
On the Error Bounds for ReLU Neural Networks
Ronald Katende, Henry Kasumba, Godwin Kakuba and John Mango

Abstract—This paper addresses the challenge of establishing
rigorous error bounds for zero-trace Rectified Linear Unit
(ReLU) Neural Networks (NNs). We derive theoretical results
to provide insights into the accuracy of these networks in
approximating continuous functions, focusing on the influence
of network architecture, such as the number of layers and
neurons. Emphasizing zero-trace ReLU NNs due to their
relevance in various physical and engineering applications,
we aim to find a bound ε such that |f(x) − f̂(x)| ≤ ε,
where f̂(x) is the network’s output. Our analysis leverages
universal approximation theorems, Rademacher complexity,
and probabilistic methods to develop novel error bounds. We
also explore the impact of data distribution on these bounds,
contributing to the ongoing effort to bridge the gap between
theoretical guarantees and practical applicability. Numerical
experiments validate our theoretical findings, showcasing the
trade-off between network complexity and computational re-
sources. Additionally, we explore the performance of ReLU
NNs in solving different types of Partial Differential Equations
(PDEs), highlighting the impact of network size and iterations
on error reduction

Index Terms—Numerical Analysis, Finite Element Method,
Error Analysis, Neural Networks, Rectified Linear Unit.

I. INTRODUCTION

This paper addresses the challenge of establishing error
bounds for zero-trace Rectified Linear Unit (ReLU) Neural
Networks (NNs), providing rigorous theoretical guarantees
on their accuracy. A zero-trace function is zero at its domain
boundary. We derive theoretical results that highlight how the
accuracy of zero-trace ReLU NNs in approximating contin-
uous functions depends on network architecture, such as the
number of layers and neurons. These NNs are particularly
relevant in various physical and engineering applications, so
throughout this paper, ReLU NNs refer specifically to zero-
trace ReLU NNs.

Establishing error bounds for ReLU NNs is crucial due to
their widespread use across different domains. Understanding
the factors that influence their accuracy helps in designing
networks, selecting training strategies, and choosing mod-
els. Precise error bounds enhance the reliability of these
networks, especially in safety-critical applications where
dependability is essential.

Manuscript received April 30, 2024 revised September 26, 2024.
This work has been supported by the Mathematics for Sustainable

Development (MATH4SDG) project, a research and development project
running in the period 2021-2026 at Makerere University-Uganda, University
of Dar es Salaam-Tanzania, and the University of Bergen-Norway.

Ronald Katende is a PhD candidate in the Department of Mathematics,
Department of Mathematics, College of Natural Sciences, Makerere Uni-
versity, Kampala, Uganda. (email: rkatende@kab.ac.ug).

Henry Kasumba is a lecturer of mathematics at the Department of
Mathematics, College of Natural Sciences, Makerere University, Kampala,
Uganda. (email: henry.kasumba@mak.ac.ug).

Godwin Kakuba is an associate professor at the Department of Mathemat-
ics, College of Natural Sciences, Makerere University, Kampala, Uganda.
(email: godwin.kakuba@mak.ac.ug).

John Mango is an associate professor at the Department of Mathemat-
ics, College of Natural Sciences, Makerere University, Kampala, Uganda.
(email: mango.john@mak.ac.ug).

Previous research has proposed error bounds for various
neural networks using different mathematical approaches.
For instance, [7] discusses generalization errors in large
compressible deep neural networks, introducing a data-
dependent capacity control technique that more precisely
assesses generalization performance compared to traditional
methods. In [8], a novel method estimates errors in neu-
ral network solutions for elasticity problems, showing the
robustness of energy-based error measures. The study in
[10] bridges empirical risk minimization and Bayesian deep
learning, offering faster convergence rates and a kernel-
based perspective for understanding deep learning model
generalization. The work in [11] provides non-asymptotic
L2 error bounds for neural network regression, vital for
finite-sample scenarios. In [12], foundational results on the
approximation capabilities of neural networks are discussed,
establishing essential bounds for understanding trade-offs
between network complexity and accuracy. [13] explores
designing feedforward networks optimized for specific error
bounds, ensuring high assurance in network performance.
Finally, [14] addresses robust error bounds for quantized and
pruned networks, ensuring performance even under compres-
sion constraints.

This work builds on these previous efforts, particularly
drawing from universal approximation theorems (UATs) for
ReLU NNs. While UATs show that networks can approxi-
mate any continuous function, they provide little guidance
on architecture and training. By analyzing error bounds, we
gain insights into approximation capabilities and network
complexity, potentially leading to more efficient designs.

Recent advancements, such as Rademacher complexity
analysis and probabilistic methods, have been explored,
but challenges remain in applying theoretical guarantees
to practical scenarios and understanding data distribution’s
impact on error bounds. Despite progress, existing bounds
often rely on strong assumptions that may not hold in
realistic cases [1]. Bridging the gap between theory and
practice is ongoing, and understanding how data distribution,
size, and quality affect error bounds is crucial for robust
generalization [2]. This paper contributes to these efforts by
deriving novel error bounds for a specific class of ReLU
NNs, demonstrating improvements over existing bounds and
exploring the relationship between network architecture and
error.

II. PRELIMINARY NOTES

Consider the partial differential equation (PDE)

Lu = f, (1)

where f is known data, L is the differential operator, and
u is the unknown solution. We seek to bound the error
in approximating u(x) using a ReLU NN. Specifically, we
aim to find a bound ε such that |f(x) − f̂(x)| ≤ ε, where

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

f̂(x) is the ReLU NN output for input x. We explore how
the smoothness of the target function, network depth, and
training data size affect error bounds and develop algorithmic
tools to apply these bounds in network design and training
optimization. Universal approximation theorems show that
ReLU NNs can approximate any continuous function with
arbitrary accuracy under certain conditions [5]. Mathemat-
ically, for any continuous function f : Rn → R and any
ϵ > 0, there exists a ReLU NN F with parameters θ such
that for any compact set K ⊂ Rn, there exists θ∗ such that

|f(x)− F (x; θ∗)| < ϵ, ∀x ∈ K.

However, these theorems often do not provide practical
guidance on determining the network architecture and train-
ing process needed to achieve a specific accuracy level.
Rademacher complexity analysis offers bounds on the gen-
eralization error of ReLU NNs by leveraging the notion of
Rademacher complexity. Mathematically, Rademacher com-
plexity R(F) is defined as the expectation over random signs
σi of the supremum of the empirical risk,

R(F) = Eσ

[
sup
θ

1

m

m∑
i=1

σiF (xi; θ)

]
,

where F is the hypothesis class represented by the ReLU NN,
m is the number of samples, and xi are input data points.
The generalization error bound is then given by

Edata[L(F)] ≤ L̂(F) +R(F) +

√
C

m
,

where L̂(F) is the empirical risk, L(F) is the true risk,
and C is a constant. Probabilistic methods incorporate un-
certainty into modeling, allowing the generalization error
to be treated as a random variable, leading to more robust
bounds compared to deterministic methods. Bayesian neural
networks, for example, treat weights as random variables and
use Bayesian techniques for inference [4].

We first consider theoretical results for a single-layer
ReLU NN, followed by numerical examples that validate
these results. We then discuss the practical implications of
the derived error bounds, focusing on how they can guide
network design and training decisions, balancing accuracy
and computational efficiency.

III. MAIN RESULTS

In this section, we derive some theoretical results about the
maximum value as well as error bounds for a ReLU NN. We
utilise the Poincaré inequality to derive both results. We show
that both the maximum value as well as the error bounds are
highly dependent on the number of layers and the number
of neurons on the network.

Suppose that the target function f ∈ W k,p, a Sobolev
space, which provides the necessary smoothness conditions
for deriving error bounds. Also, let F (x; θ) be the output of
a ReLU NN with parameters θ for input x. The error bound
ε is defined as the maximum deviation of the network output
from the target function, i.e.,

ε = sup
x∈Ω

|f(x)− F (x; θ)|,

where Ω is the domain of interest. From a quasi-mode, it
would appear that ε satisfies the following theorem, which

considers the approximation capabilities of the ReLU NN,
taking into account factors such as the depth L of the
network, the number of neurons per layer N , and the
smoothness of the target function.

Theorem III.1. Let f be a function in the Sobolev space
W k,p(Ω) and F (x; θ) be the output of a ReLU neural
network with depth L and width N . Under certain conditions
on the network architecture and the smoothness of f , there
exists a constant C such that

ε ≤ C

(
1

Nα
+

1

Lβ

)
,

where α and β are positive constants that depend on the
smoothness of f and the architecture of the network

This theorem highlights the relationship between the net-
work’s architecture and the resulting error bound, providing
insight into how increasing the depth and width of the net-
work can reduce the error. The constants α and β reflect the
trade-offs between network complexity and approximation
accuracy, offering practical guidance for network design.
However, a more intricate investigation into the network
architecture and representation yields the following related
result.

A. Error Bound for the ReLU NN Solution

We derive an error bound between the exact solution
u(x) and a ReLU NN solution to equation (1), denoted by
uNN = uNN (x), utilizing the triangle inequality and the
representation of ReLU NNs as Finite Elements (FE). The
error bound for a one-dimensional finite element solution to
equation (1) is given by

∥u(x)− uFEM∥ ≤ Ch, (2)

for some constant C = C(Ω) that depends on the domain
Ω and h being the width of subdomains. We will also use
a fundamental theorem, the Poincaré inequality, as stated in
Lemma 1.

Lemma 1 (Poincaré Inequality). [9]
Let p be such that 1 ≤ p ≤ ∞ and Ω a subset bounded in at
least one direction. Then there exists a constant C depending
only on Ω and p such that for every function v in the Sobolev
space H1(Ω) of zero trace functions (functions that are zero
on the boundary), we have

∥v∥Lp(Ω) ≤ C∥∇v∥Lp(Ω).

For the exact solution u(x), we have

∥u(x)− uNN∥1 = ∥u(x)− uFEM + uFEM − uNN∥1,

which by the triangle inequality can be re-written as

∥u(x)− uNN∥1 ≤ ∥u(x)− uFEM∥1 + ∥uFEM − uNN∥1,

and thus,

∥u(x)− uNN∥1 < Ch+ ∥uFEM − uNN∥1. (3)

We now need to obtain the bound for ∥uFEM − uNN∥1.
This is established through Proposition III.1.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

Proposition III.1. The error in an output obtained using a
single layer ReLU NN with k neurons is bounded by 6D

k2 for
D a constant that depends on k.

For the proof of Proposition III.1, we rely on Lemma
1, which relates the norm of a function to the norm of
its gradient. The FEM and ReLU NN solutions to (1), i.e.,
uFEM and uNN , satisfy the Poincaré inequality (1) such that

∥uFEM − uNN∥1 ≤ ∥uFEM∥1 + ∥uNN∥1. (4)

By Lemma 1,

∥uFEM∥1 ≤ C1∥∇uFEM∥1 and ∥uNN∥1 ≤ C2∥∇uNN∥1,

for C1(Ω), C2(Ω) ∈ R. Therefore, by extension,

∥uFEM − uNN∥1 ≤ K∥∇(uFEM − uNN)∥1
≤ K(∥∇uFEM∥1 + ∥∇uNN∥1),

for some K(Ω) ∈ R. For the rest of the proof, we write
∥.∥1 for the L1 norm, i.e., ∥.∥L1(Ω). Denote the error between
the FEM and the ReLU NN solution as e defined by

e = uFEM (x)− uNN (x).

The gradient of e, denoted as ∇e with respect to x, is then

∇e(x) =
de

dx
=

duFEM

dx
− duNN

dx

=
n∑

r=1

αr
dϕr

dx
−

k∑
i=1

w2
i

dReLU(w1
i x+ bi)

dx
.

Thus,

∥∇e(x)∥1

=

∥∥∥∥∥
n∑

r=1

αr
dϕr

dx
−

k∑
i=1

w2
i

dReLU(w1
i x+ bi)

dx

∥∥∥∥∥
1

,

and

∥∇e(x)∥1

≤

∥∥∥∥∥
n∑

r=1

αr
dϕr

d x

∥∥∥∥∥
1

+

∥∥∥∥∥
k∑

i=1

w2
i

dReLU(w1
i x+ bi)

dx

∥∥∥∥∥
1

. (5)

Now, recall that in a general sense,

ϕ(x) =

1− x

h if 0 ≤ x ≤ h,

1 + x
h if − h ≤ x ≤ 0,

0 otherwise.

This implies that

dϕ(x)

dx
=

−1
h if 0 ≤ x ≤ h,
1
h if − h ≤ x ≤ 0,

0 otherwise.

Therefore, ∥∥∥∥dϕr

dx

∥∥∥∥
1

≤ A1, (6)

for some constant A1 that depends on h = xr+1 − xr =
xr − xr−1. Thus,

d [ReLU(w1
i x+ bi)]

dx
=

{
w1

i , if w1
i x+ bi ≥ 0,

0, if w1
i x+ bi < 0.

It then follows that∥∥∥∥dReLU(w1
i x+ bi)

dx

∥∥∥∥
1

≤ A2, (7)

for some constant A2 that depends on the network param-
eters w1

i . Substituting the bounds (6) and (7) into inequality
(5) yields

∥∇e(x)∥1 ≤

∥∥∥∥∥A1

n∑
r=1

αr

∥∥∥∥∥
1

+

∥∥∥∥∥A2

k∑
i=1

w2
i

∥∥∥∥∥
1

.

Therefore,

∥∇e(x)∥1 ≤ A1

n∑
r=1

∥αr∥1 +A2

k∑
i=1

∥w2
i ∥1. (8)

Denote C(Ω) = A1

∑n
r=1 ∥αr∥1 +A2

∑k
i=1 ∥w2

i ∥1, thus

∥u(x)− uNN∥1 ≤ Ch+
6D

k2
, (9)

and hence,
∥u(x)− uNN∥1 ≤ 6D

k2
, (10)

as h → 0, for some constant D dependent on k. Equation
(10) demonstrates the bound on the ultimate error between
the exact solution and the ReLU NN solution.

Now, this result is extended, with the help of approx-
imation theorems to strengthen the understanding of the
performance of ReLU NNs. To further quantify the error
between the exact solution u(x) and the ReLU NN solution
uNN (x), we analyze the generalization error. This error
measures the difference between the expected performance
of the model on new, unseen data and its performance on the
training data.

In the following results, we explore various aspects of the
error bounds and approximation properties of ReLU neu-
ral networks (NNs) and Physics-Informed Neural Networks
(PINNs) for solving partial differential equations (PDEs).
Each result builds upon the previous ones, enhancing our
understanding of the convergence and generalization behav-
ior of these networks. The progression from one theorem to
the next allows us to create a cohesive narrative that connects
generalization error, approximation capabilities, layer width
variations, and the impact of learning rates and initialization
on neural network performance.

Theorem III.2 (Generalization, Approximation, and Error
Bounds for ReLU Neural Networks). Let u(x) be the exact
solution of a PDE in a bounded domain Ω ⊂ Rd, and
let uNN (x) be the solution obtained using a ReLU neural
network with L layers and N neurons per layer. Assuming the
network is trained with m samples and a total loss function
L, then the generalization error Egen is bounded by

Egen ≤ O

(√
L log(N) + log(1/δ)

m

)
,

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

with probability at least 1 − δ. Moreover, if u(x) ∈ Hs(Ω)
with s > d

2 , there exists a ReLU neural network such that
the approximation error satisfies

∥u(x)− uNN (x)∥Hs(Ω) ≤ CN−2s/d,

where C depends on u(x) and Ω. Also, for a network with
L layers, where the l-th layer has Nl neurons. The error
∥u(x)− uNN (x)∥L2(Ω) is bounded by

∥u(x)− uNN (x)∥L2(Ω) ≤ C
L∑

l=1

N
−1/d
l ,

where C depends on u(x) and Ω. Finally, if uPINN (x) is
the solution obtained using a ReLU PINN trained to an error
ϵPINN . The error ∥u(x)− uPINN (x)∥L2(Ω) is bounded by

∥u(x)− uPINN (x)∥L2(Ω) ≤ C
(
N− 2s

d + ϵPINN

)
,

where s > d
2 is the Sobolev regularity of u, and C depends

on u(x) and Ω.

Theorem III.3 (McDiarmid’s inequality). Let
X1, X2, . . . , Xm be independent random variables taking
values in some set X , and let f : Xm → R be a function
such that for all i, changing the i-th coordinate Xi alters
the value of f by at most ci:

sup
x1,...,xm,x′

i

|f(x1, . . . , xm)− f(x1, . . . , xm)| ≤ ci.

Then, McDiarmid’s inequality states that for any ϵ > 0,

Pr (f(X1, . . . , Xm)− E[f(X1, . . . , Xm)] ≥ ϵ)

≤ exp

(
− 2ϵ2∑m

i=1 c
2
i

)
.

This inequality is useful for bounding the deviation of a
function of independent random variables from its expected
value. Now we provide a proof for theorem III.2 using the
McDiarmid’s inequality as shown in theorem III.3

Proof:

Generalization Error Bound

The generalization error Egen(h) is defined as the differ-
ence between the expected risk R(h) and the empirical risk
R̂S(h) for a hypothesis h in a hypothesis class H

Egen(h) = R(h)− R̂S(h).

Given that the empirical risk R̂S(h) is a function of the
training set S = {(X1, Y1), . . . , (Xm, Ym)}, and assuming
(Xi, Yi) are i.i.d. samples, R̂S(h) can be expressed as

R̂S(h) =
1

m

m∑
i=1

ℓ(h(Xi), Yi),

where ℓ is the loss function. Since R̂S(h) is an average of
i.i.d. random variables, we can apply McDiarmid’s inequality.
The function f in this context is the empirical risk R̂S(h),
and changing one sample (Xi, Yi) affects the empirical risk
by at most 1

m times the range of the loss function. If the loss
function is bounded by some constant L, then

ci =
L

m
, ∀i.

Therefore, McDiarmid’s inequality gives us

Pr
(
R̂S(h)− E[R̂S(h)] ≥ ϵ

)
≤ exp

(
−2m2ϵ2

mL2

)
= exp

(
−2mϵ2

L2

)
.

Taking the logarithm and rearranging, we obtain

Egen(h) = R(h)− R̂S(h) ≤ O

(√
log(1/δ)

m

)
,

with probability at least 1 − δ, for ϵ chosen appropriately.
Next, we incorporate the Rademacher complexity Rm(H) to
get a tighter bound. The Rademacher complexity measures
the capacity of the hypothesis class H and can be bounded
as:

Rm(H) ≤ O

(√
L log(N)

m

)
.

Thus, the generalization error bound becomes

Egen ≤ O

(
Rm(H) +

√
log(1/δ)

m

)
.

Substituting the Rademacher complexity bound, we obtain

Egen ≤ O

(√
L log(N) + log(1/δ)

m

)
.

This bound combines the contributions of the hypothesis
class complexity and the concentration inequality, providing
a rigorous and tight bound on the generalization error for
ReLU NNs.

Approximation Error in Sobolev Norm

For u(x) ∈ Hs(Ω) with s > d
2 , approximation theory

guarantees the existence of a ReLU network such that

∥u− uNN∥Hs(Ω) ≤ CN−2s/d,

where C depends on the regularity of u and the domain Ω.

Error Bound for Networks with Varying Widths

For a ReLU network with varying layer widths Nl, the
error for each layer is

∥u− uNNl
∥L2(Ω) ≤ CN

−1/d
l .

Summing over all layers

∥u(x)− uNN (x)∥L2(Ω) ≤ C
L∑

l=1

N
−1/d
l .

Error Bound for High-Dimensional PINNs

Combining the approximation error and the training error
ϵPINN , the total error is

∥u(x)− uPINN (x)∥L2(Ω)

≤ ∥u(x)−uNN (x)∥L2(Ω)+∥uNN (x)−uPINN (x)∥L2(Ω).

Substituting the bounds

∥u(x)− uNN (x)∥L2(Ω) ≤ CN− 2s
d ,

∥uNN (x)− uPINN (x)∥L2(Ω) ≤ ϵPINN .

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

Thus

∥u(x)− uPINN (x)∥L2(Ω) ≤ C
(
N− 2s

d + ϵPINN

)
.

Theorem III.4 (Error Bounds and Approximation Properties
of ReLU Neural Networks). Let u(x) be the exact solution of
a PDE in Ω ⊂ Rd, and uNN (x) be the solution obtained by
a ReLU neural network (NN) with L layers and N neurons
per layer, trained using an adaptive learning rate. The error
∥u(x)− uNN (x)∥L2(Ω) is bounded by:

∥u(x)− uNN (x)∥L2(Ω) ≤ C
(
N−1/d + ϵadaptive

)
,

where ϵadaptive is the training error associated with the
adaptive learning rate, and C is a constant depending on
u(x) and Ω.

Proof: The approximation error for a ReLU NN with
N neurons per layer and L layers is given by:

∥u(x)− uNN (x)∥L2(Ω) ≤ C1N
−1/d,

where C1 is a constant dependent on the regularity of u(x)
and the domain Ω. This result follows from known results
in approximation theory, particularly in high-dimensional
settings. Let ϵadaptive denote the training error when using
an adaptive learning rate. Empirical and theoretical evidence
shows that ϵadaptive is generally smaller than the training
error with a fixed learning rate, leading to a faster conver-
gence:

∥uNN (x)− ûNN (x)∥L2(Ω) ≤ C2ϵadaptive,

where ûNN (x) represents the partially trained NN solution,
and C2 is another constant depending on the problem setup.
The total error is a combination of the approximation error
and the training error:

∥u(x)− uNN (x)∥L2(Ω) ≤ C1N
−1/d + C2ϵadaptive.

By defining C = max(C1, C2), we obtain:

∥u(x)− uNN (x)∥L2(Ω) ≤ C
(
N−1/d + ϵadaptive

)
.

Now, in the context of ReLU neural networks (ReLU
NNs), the pursuit of tighter and more comprehensive error
bounds is critical. Existing literature often addresses the
approximation capabilities of ReLU NNs with fixed architec-
tures and standard training methods, but the effects of sparse
neuron activation, adversarial perturbations, and time-varying
learning rates remain largely unexplored. Previous theorems
typically bound the error based on network width, depth, and
fixed learning rates without considering these dynamic and
adversarial aspects, leading to incomplete insights into the
model’s true performance. The following theorem introduces
on a unified error bound for ReLU NNs, integrating the
effects of sparse activation, adversarial perturbations, and
time-varying learning rates, for a more realistic and practical
error bound.

Theorem III.5 (Unified Error Bounds for ReLU NNs with
Sparse Activation, Adversarial Perturbations, and Time-Vary-
ing Learning Rate). Let u(x) be the exact solution in
Ω ⊂ Rd, and uNN (x) the approximation via a ReLU NN

with L layers and N neurons per layer. Suppose ρ is the
fraction of active neurons per layer, δx is an adversarial
perturbation, and η(t) is a time-varying learning rate. The
error ∥u(x)− uNN (x)∥L2(Ω) is bounded by

∥u(x)− uNN (x)∥L2(Ω)

≤ C

(
N− 1

d ρ−α + ϵadv +

∫ T

0

η(t) dt

)
,

where C depends on u(x), Ω, and network architecture;
α > 0 reflects the impact of sparse activation; ϵadv is the
adversarial error; and

∫ T

0
η(t) dt is the cumulative learning

rate effect.

Proof: We first analyze the impact of sparse activation.
Given that only ρN neurons are active, the effective capacity
of the network decreases, which influences the approximation
error. The error bound due to sparse activation is

∥u(x)− uNN (x)∥L2(Ω) ≤ C1N
− 1

d ρ−α,

where α > 0 quantifies the reduction in capacity. Next, we
consider the effect of adversarial perturbations. The pertur-
bation δx leads to an additional error term ϵadv , typically
bounded as

ϵadv = ∥u(x+ δx)− uNN (x+ δx)∥L2(Ω).

This term captures the worst-case scenario under adversarial
attack. Finally, the effect of a time-varying learning rate η(t)
over a training period [0, T] is represented by the integral∫ T

0

η(t) dt,

which quantifies the total influence of the dynamic learning
rate on model convergence. Combining these components,
the total error is bounded by

∥u(x)− uNN (x)∥L2(Ω)

≤ C1N
− 1

d ρ−α + C2ϵadv + C3

∫ T

0

η(t) dt,

with constants C1, C2, C3 combined into C.
This unified bound contrasts with previous results in

several ways. Traditional bounds, such as those in Theorem
1, focus solely on network width and depth, while Theorem
2 extends these to account for learning rate dynamics.
However, neither considers the interplay of sparse activation
or adversarial robustness. The inclusion of ρ addresses the
efficiency and sparsity of neuron usage, providing a finer
granularity in error estimation that is crucial for resource-
constrained environments. The adversarial term ϵadv intro-
duces a critical consideration for model robustness, which
is increasingly important in security-sensitive applications.
Finally, the time-varying learning rate integral captures the
practical effects of adaptive learning strategies, which are
ubiquitous in modern training regimens. The inclusion of
these factors renders the bound more comprehensive, offer-
ing a realistic assessment of ReLU NNs’ performance in
practical settings. This result is particularly impactful for the
design and training of neural networks where computational
efficiency, robustness, and adaptability are critical. By uni-
fying these aspects into a single error bound, this theorem
not only advances theoretical understanding but also provides

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

Fig. 1: Approximation errors for the FEM and the ReLU NN

actionable insights for the optimization and deployment of
ReLU NNs in real-world scenarios. Together, these theorems
provide a comprehensive understanding of the error bounds
and approximation properties of ReLU neural networks and
PINNs in solving PDEs. They highlight the interplay between
network architecture, training procedures, and the inherent
properties of the solutions, offering a solid theoretical foun-
dation for using neural networks in scientific computing. By
systematically building from generalization error bounds to
approximation capabilities and the effects of initialization
and learning rates, this collection of theorems presents a
coherent narrative that guides researchers and practitioners in
leveraging neural networks for solving complex PDEs with
confidence in their theoretical underpinnings and practical
performance.

IV. NUMERICAL RESULTS

We demonstrate the applicability of these theoretical re-
sults in solving a boundary value problem (BVP) and some
partial differential equations (PDEs). Consider the BVP

−u′′(x) = π2 sin(πx), for x ∈ (0, 1), (11)

with u(0) = u(1) = 0. The exact solution to this BVP is
u(x) = sin(πx). Numerical results from solving equation
(11) using both the FEM and ReLU NN indicates that the
NN eventually achieves a lower error (0.00164) than FEM
(0.00462), considering 10 tent functions and 100 neurons
on the single layer for the NN. However, we note also,
that 30 neurons for the NN are sufficient to give an error
less than that of the 10-tent function FEM as shown in
Figure 3. These results suggest that the NN captures the
solution’s characteristics almost as accurate as the FEM does.
This approach is more useful in areas where FEM typically
encounters challenges, such as in handling high gradients
or non-uniformities in the solution. Figure 2 presents the
generalization error of the NN as a function of the number of
training samples. The decreasing trend in error as the sample
size increases highlights the NN’s ability to generalize better
with more data, a common characteristic of deep learning
models. This also emphasizes the importance of sufficient
training data to achieve an accurate NN model. In contrast,
traditional methods like FEM are typically less sensitive to
the amount of training data but may require careful mesh
refinement to achieve similar accuracy. As the FEM mesh

Fig. 2: Sample size vs generalization

Fig. 3: Exact vs FEM and ReLU NN solutions for equation
12, along with a zoom-in.

is refined (smaller h) and as the NN complexity increases
(larger k), both methods approach the exact solution. No-
tably, the NN solution seems to achieve a closer fit with
lower complexity. The second subplot focuses on the error
from the first simulations of solutions to the BVP (11). The
error decreases with finer FEM meshes and more complex
NNs, but the NN generally maintains a lower error across
the board, even with coarser FEM meshes and less complex
networks. This highlights the NN’s capacity to effectively
approximate the solution with fewer parameters or compu-
tational resources, offering an advantage in scenarios where
FEM might require substantial refinement to achieve compa-
rable accuracy. Hence, these numerical results demonstrate
the NN’s effectiveness in terms of accuracy and efficiency,
particularly when optimized with sufficient training data and
complexity. The NN’s generalization ability, coupled with
its effective error bounds, positions it as a strong alternative

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

to traditional FEM, especially in complex problem domains.
However, there should be q question about the applicability
of these results to PDEs. We now apply the theoretical results
in this work to solving PDEs. Consider the following Poisson
PDE as an example,

−∆u(x) = −1 in [0, 1], (12)

with boundary conditions u(x) = 0 on ∂Ω, Ω = [0, 1].
The various plots and data generated even right from and
during the training of the network highlight how closely the
NN approximates the true solution, depict the approximation
and generalization errors, the effects of neuron size and
learning rate on the solution and consequently the errors,
illustrate the variability in the NN’s performance due to
different starting conditions, etc. Some of these results are
shown in Figures and Tables in the appendix section. But
precisely, more layers layers and /or neurons result into
lower error bounds. Similarly, increasing the number of
elements (akin to neurons in neural networks) also reduces
approximation error in FEM. However, there is no direct
parallel to increasing ”depth” as in neural network layers.
That is, the FEM error reduction is primarily influenced by
the mesh size and polynomial order, paralleling the neural
network’s dependency on neuron counts. Furthermore, the
effect of smoothness of function on the error is also depicted
by the ReLU NN. Smoother functions - with inherently fewer
abrupt changes - are more efficiently handled by larger ReLU
networks, similar to how the approximation error decreases
with an increase in the mesh refinement and is lower for
smoother functions, for FEM. Even during the training and
testing the mean square error (MSE) declines sharply as the
number of neurons increases, stabilizing at higher counts.
This behaviour illustrates the significant capacity of large
neural networks to minimize errors on both training and
unseen data, showcasing their robustness in learning and
generalization. In FEM, the error similarly decreases with
more refined elements and higher polynomial orders, which
effectively capture the function’s properties. However, FEM
generally exhibits a lower tendency for overfitting compared
to neural networks, as FEM’s approximation approach is
more global and deterministic, thus avoiding the pitfall of
fitting too closely to specific data points. Hence, while ReLU
neural networks and FEM share some similarities in error
variations against their respective features, they differ in their
handling of depth and over-fitting. Neural networks require
careful balance between network size and complexity to
optimize performance without incurring excessive computa-
tional costs or succumbing to over-fitting. Conversely, FEM
controls error by refining the mesh and increasing polyno-
mial degrees, focusing more on mesh size and polynomial
complexity than on the concept of depth. Properly managing
these elements is critical for achieving desired accuracy in
simulations and predictions across various applications. Now,
we examine the variation of error against other network
features. Generally, the error of any numerical scheme is
expected to be reducing consistently against an increase
in the number of iterations. This approach satisfies this
expectation. Inequality (10) suggests that the error satisfies

Fig. 4: Error vs number of iterations for the 1D Poisson
equation

TABLE I: VARIATION OF ERROR AND ITERATIONS, WITH
k = 50, C = 1, D = 1, h = 0.001

Iterations 100 9000 25000

Error (e) 9.5312 ×10−1 1.7438 ×10−2 1.0644 ×10−4

TABLE II: ERRORS FOR THE PARABOLIC PDE

Number of Neurons, k
Iterations

100 9000 25000

5 3.1236 ×10−1 6.8724×10−2 8.0875 ×10−3

50 1.2595 ×10−2 5.5326 ×10−3 3.15154 ×10−2

500 3.0039 ×10−4 8.9746 ×10−5 3.3815 ×10−6

the relation

ln(∥u(x)− uNN∥1) < ln

(
Ch+

6D

k2

)
,

= ln(Chk2 + 6D)− 2 ln k .

Now let e = ∥u(x)− uNN∥1. Then

ln(e) + 2 ln k < ln(Chk2 + 6D),

A plot of this relationship is shown in the Figure 4 below,
which is obtained after from solving the 1D Poisson equation
using our ReLU NN approach and examined the variation of
its error against the different numbers of iterations used in
solving. The results are shown in Figure 4 and clearly obey
the normal expectation. of error variation against number
os iterations. Now, the results depicted is seemingly yet
random in nature, yet that is possibly due to the random
initialization used in these experiments of solving the Poisson
equation. With random initialization, the network is bound
to converge around the same optimal points (solutions) yet
monotonicity can hardly be guaranteed. Moreover, even with
monotone initialization, outputs are not necessarily expected
to be monotone. Other experiments focused on experimen-
tally pointing out how the k values, i.e. the number of
neurons on the hidden layer of a single layer ReLU NN,
as well as the number of iterations influences the error
and consequently the proposed bound. For the influence of
iterations on the error, in regard to some other solved PDEs,
the results are depicted in table I. Furthermore, for the effect
of number of neurons on hidden layer on the error, the
results are also shown in tables II - IV. The analysis shows
that for ReLU Neural Networks solving the Parabolic PDE,
increasing the number of neurons and iterations leads to im-
proved approximation of solutions. Networks with 5 neurons

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

TABLE III: ERRORS FOR THE ELLIPTIC PDE

Number of Neurons, k
Iterations

100 9000 25000

5 4.03562 ×10−1 8.55429 ×10−2 3.90387 ×10−2

50 1.33982 ×10−2 5.00488×10−3 9.87641 ×10−4

500 1.21602 ×10−4 7.34025 ×10−5 1.00842 ×10−6

TABLE IV: ERRORS FOR THE HYPERBOLIC PDE

Number of Neurons, k
Iterations

100 9000 25000

5 6.06774 ×10−1 3.51892 ×10−1 1.55531×10−1

50 7.44368 ×10−1 1.232306 ×10−1 7.11842 ×10−2

500 5.52081 ×10−1 9.91297 ×10−2 1.00829 ×10−2

exhibit gradual error reduction, but errors remain relatively
high even after 25000 iterations, suggesting limited capacity.
Networks with 50 neurons show faster error reduction, yet
a slight increase after 25000 iterations indicates potential
overfitting. Networks with 500 neurons achieve significantly
lower errors, underscoring the importance of network size.
However, careful regularization is crucial to prevent overfit-
ting with larger networks, highlighting a trade-off between
network complexity and computational resources. The anal-
ysis highlights the performance of ReLU Neural Networks
in solving the Elliptic PDE. Networks with 5 neurons exhibit
higher errors compared to the Parabolic PDE, reflecting
the increased complexity. However, these errors decrease
with iterations, indicating the network’s learning capability.
Networks with 50 neurons show improved approximation,
but a slight increase in errors after 25000 iterations suggests
potential overfitting. Networks with 500 neurons achieve
significantly lower errors, underscoring the importance of
network size. Despite this, careful regularization is essential
to prevent overfitting, echoing the trade-off between net-
work complexity and computational resources observed in
solving the Parabolic PDE. Overall, increasing the number
of neurons and iterations enhances solution approximation,
albeit requiring careful management of network complexity
and regularization. For the 5-neuron network, errors in the
hyperbolic PDE remain high even after 25,000 iterations,
indicating difficulty in accurate representation and suggesting
that hyperbolic PDEs are more challenging than parabolic
and elliptic ones. With 50 neurons, errors decrease but remain
significant, pointing to the need for larger networks. A
500-neuron network significantly reduces errors, highlighting
the importance of network size. Errors rapidly decrease
with more iterations, demonstrating the network’s ability to
learn complex patterns. These results confirm that increasing
neurons and iterations reduces errors, reflecting the distinct
behaviors of different PDE types. Figure 5 compares the
exact and ReLU NN solutions for u(x) over [0, 1]. The ReLU
network approximates the function well but shows error
spikes around x = 0.2, x = 0.4, and x = 0.8, highlighting
areas needing refinement. Increasing layer width generally
reduces error. Notably, the NN approximation’s effectiveness,
though errors increases near the domain’s edges, suggesting
necessity for further optimization. Figure 6 shows the impact
of initialization and learning rate on ReLU NN performance,
where proper initialization and moderate learning rates lead
to accurate results, while poor initialization and high rates

Fig. 5: Approximation Errors

Fig. 6: Effect of learning rates on errors

TABLE V: Neural Network Training Parameters and Results

Parameter Value
Layers (L) 10
Neurons per Layer (N) 100
Optimizer Adam
Loss Function MSE
Epochs 100
Batch Size 32
Generalization Error 0.0021

TABLE VI: Generalization Errors for Different Random
Seeds

Random Seed Generalization Error
42 0.0021
52 0.0023
62 0.0020

TABLE VII: Generalization Errors for Different Learning
Rates

Learning Rate Generalization Error
0.001 0.0021
0.01 0.0020
0.1 0.0025

increase errors. This emphasizes the need for careful hyper-
parameter tuning and initialization strategies.

Table V summarizes the training parameters and outcomes
of a neural network with 10 layers of 100 neurons each,
using the Adam optimizer and Mean Squared Error (MSE)
as the loss function. Training spanned 100 epochs with a
batch size of 32, resulting in a generalization error of 0.0021,
indicating effective learning without overfitting. Table VI
shows generalization errors of 0.0021, 0.0023, and 0.0020
for seeds 42, 52, and 62, respectively, illustrating the impact

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

TABLE VIII: Generalization Errors for Different Random
Seeds and Learning Rates

Random Seed Learning Rate Generalization Error
42 0.001 0.0021
42 0.01 0.0020
42 0.1 0.0022
52 0.001 0.0023
52 0.01 0.0021
52 0.1 0.0024
62 0.001 0.0020
62 0.01 0.0019
62 0.1 0.0023

Fig. 7: Variation of high-dimensional ReLU NNs against
number of neurons

of random seed variation. Table VII explores learning rates,
with 0.01 achieving the lowest error of 0.0020, emphasizing
the importance of tuning this parameter. Table VIII combines
the effects of random seeds and learning rates, confirming
that a rate of 0.01 is generally optimal, with seed 62 and a
rate of 0.01 yielding the lowest error of 0.0019. These tables
underscore the need for careful tuning and multiple runs to
ensure robust model performance.

The other considered experiments include an attempt to
extrapolate our results to higher dimensions, the effect of
number of neurons in Sobolev norms, as well as the error
for networks with varying widths as shown in Figures 7 - 9
respectively. Figure 7 shows that an increase in the number
of neurons results into a significant decrease in the error,

Fig. 8: Approximation error in Sobolev Norms against num-
ber of neurons

Fig. 9: Effect of varying layer widths on ReLU NNs errors

eventually stabilizing around N ∼ 103. eventually stabilizing
around N ∼ 103. This rapid error reduction is consistent with
the theoretical bound ∥u(x) − uNN (x)∥L2(Ω) ≤ CN− 2s

d ,
which predicts that the error should decay as a function of
neuron count, particularly in high-dimensional spaces where
larger networks are needed to capture the complexity of the
solution. The plateau in the error reduction suggests a point
of diminishing returns where adding more neurons does not
lead to a proportionate improvement, potentially due to limi-
tations in the expressivity of the network or the optimization
process. This result underscores the efficiency of ReLU NNs
in high-dimensional approximation but highlights that further
gains beyond a certain threshold may be limited.

Figure 8, shows the error in Sobolev norm Hs(Ω) relative
to the number of neurons. The log-log plot displays a
linear relationship, reflecting a power-law decay of error
with increasing neurons, in line with the theoretical bound
∥u − uNN∥Hs(Ω) ≤ CN−2s/d. The Sobolev norm captures
not only the function’s approximation but also its smoothness
properties, making this an important metric for assessing
how well ReLU networks approximate functions with a
certain regularity. The steep and consistent decline in the
error suggests that ReLU NNs perform exceptionally well in
approximating functions within Sobolev spaces, particularly
when the regularity parameter s is large enough relative to
the dimensionality d.

Finally, Figure 9 details the error contribution of each layer
in a neural network with different layer widths Nl. The plot
reveals that the early layers contribute the most to reduc-
ing the total error, while later layers provide diminishing
improvements. This cumulative error is consistent with the
theoretical sum ∥u(x) − uNN (x)∥L2(Ω) ≤ C

∑L
l=1 N

−1/d
l ,

where each layer improves the overall approximation. The
first few layers capture the bulk of the function’s complexity,
while subsequent layers fine-tune the model’s performance.
This emphasizes the importance of network architecture,
where a well-balanced allocation of neurons across layers
ensures optimal error reduction. Consequently, early layers
in a ReLU network play a critical role in minimizing ap-
proximation error, while additional layers serve to refine the
model’s predictions.

Overall, the plots collectively validate the theoretical error
bounds for ReLU NNs in both Sobolev and high-dimensional
settings. They highlight the key roles of neuron count and

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

layer architecture in minimizing approximation error, provid-
ing insights into how ReLU NNs can be effectively scaled
and structured to tackle complex function approximation
tasks.

V. CONCLUSION

This work has presented both theoretical and numerical
results on error bounds for rectified linear unit (ReLU) NNs.
We have derived error bounds for ReLU NNs considering
finite element method (FEM) schemes, through designing
them as linear finite elements. In our error bound, we
have emphasized the reliance of the error on the network
architecture, specifically, the number of layers and neurons.

Our numerical results illustrate the effectiveness of ReLU
NN solutions and the applicability of the derived error
bounds. These results contribute to the understanding and
design of a rigorous framework for the study and evaluation
of the performance of neural network-based approaches in
solving PDEs. To enhance error bounds for ReLU NNs,
integrating uncertainty quantification techniques may be bet-
ter for bounds that accounting for variability in predictions.
Moreover, considering the impact of data distribution and
quality on error bounds might also offer insights into ReLU
NNs’ generalization capabilities. Scaling these results to
higher dimensions and more complex architectures, opti-
mizing network architectures and training methodologies, to
include hyper-parameter tuning and regularization, may also
be wonderful ideas to explore for uniformly low errors.

REFERENCES

[1] Steffen Goebbels (2022), On sharpness of an error bound for Deep
ReLU network approximation, Sampling Theory, Signal Processing
and Data Analysis, https://doi.org/10.1007/s43670-022-00020-y.

[2] Yukun Ding, Jinglan Liu, Jinjun Xiong, Yiyu Shi (2010), On the
universal approximability and complexity bounds of quantized ReLU
neural networks, ICLR Conference paper, 64 - 80.

[3] Tilahun M Getu. (2021), Error Bounds for a Matrix-Vector
Product Approximation with Deep ReLU Neural Networks,
arXiv:2111.12963v1.

[4] L. Herrmann, J.A.A. Opschoor, Ch. Schwab (2021), Constructive Deep
ReLU Neural Networks Approximation, ETH Zurich, Research Report
NO. 2021-04.

[5] Johannes Schmidt-Hieber (2021), Deep ReLU Network approximation
of functions on a manifold, arXiv:1908.00695v1.

[6] Juncai He (2020), Relu Deep Neural Networks and Linear Finite
Elements, Journal of Computational Mathematics, 38 (3), 502–527,
http://dx.doi.org/10.4208/jcm.1901-m2018-0160.

[7] Taiji Suzuki, Hiroshi A, Be, Tomoaki Mishimura, (2020), Compression
based bound for non-compressed network: unified generalization error
analysis of large compressible deep neural networks, ICLR Conference
23-36.

[8] M. Guo and E. Haghighat. Energy-based error bound of physics-
informed neural network solutions in elasticity. Journal of Engineering
Mechanics, 148(8):04022038, 2022. DOI: 10.1061/(ASCE)EM.1943-
7889.0002121.

[9] H. Poincaré (1890), Sur les Equations aux Dérivées Partielles de la
Physique Mathématique, American Journal of Mathematics, 3 (12),
211-294, http://www.jstor.org/stable/2369620.

[10] Taiji Suzuki, Fast Generalization error bound of deep learning from
a kernel perspective, Proceeings of the 21st International Conefrence
on Artificial Intelligence and Sttaistics (AISTATS) 2018, Lanzarote,
Spain, PMLR: Volume 84.

[11] Michael Hammers and Michael Kohler, Nonasymptotic bounds on the
L2 error of neural network regression estimates, Annals of the Institute
of Statistical Mathematics (AISM), 58:131-151, doi: 10.1007/s10463-
005-0005-9

[12] Andrew R. Barron, Approximation and estimation bounds for artificial
neural networks Machine Learning, 14: 115-133 (1994)

[13] Krzysztof Ciesielski, Jaroslaw P. Sacha and Krzysztof J. Cios, Syn-
thesis of Feedforward networks in Supremum error bound, IEEE
transactions on Neural Networks, Volume 11, Number 6, 1213-1226

[14] Jiaqi Li, Ross Drummond and Stephen R. Duncan, Robust error
bounds for quantised and pruned neural networks, Proceedings of
Machine Learning Research, Volume 144: 1-12, 2021

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2602-2611

__

