Ω. Once again, it is worth noting that
Ω depends on the parameters r1, ϵ1 and ϵ2. By calculating
the nodal lines, we observe that K consists of 5 points. See
Figure 9 for reference.

∂Ω

Nπ
4

Nπ

Nπ
2

Fig. 9. Nodal sets and curves of the functions uθ associated with the
solution in Example 9 for various values of θ. Parameters: w = 1, ϵ1 =
ϵ2 = 1

3
, and r1 = 1

20
.

Remark 5.5: In figures 7, 8, 9, and 10, the following color
scheme is used to represent the curves and points: the black
line denotes the boundary ∂Ω, the red line corresponds to the
nodal set Nπ , the blue line represents the nodal set Nπ

2
, and

the green line indicates Nπ
4

. Gray points mark the critical
points.

Example 10: Finally, let us consider four perturbations in
the harmonic part of the solution in Example 6.

u(x) =
w

8

[
2(r2 − 1)+

1− r21
ln r1

(
ln(r2 + ϵ21 + 2x2ϵ1)

+ ln(r2 + ϵ21 − 2x2ϵ1)
+ ln(r2 + ϵ22 − 2x1ϵ2)

+ ln(r2 + ϵ22 + 2x1ϵ2)
)]

,

where x = (x1, x2) and r2 = x2
1 + x2

2, Γ = {(x1, x2) ∈
R2 : u(x1, x2) = 0}. We define Ω as the connected region
with Γ as its boundary, such that Γ = ∂Ω. By calculating
the nodal lines, we observe that K is comprised of 13 points,
see Figure 10.
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∂Ω

Nπ
4

Nπ

Nπ
2

Fig. 10. Nodal sets and curves of the functions uθ associated with the
solution in Example 10 for various values of θ. Parameters: w = 1, ϵ1 =
ϵ2 = 1

2
, and r1 = 1

50
.

VI. CONCLUSION

As shown in Theorem 4.2, the set K is finite in the
case of Ω being a nut-like domain. While it’s relatively
straightforward to confirm that any symmetry axis in an
annular domain must possess at least two critical points, the
demonstration that a nut-like domain bounded by an n-sided
figure has precisely 2n critical points remains an unresolved
inquiry. We present the following conjecture: The solution to
(1) has precisely 2n critical points within nut-like domains.
Furthermore, we posit that, in the two-dimensional scenario,
only concentric annuli display a critical curve.

Notably, the only documented instances of problem (1)
having a critical curve arise exclusively when Ω is structured
as a concentric annulus. Based on numerical findings and
various specific instances (explored in [2]), we conjecture
that, given the assumptions about Ω and f in this study,
the concentric ring stands as the only domain where the
solution to (1) exhibits a critical curve. In [4], the equation
(1) is studied in a three-dimensional domain, specifically a
solid of revolution. In [4, Theorem IV.1], it is demonstrated
that the solution has exactly one critical curve in this three-
dimensional setting.

The document contributes to the understanding of the
critical set in the context of the equation (1) and provides a
clear and detailed description of its structure. These results
are of interest in both pure and applied mathematics, as
elliptic equations have numerous applications in various
areas such as differential geometry, elasticity theory and fluid
mechanics.

The reader is alerted to the fact that in this study, the
problem (2) is not directly solved in a disk with two or four
holes, but rather a perturbation is introduced to the solution
of problem (2) in the concentric ring, thereby creating a
domain with a geometry that is ”similar” to a circle with
two or four holes. Furthermore, through various additional
calculations (not presented here), numerical evidence was
found that when an even (odd) number of perturbations was
introduced to the solution, an odd (even) number of critical
points was obtained. This leads to the conjecture that the
number of critical points of the solution to (2) in multiply
connected domains depends on the number of ”holes” in the
domain: an even (odd) number of holes produces an odd

(even) number of critical points.
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