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Abstract—This paper presents a method for suppressing
disturbances in a category of linear input time-delay sys-
tems under H∞ control. These systems utilize memory state-
feedback and possess direct transfer matrices. In the realm
of linear systems, the use of Equivalent Input Disturbance
(EID) methods has been recognized for their effectiveness in
disturbance suppression. Consequently, the primary objective
is to achieve superior disturbance suppression capabilities
while adhering to the H∞ control performance criterion. The
paper begins by outlining the structure of the linear input
time-delay system and its reliance on the EID methodology.
Subsequently, an EID estimator is refined to ensure optimal
control performance. Stability conditions for the closed-loop
system are then formulated as Linear Matrix Inequalities to
satisfy the H∞ control performance requirements. Additionally,
a controller featuring memory state-feedback is developed. The
efficacy of the presented methodology, along with its advantages
over traditional H∞ control approaches is demonstrated through
numerical and practical examples.

Index Terms—Disturbance Suppression, H∞ Control, Input
Time-delay Systems, Equivalent Input Disturbance, Linear
Matrix Inequalities, Memory State-feedback.

I. INTRODUCTION

D ISTURBANCES and time-delays frequently manifest
in various real-world systems, including network com-

munication, industrial control, transportation systems, and
among others. These time-delays can lead to diminished
control efficacy, increased failure rates and decreased sys-
tem robustness. Consequently, researchers have undertaken
significant efforts to address the challenges posed by distur-
bances and time-delays from these systems [1], [2], [3].

H∞ control theory is a fundamental aspect of control
theories [4], [5] and has emerged as a prominent area of
research in recent years. The primary method of this theory
is to devise an effective controller that declines the impact
of disturbances on the system to ensure the robustness and
stability. As a result, H∞ control plays a critical role in
maintaining optimal control capabilities within the system.
Furthermore, the integration of H∞ control methodology with
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state-feedback has been discussed in previous studies [6], [7].
Studies have shown that memory state-feedback controllers,
as opposed to non-memory state-feedback controllers, ex-
hibit reduced conservatism and improved performance, as
indicated in [8].

Recently, a variety of methods for suppressing distur-
bances have been proposed [9], [10]. One of the most
promising methods is Active Disturbance Rejection Control
(ADRC) technology. ADRC is based on an in-depth analysis
of the Proportional-Integral-Derivative (PID) control method
[11] and one of its core features is focusing on the observer
design and application. The most notable approach is the
control strategy based on Disturbance Observer (DOB) as
referenced in literature [12]. Common observers include the
Extended-State Observer [13], the Sliding-Mode Observer
[14], the Proportional-Integral Observer [15], etc. The pri-
mary principle of DOB methods is to reshape the disturbance
observer and generate a continuous real-time estimation of
the disturbance through it, which is subsequently counter-
acted through system compensation techniques. Neverthe-
less, it is essential for DOB methods to consider the object’s
inverse model beforehand, which may pose significant chal-
lenges for researchers.

To address the aforementioned issue, we integrate H∞

control with Equivalent Input Disturbance (EID) technique
[16], [17], the EID is additionally considered as one of the
technologies utilized by ADRC. It possesses the ability to
both reject matched and unmatched disturbances, in addition
to estimating disturbances. At the same time, there is no need
for a reverse model of the object and previous information
about the disturbance.

Therefore, this paper considers the robust H∞ control in
the context of input time-delay systems when exogenous dis-
turbances exist. To achieve preferable control, a novel control
law has been developed, incorporating the EID estimation.
Besides utilizing memory state-feedback and incorporating
input time-delay, the method involves applying the Lyapunov
function mode and integrating EID estimation to enhance
the stability of an H∞ controller. The closed-loop stability
conditions are shown via Linear Matrix Inequalities (LMIs),
it is effective to verify via motor speed control instance
simulation and the comparison of the H∞ control with EID
method and without EID method in the presence of both
matched and unmatched disturbances.

In order to facilitate a quicker and easier understanding of
this article, the following notations are proposed. Notations :

Positive-definite matrix is denoted as P> 0.

[
N J

⋆ A

]
demon-

strates

[
N J

JT A

]
. P+ refers to the pseudoinverse of P. H(s)

represents the Laplace transform of h(t).
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II. STRUCTURE OF H∞ CONTROL SYSTEM BASED ON EID
METHOD

Take a plant into account
dx(t)

dt = Ox(t)+Pu(t −ζ )+Pω ω(t),

y(t) = Sx(t)+Tu(t −ζ ),

z(t) = Sx(t)+Tω ω(t),

(1)

where y(t), x(t), u(t), and z(t) are separately the measured
output vector, the state vector, the control input vector, and
the controlled output vector; ω(t) refers to the disturbance
satisfying L2[0,∞); O, Pω , P, T , S, and Tω denote real
constant matrices of appropriate dimensions, ζ represents a
positive time-delay.

According to [16], we can understand the EID principle
that a signal (ve(t)), generating on the control input channel,
holds an equivalent impact as the external disturbance on the
output. Thus, the system (1) turns to the following system
(2). As shown in Fig. 1, the control system utilizing the
EID technique comprises a plant, a memory state-feedback
controller, an EID estimator, and a Luenberger observer
respectively.

dx(t)
dt = Ox(t)+Pu(t −ζ )+Pve(t),

y(t) = Sx(t)+Tu(t −ζ ),

z(t) = Sx(t)+Tω ω(t).

(2)

In order to estimate the EID, we can make use of an
observer, the following equations express its state space.{

dx̂(t)
dt = Ox̂(t)+Pu f (t −ζ )+L(y(t)− ŷ(t)),

ŷ(t) = Sx̂(t)+Tu f (t −ζ ),
(3)

The utilization of the EID technique results in the following
equation

Λx(t) = x(t)− x̂(t), (4)

the state x̂(t) denotes the remodeling of the state x(t).

P+ := (PTP)−1PT. (5)

The EID estimate is elucidated in reference [16], therefore

v̂e(t) = P+LSΛx(t)+(I −P+LT )(u f (t −ζ )−u(t −ζ )),
(6)

where v̂e(t) is an estimate of the EID.
The filter selection is characterized by a low-pass configu-

ration [16], with its state-space representation being denoted
as {

dxF (t)
dt = AF xF(t)+GF v̂e(t),

ṽe(t) = HF xF(t).
(7)

The filter F(s) picks one suitable band of the angle frequency
[18].

Ṽe(s) = F(s)V̂e(s), (8)

where ṽe(t) is filtered by v̂e(t).
The control law is depicted as

u(t −ζ ) = u f (t −ζ )− ṽe(t). (9)

III. ANALYSIS AND DESIGN OF CLOSED-LOOP SYSTEM

Definition 1. Given a positive scalar γ , an H∞ controller
u(t) is designed such that the system has a given H∞ control
performance, that is:
(a) The closed-loop system is internally stable when distur-
bance ω(t) = 0;
(b) Under zero initial condition, ∥z(t)∥2 < γ∥ω(t)∥2, which
holds for ∀ ω(t) ∈ L2[0,∞), ω(t) ̸= 0.

Lemma 1 ([19]). Considering a specified symmetric matrix

ϖ =

[
ϖ11 ϖ12

ϖT
12 ϖ22

]
, (10)

equates to the following statements:
(a) ϖ < 0;
(b) ϖ11 < 0 and ϖ22 −ϖT

12ϖ
−1
11 ϖ12 < 0; and

(c) ϖ22 < 0 and ϖ11 −ϖ12ϖ
−1
22 ϖT

12 < 0.

Then, let

ρ(t) =
[

x̂T(t) ΛxT(t) xT
F(t)

]T
. (11)

Hence, the closed-loop system is well-expressed via the
above three states.

We get
˙̂x(t) = Ox̂(t)+Pu f (t −ζ )+LSΛx(t)−LT HF xF(t),
Λẋ(t) = (O−LS)Λx(t)+(LT −P)HF xF(t)+Pω ω(t),
ẋF(t) = (AF +GF HF −GF HF P+LT )xF(t)

+GF P+LSΛx(t).
Therefore,

dρ(t)
dt = Ōρ(t)+ P̄u f (t −ζ )+ P̄ω ω(t), (12)

where

Ō =

 O LS Ō13

0 O−LS Ō23

0 GF P+LS Ō33

,

P̄ =

 P

0
0

, P̄ω =

 0
Pω

0

, S̄ =

 ST

ST

0


T

,

Ō13 =−LT HF ,
Ō23 = (LT −P)HF ,
Ō33 = AF +GF HF −GF HF P+LT .

The control law in Fig. 1 refers to

u f (t −ζ ) = K̄ρ(t −ζ ), (13)

where K̄ =
[

KP 0 0
]
.

So the following theorem is presented.

Theorem 1. Given O, P, S, T , Pω , and Tω , suppose the
existence of symmetric positive-definite matrices Y1, Y2, Y3,
X1, constants κ , α > 0, and suitable matrices Ŵ , Ŵ1, M,
system (12) shows gradual stabilization if the condition of
the following inequality is satisfied

Θ11 Θ12 Θ13 Θ14 Θ15

⋆ −Θ22 0 0 0
⋆ ⋆ −Θ33 0 0
⋆ ⋆ ⋆ −Θ44 0
⋆ ⋆ ⋆ ⋆ −Θ55

< 0, (14)

where
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Fig. 1: H∞ memory state-feedback built on EID control system structure.

Θ11 =

 θ11 MS θ13

⋆ θ22 θ23

⋆ ⋆ θ33

,

θ11 = OX1 +X1OT,
θ13 =−MT HF ,
θ22 = Oα −MS+(Oα −MS)T,
θ23 = MT HF −PHF α +(GF P+MS)T,
θ33 = AF α +GF HF α −GF HF P+MT
+(AF α +GF HF α −GF HF P+MT )T,

Θ12 =

 κPW1 0 0
0 0 0
0 0 0

,

Θ13 = diag{X1,αI,α},

Θ14 =

 X1ST

αST

0

,

Θ15 =

 X1STTω

αSTTω +Pω

0

,

Θ22 = Θ33 = diag{κY1,κY2,κY3},
Θ44 = I,
Θ55 = T T

ω Tω − γ2I.

Using the LMI toolbox calculations, we deduce that the
controller of memory state-feedback gain and observer gain
can be obtained by

KP = Ŵ1Y−1
1 , L = Mα

−1. (15)

Proof: In accordance with (13), the system is character-

ized by the following description

dρ(t)
dt

= Ōρ(t)+ P̄K̄ρ(t −ζ )+ P̄ω ω(t). (16)

The selection of a suitable Lyapunov function is

V (ρt) = ρ
T(t)N̂ρ(t)+

∫ t

t−ζ

ρ
T(s)R̂ρ(s)ds, (17)

where matrices N̂, R̂ > 0, N̂ = diag{N̂1, N̂2, N̂3}, R̂ =
diag{R̂1, R̂2, R̂3} are decided.

Consider H∞ performance index

Jzω =
∫

∞

0
[zT(t)z(t)− γ

2
ω

T(t)ω(t)]dt. (18)

By the third equation of (2), we can rewrite the equation
as follows

z(t) = S̄ρ(t)+Tω ω(t). (19)

It is simple to obtain V (0) = 0 and V (∞) ≥ 0. Therefore,
we have

Jzω ≤
∫

∞

0
[V̇ (ρt)+ zT(t)z(t)− γ

2
ω

T(t)ω(t)]dt. (20)

Computing the derivative about V (ρt) in (17) gives

V̇ (ρt) = 2ρ
T(t)N̂ρ̇(t)+ρ

T(t)R̂ρ(t)−ρ
T(t −ζ )R̂ρ(t −ζ ).

(21)
Substituting (19) (21) to (20), we obtain

Jzω ≤
∫

∞

0
η

T
1 (t)Ψη1(t), (22)

where
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η1(t) =
[

ρT(t) ρT(t −ζ ) ωT(t)
]T,

Ψ =

 Σ N̂P̄K̄ N̂P̄ω + S̄TTω

⋆ −R̂ 0

⋆ ⋆ T T
ω Tω − γ2I

 , (23)

where
Σ = N̂Ō+ ŌTN̂ + R̂+ S̄TS̄.
According to Lemma 1, (23) can be equivalent to

Σ11 N̂P̄K̄ I S̄T Σ15

⋆ −R̂ 0 0 0

⋆ ⋆ −R̂−1 0 0
⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ T T
ω Tω − γ2I

< 0, (24)

where
Σ11 = N̂Ō+ ŌTN̂,
Σ15 = N̂P̄ω + S̄TTω .

Let N̂−1
i = Xi (i = 1, · · · ,3), R̂−1

i = κYi (i = 1, · · · ,3),
X = diag{X1,αI,α}, Y = diag{Y1,Y2,Y3}. Pre-multiplication
and post-multiplication on the matrice of inequality (24) by
diag{N̂−1, R̂−1, I, I, I}= diag{X ,κY, I, I, I}, making Ŵ = K̄Y
get

∆11 κP̄Ŵ X XS̄T ∆15

⋆ −κY 0 0 0
⋆ ⋆ −κY 0 0
⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ T T
ω Tω − γ2I

< 0, (25)

where
∆11 = ŌX +XŌT,
∆15 = P̄ω +XS̄TTω .

Then, substituting (12), (13) and (15) into (25) yields
(14).

Therefore, if (23) < 0 implies that (20) < 0, according
to the previous definition, the system attains the H∞ perfor-
mance index.

We could know dρ(t)
dt < 0 when (14)< 0 stands. Thus, in

situations where the disturbance ω(t) is 0, the system (16)
is progressively stable if dρ(t)

dt < 0.
Therefore, the system (16) is gradually stable when (14)<

0 stands.
This completes the proof.

IV. SIMULATION

Instance 1: Select a set of parameters for plant (1) as
follows:

O =

[
−8 0
0 −6

]
, Pω =

[
2
1

]
,

P =

[
12
4

]
, S =

[
1
0

]T

,

Tω = 0.4,γ = 0.9,T = 0.1,
ζ = 1,α = 1.07,κ = 0.2.

Apply the disturbance

ω(t) = 1.25sin1.5πt +1.25cos1.5πt +1.25sin2.5πt. (26)

We choose the parameters of F(s), AF =−101, GF = 100,
HF = 1 [16].

Through the utilization of MATLAB software, it is possi-
ble to compute the LMI outcome corresponding to the The-
orem 1, the H∞ memory state-feedback controller parameter
and observer parameter were derived as follows:

KP =
[
−0.1928 −0.2722

]
,

and

L =
[
0.7904 2.5254

]T
.

0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

0.6 y

y

y
1

2

t (s)

Fig. 2: Output response of our method (y1) and H∞ memory
state-feedback method (y2) for Pω ̸= P.
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t)
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e

e

Fig. 3: Simulation result for Pω ̸= P between disturbance
ω(t) and disturbance estimate ṽe(t).

To showcase the effectiveness of our method in sup-
pressing disturbances, we analyze and contrast the outcomes
obtained through simulations. Fig. 2 and Fig. 4 denote output
response of our method (y1) and H∞ memory state-feedback
method (y2) for Pω ̸= P and Pω = P. Fig. 3 and Fig. 5 denote
simulation results between disturbance ω(t) and disturbance
estimate ṽe(t) for Pω ̸= P and Pω = P.

In Fig. 2, the result of our method represented the system
was stable. The peak-to-peak value (PPV) of output error in
the steady-state approached nearly 0.26 while the PPV of H∞

memory state-feedback control method was 0.6. Comparing
simulation results between Fig. 2 and Fig. 4, our method can
suppress matched disturbances and unmatched disturbances
more effectively.

In Fig. 3, the PPV of disturbance estimate ṽe(t) was nearly
0.4593 while the PPV of disturbance ω(t) was 2.988. These
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results suggest that EID technology can effectively mitigate
the impact of disturbances on the system output performance.
The discrepancy in PPV between ṽe(t) and ω(t) in Fig. 5 was
denoted as 0.091, which indicates the EID method’s ability
to accurately estimate unknown and external disturbances.
Consequently, these findings demonstrate the efficacy of the
proposed methodology.

0 5 10 15 20
-4

-2

0

2

4

y

y

y

2

1

t (s)

Fig. 4: Output response of our method (y1) and H∞ memory
state-feedback method (y2) for Pω = P.
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Fig. 5: Simulation result for Pω = P between disturbance
ω(t) and disturbance estimate ṽe(t).

Instance 2: The instance applies our method in a classical
system named the rotary-speed control in [20]. The control
system includes a driver, a direct current motor, a high-
performance desk computer(equivalent to a controller), and
an optical encoder.

Suppose that x̄(t) =
[

ȳ(t) ī(t)
]T, where ī(t), ȳ(t), ū(t)

are armature current, rotary speed and access voltage sev-
erally. Choose 0.002s as the sampling time. According to a
least-squares approach, we found a series of the following
parametric values of the rotary speed control instance in (1),
finally considered in the case of T ̸= 0. We obtained

O =

[
−331.2 −684.8
355.2 −696,1

]
, P =

[
19.52
−12.44

]
,

Pω = P, S =
[
1 0

]
,

T = 0.1,Tω = 0.4,γ = 0.9,
ζ = 1,α = 5.34,κ = 0.2.

We found a feasible solution for LMI (14), the result of

controller gain was

KP =
[
−0.1321 −0.1865

]
,

and observer gain was

L =
[
−52.27 −114.14

]T
.

To reflect the superiority of our method, we compared the
output response y(t) of our method and H∞ memory state-
feedback method in the rotary-speed control system in Fig.
6.

From Fig. 6, the PPV of our proposed method amounts to
53.4% of the PPV associated with H∞ memory state-feedback
control. Therefore, our method has significant disturbance
suppression performance. This also proves the efficacy of
our method.

0 5 10 15 20
-0.15

-0.1

-0.05

0

0.05

0.1

0.15
y

y

y

y

1

2

t (s)

Fig. 6: Output response of our method (y1) and H∞ memory
state-feedback method (y2) in the rotary-speed control sys-
tem.

V. CONCLUSION

This paper aims to demonstrate a method for effectively
suppressing disturbances in linear input time-delay systems
through H∞ control, and the method involves incorporat-
ing memory state-feedback and utilizing the direct transfer
matrix within the system. A robust control method appears
by building on the EID technique. It can drop the impact
of disturbance effectively on the system output and reject
matched and unmatched disturbances to achieve satisfactory
control performance. Using Lyapunov stability theories, the
stability conditions of the closed-loop system are given as
LMIs. Utilizing the EID estimation technique and incorpo-
rating H∞ control principles, design a memory state-feedback
controller with input time-delay. Numerical instances, a
practical instance and the simulation outcomes illustrate
the effectiveness and satisfactory control capabilities of our
proposed method.

This approach holds significant theoretical importance for
enhancing the disturbance rejection capabilities of uncertain
input time-delay systems and nonlinear input time-delay
systems, and will be implemented in the future.
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