
 

  

Abstract—A new adaptive fuzzy control scheme is proposed 

to solve the uncertainty and input dead-time problems of 

nonlinear systems. Firstly, based on the system error signal, the 

state equation combining the input dead zone and the nonlinear 

model is established. The complex calculation. The nonlinear 

dead zone is approximated to a time-varying system by means 

of the mean value theorem. Then, on the basis of this 

approximation, the differential evolution algorithm (DEA) is 

used to identify the optimal parameters of the fuzzy model, so 

that the adaptive fuzzy model can approximate the unknown 

uncertain part and the dead zone of the nonlinear system. In 

addition, an adaptive term is introduced into the controller 

structure to compensate the approximation error of the fuzzy 

system. Finally, based on Lyapunov stability theory, the 

proposed control scheme guarantees the boundedness of all 

closed-loop signals and the convergence of tracking errors to 

zero. 

Index Terms—Nonlinear systems, Differential evolution 

algorithm, Input dead-zone, Adaptive fuzzy control, Sliding 

mode control, Fuzzy logic 

I. INTRODUCTION 

SSUES such as dead-zone nonlinearity, parameter 

uncertainties, and external disturbances are prevalent in 

nonlinear systems [1]-[6]. These factors significantly 

impacted system performance, posing challenges for control. 

In recent years, many scholars devoted themselves to 

mitigating the effects of these nonlinearities on control 

systems, achieving significant progress [7]-[12]. Addressing 

such issues: [13] proposed a neural network event-triggered 

finite-time consensus control method for uncertain nonlinear 

multi-agent systems with dead-zone inputs and actuator 

failures. The paper established an input dead-zone model and 

utilized backstepping and radial basis function neural 

networks to construct a compensating controller to offset the 

effects of dead-zone input, aiming to eliminate the adverse 

impact of dead-zone input. However, the modeling of some 

nonlinear functions was overly idealized and did not fully 

reflect the complex situations of actual systems. [14] 

investigated the output feedback robust stabilization problem 

 
Manuscript received April 11, 2024; revised November 6, 2024. 
This work was supported by the National Natural Science Foundation of 

China (61772247), the industry-Academia-Research Cooperation Projects of 

Jiangsu Province (BY2022651), the Key Foundation projects of Lishui 
(2023LTH03), Discipline Construction Project of Lishui University 

(Discipline Fund Name: Mechanical Engineering).  
Rui Chen is a postgraduate student in the School of Mechanical 

Engineering at Zhejiang Sci-Tech University, Hangzhou 310018, P. R. 

China (email: cr1716707642@126.com). 
Zhangping You is a professor at Lishui University, Lishui 323000, P. R. 

China (e-mail: 44536388@qq.com) 
Wenhui Zhang is a professor at Nanjing Xiaozhuang University, Nanjing 

211171, P. R. China (corresponding author to provide phone: 

+86-18268906955; e-mail: hit_zwh@126.com). 
 

of nonlinear systems with asymmetric dead-zone in actuators 

and uncertain nonlinearities. A robust control scheme was 

proposed to replace constructing a dead-zone inverse, 

involving the creation of an input-driven observer that 

employed scaling gains to control the nonlinear terms. Based 

on the non-separation principle and backstepping method, a 

time-varying smooth output feedback controller was derived 

to ensure global asymptotic stability of the closed-loop 

system. [15] studied the adaptive state feedback quantized 

control problem of a class of switching nonlinear systems 

with unknown asymmetric actuator dead-zone and multiple 

inputs multiple outputs (MIMO). A new approximation 

model was proposed to handle the coupling between 

quantizers and dead-zone, and corresponding robust adaptive 

control laws were designed to eliminate these nonlinear terms. 

Additionally, the paper adopted a direct neural control 

scheme to significantly reduce the number of adaptive 

control laws and proposed an adaptive control scheme based 

on the backstepping method to ensure system performance. 

Because the radial basis function neural networks could be 

used to approximate unknown functions and utilized 

input-driven filters to estimate unmeasurable states [16]-[22]. 

[23] primarily investigated the neural network adaptive 

output feedback control problem of nonlinear systems with 

dead-zone outputs and unmeasurable states. The use of 

Nussbaum functions addressed the uncertainty in virtual 

control coefficients caused by dead-zone in the output 

mechanism. [24] addressed the design of a quantized 

controller for uncertain nonlinear systems with unknown 

disturbances and unknown dead-zone nonlinearity. By 

estimating the maximum upper bound of disturbances instead 

of each disturbance individually, the designed controller 

could simultaneously handle system uncertainties, unknown 

disturbances, and unknown dead-zone nonlinearity. The 

stability of the closed-loop system was finally proven. [25] 

proposed an adaptive dynamic surface control scheme based 

on interval type-2 fuzzy logic systems (IT2FLS) for uncertain 

nonlinear systems with dead-zone inputs and unknown gains. 

The dead-zone nonlinearities were represented as 

time-varying systems with bounded disturbances. The 

approach utilized fuzzy systems to approximate unknown 

nonlinear dynamics and introduced adaptive terms to 

compensate for the effects of disturbance-like terms in 

dead-zone constraints. A dynamic surface control (DSC) 

scheme based on IT2FLS and dead-zone models was 

designed, and adaptive laws for parameters were obtained. 

[26] dealt with a class of fractional-order multiple inputs 

multiple outputs nonlinear dynamic systems with dead-zone 

inputs. It combined backstepping dynamic surface control 

with fractional-order adaptive type-2 fuzzy technology to 

construct a control scheme. Interval type-2 fuzzy logic 
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systems were used to approximate unknown nonlinear 

functions in uncertain multiple inputs multiple outputs 

systems. To achieve better control performance in reducing 

tracking errors, particle swarm optimization was employed to 

tune controller parameters. 

In summary, this paper explores an adaptive fuzzy sliding 

mode control (AFC) approach for a category of uncertain 

nonlinear single input single output (SISO) systems with 

dead-zone input. The proposed method exhibits enhanced 

performance and greater accuracy in effectively managing 

nonlinear and uncertain single input single output systems 

characterized by dead-zone input, exemplified by the 

nonlinear single-joint robotic arm system studied. The 

contributions of this paper are outlined as follows: 

1.The proposed control method addresses the tracking 

control problem of single input single output uncertain 

nonlinear systems with unknown dead-zone. Unlike most 

AFC algorithms that focus solely on tracking control of 

nonlinear systems without considering dead-zone input, this 

paper addresses the dead-zone input issue on the basis of 

uncertain nonlinear systems, making the designed controller 

more practical and universally applicable. 

2.The fuzzy model with optimal parameter selection is 

identified using the DEA, which is used to approximate 

unknown uncertainties and functions of the studied nonlinear 

single input single output system. The adaptive laws of the 

AFC algorithm are redesigned based on input dead zones and 

nonlinear systems. 

3. The DEA is employed to optimize the fuzzy system for 

better approximation in accordance with the designed 

controller. 

The organization of this paper is as follows. Section 2 

presents the problem statement, section 3 describes nonlinear 

dead-zone and their characteristics, section 4 proposes a new 

AFC controller, including the optimization of fuzzy 

approximation of unknown functions using the DEA, 

adaptive laws of the AFC algorithm, and stability analysis. 

To validate the propositions, numerical examples and 

simulation results are provided in section 5. Finally, 

conclusions are drawn in section 6.  

II. PROBLEM STATEMENT 

The general expression for a nonlinear SISO system of 

order n is as follows: 
( ) ( , ) ( , ) ( )nx f x t g x t u t

y x

 = +


=
       (1) 

Here, ( , )g x t and ( , )f x t are unknown but bounded 

non-linear functions; ( , )g x t  is nonzero function; y  is 

output of investigated system, ( )u t is control input; 

( 1)[ , , ... ]n Tx x x x x −=  is state vector of the system. 

The control goal is to design a stable control law so that 

state x  can stably track the reference signal 
dx . The tracking 

error is defined as follows: 
( 1)[ , ,... ]n

de x x e e e R−= − =     (2) 

The sliding surface is defined as: 
2 1

1 2 1... n n

ns c e c e c e e− −

−= + + +    (3) 

Here, 1 2 3 1[ , , ... ]T

nc c c c c −= represents the coefficients that 

pass the Routh-Hurwitz stability condition.  

Take the derivative of equation (3): 
1

1 2 1... n n

ns c e c e c e e−

−= + + + +  

1
( ) ( )

n
i n

i

i

c e e
−

= +   

1
( ) ( ) ( )

n
i n n

i d

i

c e x x
−

= + −               (4) 

For satisfying Lyapunov stability theory, the definition is 

as follows: 

( )s s sign s


= −                                                                (5) 

Here, ( , )f x t , ( , )g x t  are assumed to be known, the 

sliding mode control law is given by: 

( )s s sign s


= −  , 0  , 0 1  , the stable sliding mode 

control law can be described as: 
1

( ) ( )1
( ) ( , ) ( )

( , ) d

n
i n

i

i

u t c e f x t x s sign s
g x t




− 
= − − + − 

 
   (6) 

In practical applications, ( , )f x t and ( , )g x t  are often 

unknown nonlinear functions, making it challenging for 

sliding mode controllers (SMC) to achieve stable control in 

systems with unknown functions. To address this issue, the 

following proposes an AFC to resolve such problems. 

III. NONLINEAR DEAD-ZONE AND ITS CHARACTERISTICS  

As shown in Fig. 1, ( )u t is the output signal of the 

following dead-zone nonlinearity. 

( ) ( )

( ( )) 0 ( )

( ) ( )

r r

l r

l l

g v if v t b

ut G v t if b v t b

g v if v t b




= =  
 

  (7) 

Here, ( )v t denotes the dead-zone input (actual control 

signal), ( )rg v , ( )lg v denotes the unknown smooth nonlinear 

function, and 
lb ,

rb represents the unknown dead-zone width 

parameter, without loss of generality, assuming 0, 0l rb b  , 

the input-output characteristics of the dead-zone are depicted 

in the figure below. 

 
Fig. 1.  Nonlinear dead-zone 

 

The literature suggests that dead-zone nonlinearity may 

encompass diverse scenarios, including linear, symmetric, 

and asymmetric dead-zones. Moreover, the dead-zone 

function ( )lg v and ( )rg v  is continuous. Here, the 

characteristic parameter 
lb , 

rb signifies the break point of the 

input dead-zone. To streamline controller design, this section 

initially introduces the following assumptions. 
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Assumption 1: For the smooth function ( )lg v  and ( )rg v , 

there exist unknown positive constants 

0 ( )lg v ,
1( )lg v ,

0 ( )rg v and
1( )rg v such that: 

0 10 'l l lg g g   , ( , ]lv b  − and
0 10 'r r rg g g   ,

[ , )rv b  +  . 

Here, ' ( ) ( ) / |l l z vg v dg z dz == and ' ( ) ( ) / |r r z vg v dg z dz == . 

Due to ( ) ( ) 0l l r rg b g b= = , according to the mean value 

theorem, there exist ( , )l lb  − and ( , )r rb  +  such that 

( ) ( ) ( )l l l lg v g v g b= −   

' ( )( ), ( , ]l l l lg v b v b= −   −   (8) 

( ) ( ) ( )r r r rg v g v g b= −   

' ( )( ), [ , )r r r rg v b v b= −   +   (9) 

From the above equation, it can be derived that 

( ) ' ( )( ), ( , ]l l l l rg v g v b v b= −   −   (10) 

Here, ' ( , ]l lb  −  

( ) ' ( )( ), ( , ]r r r r rg v g v b v b= −   +   (11) 

Here, ' ( , ]l lb  −  

From the above equation and Assumption 1, the dead-zone 

can be rewritten as: 

( ) ( ) ( ) ( ), 0u t t v t t t = +     (12) 

Here, | ( ) | Nt  ,
1 1( )max{ , } 0N r l r lg g b b = + −  . 

( ) ( ) ( )r lt t t  = +                                                              

(13) 

Here, 

' ( ) ( )
( )

0 ( )

r r l

r

l

g if v t b
t

if v t b





= 


  (14) 

' ( ) ( )
( )

0 ( )

l l r

l

r

g if v t b
t

if v t b





= 


  (15) 

' ( ) ( )

( ) [ ' ( ) ' ( )] ( ) ( )

' ( ) ( )

r r r r

r r l l l r

l l l l

g b if v t b

t g g v t if b v t b

g b if v t b



  



− 


= − +  
 − 

  (16) 

The system state equation can be rewritten as: 
( ) ( , ) ( , )[ ( ) ( ) ( )]nx f x t g x t t v t t

y x

  = + +


=
  (17) 

IV. PROPOSED ADAPTIVE FUZZY SLIDING MODE CONTROL 

This section presents an AFC design tailored for nonlinear 

systems with input dead-zone. The proposed controller 

scheme, depicted in Fig. 3, employs the DEA to optimize 

parameters of the fuzzy model, facilitating approximation of 

unknown functions such as ( , )f x t , ( , )g x t , ( , )x t and 

( , )x t . Additionally, by incorporating fuzzy logic, an 

adaptive law has been designed to minimize the impact of the 

error term and striving to eliminate this error to achieve the 

system's asymptotic stability. 

A. Optimization of T-S Fuzzy Approximation of Unknown 

Functions Using Differential Evolution Algorithm 

To implement the proposed algorithm, it is essential to 

identify the functions ˆ ( , )f x t , ˆ( , )g x t , ˆ( , )x t and ˆ( , )x t in 

advance. In this study, the fuzzy model was employed to 

represent the functions ˆ ( , )f x t , ˆ( , )g x t , ˆ( , )x t and ˆ( , )x t  

with the parameters of the fuzzy model optimized using the 

DEA.  

 
Fig. 2.  Flowchart of the differential evolution algorithm 

 

The fuzzy models utilized for approximating the function 

ˆ ( , )f x t , ˆ( , )g x t , ˆ( , )x t and ˆ( , )x t  are concurrently trained. 

The objective is to ascertain the function ( )

*
ˆ nx that best 

matches ( )nx . Subsequently, the cost function is defined as: 

( ) ( )

1

1
ˆ( )

N
n n

n

J x x
N =

= −                    (18) 

In this study, the DEA is employed to accurately determine 

the parameters of the fuzzy model. The flowchart illustrating 

the DEA is presented in Fig. 2. 

 

Initialization   

The initial vector consists of NP randomly selected 

D-dimensional elements, ensuring comprehensive coverage 

across the parameter space 

, 1, , 1, , , ,[ , ... ]i G i G i G D i GX x x x=          (19) 

Here, G  is the number of generations, 

max0,1...,G G=  , 1,2,...,i NP= . 

 
Mutation 

the differential evolution generates new parameter vectors 

by employing a mutation operation, which involves adding 

the weighted difference between two population vectors to a 

third vector. For each target vector ,i Gx , a mutant vector is 

generated in accordance with this operation. 

, 1 1, 2, 3,( )i G r G r G r Gv x F x X+ = + −   (20) 

Here, 
1 2 3, , 1,2,...r r r NP . 

The randomly chosen values 
1 2 3, ,r r r  are distinct from the 

running index i . With  0,2F  representing a real and 

constant coefficient. 
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Fig. 3.  Scheme of the proposed adaptive fuzzy sliding mode control adaptive fuzzy sliding mode control system 

 

Crossover    

Following vector generation through mutation, the 

crossover step is executed to enrich the diversity within the 

population. During this step, the donor vector exchanges its 

components with the target vector ,i GX to produce the trial 

vector 
, 1, , 2, , , ,[ , ... ]i G i g i g D i gU u u u=  . The DEA commonly 

employs the binomial crossover method, which can be 

outlined as follows: 

, , ,

, ,

, ,

( [0,1] )j i G j i

j i G

j i G

v if rand C
u

v otherwise


= 


  (21) 

The selection process determines whether the target vector 

,i GX should be included in the next generation ( 1)G + . This 

determination is made by comparing the target vector
,i GX  

with the trial vector  
,i GU , and the one exhibiting a lower 

function value is retained for advancement to the subsequent 

generation. The selection operation is outlined as follows: 

, , ,

, 1

,

( ) ( )i G i G i G

i G

i G

U if f U f X
X

X otherwise
+

 
= 



  (22) 

 

Termination  

The termination criterion for DEA is as follows: The 

algorithm ceases operation when any of the following 

conditions are met: the maximum generation count is reached, 

a best fitness value lower than the specified target fitness is 

achieved, or there is no improvement in the best fitness value 

over an extended period. 

B. Proposed Adaptive Fuzzy Sliding Mode Control 

 To address these issues, certain methodologies have 

advocated for the implementation of an adaptive sliding 

mode controller through the approximation of the unknown 

functions ( , )f x t , ( , )g x t , ( , )x t and ( , )x t . Then, the 

state-space model can be formulated as follows: 
( )

*
ˆ ˆ ˆˆ ˆ( , ) ( , )[ ( ) ( ) ( )]

ˆ ˆ

n

x f x t g x t t v t t

y x

  = + +


=

  (23) 

The fuzzy sliding mode control law can be designed as 

follows: 
1

( ) ( )1 ˆ( , )
ˆ ˆ( ) ( , ) d

n
i n

FSMC i

i

v c e f x t x
t g x t

−
= − − +


   

ˆ ˆtanh( ) ( ) ( , )K s t g x t− −   (24) 

Here, ˆ ( , )f x t , ˆ( , )g x t , ˆ( , )x t and ˆ( , )x t are estimated by 

fuzzy-based model. 

As a strategy to mitigate the occurrence of chattering 

phenomena, the utilization of the ( )sign  function in the 

control law is substituted with a saturation function 

tanh( )
s s

s s

e e
s

e e

−

−

−
=

+
                                   (25) 

The hyperbolic tangent function possesses the following 

property: tanh(s) 1 use the hyperbolic tangent function 

enables boundedness of control inputs. 

In practical applications, the estimation functions 

( , )f x t , ( , )g x t , ( , )x t and ( , )x t  based on fuzzy models 

cannot accurately approximate the functions ( , )f x t , ( , )g x t , 

( , )x t and ( , )x t due to external disturbances, uncertainties, 

and the precision of the identification models. The modeling 

errors are defined as follows: 
* ( ) ( )

*
ˆn n

me x x= −                            (26) 

Based on the above equation, the fuzzy sliding mode 

control law can be rewritten as follows: 
1

( ) ( )1
( , )

( , ) ( , ) d

n
i n

FSMC i

i

v c e f x t x
x t g x t

−
= − − +


   

*tanh( ) ( ) ( , ) mK s t g x t e − − −    (27) 
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The fuzzy sliding mode control law incorporates an 

additional term denoted as *

me  in its formulation, under the 

assumption that *

me  . Here,   is sufficiently small to 

ensure the stability of the closed-loop control system, the 

system may exhibit stability, albeit with the possibility that 

the tracking error may not asymptotically converge to zero. 

To establish the asymptotic stability of the closed-loop 

system, the elimination of the term *

me   is warranted. 

To address these problems, the AFC algorithm is 

introduced, which leverages the Takagi-Sugeno fuzzy logic 

system for the approximation of ( , )f x t , ( , )g x t , ( , )x t  

and ( , )x t combined with Mamdani fuzzy logic for adaptive 

law. 

An adaptive fuzzy law(
FAv ) is proposed to ensure that the 

error of the fuzzy model approaches zero within predefined 

bounded conditions. The state-space model added with 

adaptive fuzzy law is described as: 
( ) ˆ ˆ ˆˆ ˆ( , ) ( , )[ ( ) ( ) ( )]

ˆ ˆ

n

FAx f x t g x t t v t t v

y x

  = + + +


=

  (28) 

Consider the control law of the nonlinear system 

presented . Here, ( , )f x t , ( , )g x t , ( , )x t and ( , )x t  are 

estimated by fuzzy-based model; 
FAv  is adaptive function. 

The proposed AFC law can be defined as: 
1

( ) ( )1 ˆ( , )
ˆ ˆ( ) ( , ) d

n
i n

AFSMC i

i

v c e f x t x
t g x t

−
= − − +


   

ˆ ˆ( ) ( ) ( , ) FAKsign s t g x t v− − −   (29) 

The error of model is defined as: 
( ) ( )ˆn n

me x x= −   

( ) ˆ ˆ ˆˆ( , ) ( , )[ ( ) ( ) ( )]n

FAx f x t g x t t v t t v = − − + −   (30) 
( )( ) ( ) ( ) *

*
ˆ ˆ

n

m

n n n

m FA FAe x x x x u e v= − = − − = −   (31) 

Here, * ( ) ( )

*
ˆn n

me x x= −  with 
me representing the derivative 

of 
me  . It can be rewritten as: 

*

mm FAe e v= −                               (32) 

Choosing the derivative of 
me  to satisfy the Lyapunov 

stability concept is proposed: 

( )m A me K sign e= −                      (33) 

Here, AK is positive value. 

Substitute the equations (32) into (33): 
* ( )m FA A me v K sign e− = −              (34) 

Assumption 2: Assuming both
*

FA mv e  and 

( ) ( )FA msign v sign e=  hold true. 

Theorem: In addressing the control problem posed by 

nonlinear system (1), ( , )f x t , ( , )g x t , ( , )x t and 

( , )x t propose a control law 
AFSMCv . This approach involves 

the estimation process facilitated by fuzzy modeling and 

optimization employing evolutionary algorithms, operating 

under the assumption of *

FA mv e and ( ) ( )FA msign v sign e= . 

Consequently, it is anticipated that the signals of the 

closed-loop system will remain bounded, with the tracking 

error asymptotically converging to zero. 

Proof: Assume that the
FAv  is chosen as *

FA mv e and 

( ) ( )FA msign v sign e= . From equations (34), the following 

results are obtained: 
*( ) ( )
mFA FA A msign v e v K sign e− − = −   (35) 

*

m FA Ae v K− =                              (36) 

Therefore, assuming the hypothesis is valid, 

( )m A me K sign e= −  satisfies the condition. 
me  has different 

sign with
me . 

The state-space model is designated as 
AFSMCv . Taking the 

derivative with respect to the sliding surface yields: 
1

( ) ( ) ( )
n

i n n

i d

i

s c e x x
−

= + −   

1
( ) ( ), ( , )[ ( ) ( ) ( )]

n
i n

i d

i

c e f x t g x t t v t t x 
−

= + + + − （ ）   

1 1
( ) ( ), ( , )[ ( ) ( ) ( )]

n n
i i

i i

i i

c e f x t g x t t v t t c e 
− −

= + + + − （ ）   

 ˆ ˆ ˆˆ ˆ( , ) ( ) ( , ) ( , ) ( ) ( ) ( )FAf x t t g x t g x t t v t v ksign s − − − − −   

ˆ ˆˆ( ( , ) ( , )) ( ( , ) ( ) ( , ) ( )) ( )f x t f x t g x t t g x t t v t = − + −   

ˆ ˆ( ( , ) ( ) ( ) ( , )) ( )FAg x t t t g x t v ksign s + − − −   

* ( )m FAe v ksign s= − −   

( )me ksign s= −                                (37) 

Consider the Lyapunov function candidate: 

2 21 1

2 2
mV s e= +                           (38) 

The time derivative of V gives: 

m mV ss e e= +   

( ( )) ( )m m A ms e Ksign s e K sign e= − −  

m A mse K s K e= − −              (39) 

Since ( )m A me K sign e= − , it follows that  0me → when 

t →  .Then, 0V  when t →  . The closed-loop system 

signals will be bounded and the tracking error will converge 

to zero asymptotically. 
TABLE I 

ADAPTIVE FUZZY RULES 

 me    

 N  ZO  P  

FAv  N  ZO  P  

 

To approximate the adaptive function
FAv , a fuzzy model 

will be utilized due to the complexity arising from multiple 

derivative terms and intricate higher-order derivatives. The 

proposed fuzzy function must maintain relative simplicity 

while ensuring Lyapunov stability. Utilizing
me as input and 

FAv as output, it functions as the primary fuzzy rule for the 

AFC. The selection of fuzzy rules is delineated according to 

Table 1. (N = negative, ZO = zero, P = positive), ensuring the 

validity of ( ) ( )FA msign v sign e= . The determination of 

positive (P) and negative (N) values adheres to the 

constraint *

FA mv e . 
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V. SIMULATION AND DISCUSSION 

After completing the research and stability analysis of the 

fuzzy sliding mode control algorithm, to further demonstrate 

the effectiveness and feasibility of the control algorithm, 

numerical simulations were conducted using a single-joint 

robotic arm model. The mathematical state-space equations 

for the single-joint robotic arm system are as follows: 

1 2

2 2 1 1 2

1 1
cos (1 )

x x

x dx mgl x x x
I I

y x



=



= − + + + +


=

（ ）    (40) 

Here, 
1x =  , 2x =  , 2m =  , 4d =  , 0.4l = ,the initial 

state of the system is  0
10

 
 
 

，  , the initial value of    is taken 

as  0,
1 1k =  ,

2 8k =  , 24

3
I ml= . 

A. Fuzzy Sliding Mode Control System Simulation Analysis 

Based on Differential Evolution Algorithm 

In this section, simulation experiments were conducted to 

evaluate the performance of the proposed control algorithm. 

The results are depicted in Fig. 4 through 7. 

The position trajectory tracking curve is illustrated in Fig. 

4, while the control input signals are depicted in Fig. 5. The 

output curve with dead-zone constraints is presented in Fig. 6, 

and the tracking error curve is shown in Fig. 7. 

From Fig. 4, it can be observed that, with non-zero initial 

values, the designed control algorithm ensures accurate 

tracking of the joint actual trajectory to the desired trajectory 

within 2.3s. Compared to a traditional sliding mode control  

system without DEA optimization, which typically achieves 

similar alignment in about 3.5s, the improvement in response 

speed is notable. This demonstrates the enhanced efficiency 

of the DEA-optimized fuzzy sliding mode control system in 

handling initial state discrepancies. 

Fig. 5 shows that the joint torque output presents periodic 

fluctuations, with the maximum torque output occurring 

approximately every 3.4s. Each cycle includes a vertical 

pulse signal output of about 10 N.m. The maximum joint 

torque output from the AFC based on the DEA is slightly 

lower than that of the fuzzy control system. Although there 

are some fluctuations, the curve demonstrates overall 

stability. 

As can be seen from Fig. 6, the overall torque output 

presents a periodic amplitude change. Due to input dead zone 

constraints, the vertical pulse signal in Fig. 5 transforms into 

a smoother curve, resulting in a stable overall torque output. 

Furthermore, Fig. 7 illustrates that despite the presence of 

uncertainties, input saturation, and frictional nonlinearity, the 

AFC base on DEA exhibits considerable approximation to 

the modeling error. It effectively compensates for most of the 

unmodeled nonlinearities, leading to the joint gradually 

approaching zero within 3s, with minimal oscillation in the 

latter half. This signifies high control precision. In 

comparison, a conventional fuzzy control system without 

DEA optimization demonstrates slower error convergence 

and higher oscillations, reflecting inefficiency in dealing with 

complex uncertainties. 

 
Fig. 4.  Position trajectory tracking curves 

 

 
Fig. 5.  Controller output curve 

 

 
Fig. 6.  Output curve with dead-zone limitation 

 

These findings illustrate that relying exclusively on a fuzzy 

sliding mode controller without incorporating the DEA and 

adaptive fuzzy compensation leads to diminished control 

effectiveness. Moreover, they underscore the significance of 

integrating DEA and adaptive fuzzy compensation to 

enhance control performance. Simulation results indicate that 

the AFC system, optimized by the DEA, effectively manages 

complex nonlinear systems. Although the controller retains 

the capability to track nonlinear systems in the absence of 

DEA and adaptive fuzzy compensation, there is a notable 

reduction in control precision. This observation confirms the 
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effectiveness of the DEA-optimized AFC in managing 

complex nonlinear systems. Importantly, the reduced control 

precision without the DEA and adaptive fuzzy adjustments 

further highlights the necessity of integrating these 

techniques to achieve optimal control accuracy in 

challenging nonlinear environments. 

 
Fig. 7.  Tracking error curve 

The experimental results validate the effectiveness of the 

proposed control algorithm in tracking joint trajectories 

accurately and mitigating the effects of nonlinearities, 

uncertainties, and input saturation. 

VI. CONCLUSIONS 

An AFC based on DEA optimization is proposed for 

nonlinear systems with uncertainties and input dead zones. 

By applying the mean value theorem, the nonlinear dead zone 

is linearly approximated as a simple time-varying system. 

DEA is used to optimally identify the parameters of the fuzzy 

model, which then approximates the unknown uncertainties 

and dead zones. Finally, Lyapunov stability theory ensures 

that all signals in the closed-loop system remain bounded. 

The efficacy of this approach is demonstrated through 

simulation examples.  
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