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Abstract—As the widespread application of multimedia com-
munication technology, information transmission security has
become increasingly important. The multi-scroll chaotic system
exhibits complex dynamic behavior, and it is usually used to the
design of encryption algorithm for image and video information
by the sensitivity of initial values. The chaotic systems with
multiple scrolls are investigated by a transformation method
of nth order complex polynomial, and two examples of chaotic
systems with four and six scrolls are given by the chaos anti-
control theory, respectively. Based on the chaotic system with
six scrolls, a simple encryption algorithm is designed for image
information by scrambling and confusing operations. A hash
sequence generated from the original information is given to
obtain the initial keys, and three pseudo-random sequences are
designed through the operations of multiplication and modulo.
Furthermore, the security analysis is discussed by key space and
correlation coefficient, etc. The presented encryption method
exists a large key space, and it can resist to common attacks,
such as differential attack, crop attack and noise attack. The
practicality and effectiveness are verified by the encryption
experiments of image information in the end.

Index Terms—Multi-scroll chaotic system; Image encryption;
Pseudo-random sequences; Security evaluation.

I. INTRODUCTION

W ITH the development of Internet and the popularity of
smart phones, network communication is becoming

increasingly popular, and it provides an important way to
exchange information. Internet communication has become
an important part of our daily life. However, there are some
security risks associated with the sharing and storage of
information in cyberspace, such as information leakage, theft,
and tampering, which may lead to financial, economic, and
privacy damages [1], [2]. The information security is an
important scientific issue, and it is closely related to our life
and society security. Chaos-based theories provide a special
way for image encryption technology. The encryption algo-
rithm of image information by integrating chaos theories with
cryptography is significantly better than using cryptography
alone. A deterministic chaotic system is very sensitive to the
initials and parameters of system, and it can generate pseudo-
random sequences [3], [4], so it is suitable for designing
cryptographic encryption algorithms.
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In 1989, Matthews first introduces chaos into cryptography
[5]. In 1997, Friedrich proposes the scrambling-diffusion
algorithm for image encryption, and the research of chaos-
based encryption has been received widespread attention [6].
Since a typical chaotic encryption scheme is proposed in
1998 [7], much research work on chaos-based encryption
has been widely studied by scholars around the world.
Recently, some image encryptions are investigated for the
information security. In reference [8], the synchronization
of time-delayed systems is used to transmit the information
of encrypted image. A method of secure communication is
designed through the synchronization of chaotic systems by
designing linear feedback controllers [9]. By the confusion
and diffusion encryption, a symmetric algorithm is designed
by Logistic map [10]. In reference [11], an encryption algo-
rithm is introduced by 4-D Logistic map, and the pixel values
of image is encrypted by DNA rules. Similarly, a new en-
cryption is given by 2-D Hénon-sine map and DNA coding,
the feasibility and practicality of the encryption algorithm
are shown by the experimental results of image information
[12]. In reference [13], a chaotic system with two scrolls is
proposed based on four quadratic nonlinear terms. By the
improved Logistic map, sine mapping and tent mapping, an
encryption algorithm is proposed for image information via
row scrambling and sawtooth transformation [14]. In refer-
ence [15], a new chaotic system is presented for a finance
system with two nonlinearities. As some encryption based on
dissipative chaotic system may be attacked by reconstruction,
an image encryption is designed by the new dissipative chaos
model, and it avoids the risks in encryption algorithms [16].
An improved encryption technique is proposed by multiple
discrete dynamical chaotic systems [17]. Based on Logistic
map and deep autoencoder, an encryption method is proposed
for image information to effectively resists some attacks
[18]. In reference [19], an encryption algorithm is presented
for image by chaotic systems, and the key sequences are
given by the plaintext image. By a sine-cosine chaotic map
and DNA rules, the chaotic sequences are used to encrypt
the index of row and column in plaintext image, and the
coding and decoding are randomly selected based on pseudo-
random sequences [20]. A pixel-split encryption algorithm
is designed by 2-D Salomom map, the high and low bits
are selectively exchanged for the image pixels, resulting
in that the encrypted image is recovered by the corrected
key [21]. A parallel algorithm is introduced to cipher the
image in bit-level, and multiple threads are used to generate
keystream for diffusion [22]. The encryption of confusion
and diffusion is proposed by an improved one-dimensional
chaotic map, and it has successfully passed multiple security
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tests [23]. An encryption algorithm of bit-level permutation
is proposed based on hyperchaotic system, and it can resist
statistical analysis and differential attack [24]. Obviously,
chaotic systems have been widely studied with many other
disciplines, and the image encryption application of chaos
has received much attention and extensive research. Various
efficient and secure methods are proposed for the image
encryption, such as the chaotic function of MS Tent map
[25], and the security of information encryption is improved
by designing new chaos-based encryption algorithms [26]–
[28].

Therefore, the chaotic system with n-scroll chaotic attrac-
tors is studied through the variable transformation method
of nth order polynomials for complex numbers. The chaotic
system with multiple scrolls is applied to generate chaotic
sequences, and new pseudo-random sequences are obtained
through preprocessing techniques such as the operations of
multiplication and modulo. Therefore, the image information
is ciphered by scrambling and confusion encryption via the
pseudo-random sequences. The main content is summarized
as follows: (1) New chaotic systems with n-scroll are de-
signed by the variable transformation method of nth order
polynomials for complex numbers. (2) Based on the chaotic
system with six scrolls, three sequences are generated by
using a hash function and iterative processing. A chaos-based
algorithm is designed for image by the block scrambling and
pixel encryption. (3) The security of encryption algorithm is
discussed by key sensitivity, crop attack, and noise attack,
etc. The effectiveness and security are verified by numerical
experiments.

The design and analysis of chaotic system with multiple
scrolls are given in Section II. In Section III, an encryption
algorithm for image is investigated via the chaotic system
with six scrolls, and the effectiveness is verified by the results
of the simulation experiments. The security of proposed
method is discussed in Section IV. In Section V, a conclusion
is given.

II. DESIGN OF NEW CHAOTIC SYSTEMS WITH MULTIPLE
SCROLLS

By the anti-control theory of chaotic system [29], [30], a
continuous and uniformly bounded controller u = ε sin(ky)
is designed to control an asymptotically stable linear system,
so that the obtained dynamical system can generate chaotic
behavior, i.e.,

ẋ = σx− ly + az,

ẏ = rx−my − bz,

ż = −fx+ ny − cz + ε sin(ky),

(1)

where x, y, z are the variables, and σ, l, a, r,m, b, f, n, c
denote the parameters of new dynamical system, k and ε
denote control parameters. If the values of these parameters
are given as follows:

σ = 4.195, l = 4.295, a = 1.295

r = 3.1,m = 3.2, b = 6.1, f = 7.605

n = 7.605, c = 1.905, k = 4.7, ε = 3.4.

(2)

then a chaotic system is generated with a positive Lyapunov
exponent [30].

A. Design of New Chaotic System with Four Scrolls

According to the proposed method in reference [31], a new
chaotic system with multiple scrolls is obtained by using vari-
able transformation. If the complex number w = s+ ti, one
has w2 = (s2 − t2) + 2sti, then the variable transformation
is 

x = s2 − t2,

y = 2st,

z = z.

(3)

By the variable transformation in Eq. (3), the Jacobian
matrix of variable transformation is (ẋ, ẏ, ż)T = J ·(ṡ, ṫ, ż)T ,
and one has

J =

 2s − 2t 0

2t 2s 0

0 0 1

 , (4)

so, the inverse Jacobian matrix J can be obtained by

J−1 =


s

2 (s2 + t2)

t

2 (s2 + t2)
0

−t

2 (s2 + t2)

s

2 (s2 + t2)
0

0 0 1

 . (5)

If the variable transformation (3) is substituted on the right
side of system (1), then the new systems with variables
(s, t, z) are represented as

ẋ = σ(s2 − t2)− 2lst+ az,

ẏ = r(s2 − t2)− 2mst− bz,

ż = −f(s2 − t2) + 2nst− cz + ε sin(2kst).

(6)

Based on the variable transformation equation (ṡ, ṫ, ż)T =
J−1 · (ẋ, ẏ, ż)T , the new multi-scroll chaotic system is

ṡ =
σM0 − 2ls2t+ rN0 − 2mst2 + z(as− bt)

2(s2 + t2)
,

ṫ =
−σN0 + 2lst2 + rM0 − 2ms2t− z(as+ bt)

2(s2 + t2)
,

ż = −f(s2 − t2) + 2nst− cz + ε sin(2kst),

(7)

where M0 = s3 − st2 and N0 = s2t− t3.
Therefore, a new chaotic system with four scrolls in Eq.

(7) is obtained by the initials (s0, t0, z0) = (0.1, 0.21, 0.15)
and parameters in Eq. (2), and the attractors of system (7)
are given in Fig. 1.

(a) (b)

Fig. 1. The multi-scroll chaotic attractor in Eq. (7). (a) Attractor of s vs.
t. (b) Attractor of t vs. z.
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B. Design of New Chaotic System with Six Scrolls

Similarly, if the complex number w = u + vi, and one
has w3 = (u3 − 3uv2) + (3u2v − v3)i, then the variable
transformation is given by

x = u3 − 3uv2,

y = 3u2v − v3,

z = z.

(8)

According to variable transformation in Eq. (8), the Jacobian
matrix of variable transformation is (ẋ, ẏ, ż)T = J ·(ṡ, ṫ, ż)T ,
and one has

J =

3u2 − 3v2 −6uv 0
6uv 3u2 − 3v2 0
0 0 1

 , (9)

so, the inverse Jacobian matrix J can be obtained by

J−1 =


u2 − v2

3 (u2 + v2)
2

2uv

3 (u2 + v2)
2 0

−2uv

3 (u2 + v2)
2

u2 − v2

3 (u2 + v2)
2 0

0 0 1

 . (10)

The system (1) with new variables (u, v, z) can be given by
ẋ = σ(u3 − 3uv2)− l(3u2v − v3) + az,

ẏ = r(u3 − 3uv2)−m(3u2v − v3)− bz,

ż = −f(u3 − 3uv2) + n(3u2v − v3)− cz

+ ε sin[k(3u2v − v3)].

(11)

Therefore, the new chaotic system with six-scroll is

u̇ =
σM1 − lN1 + r

(
2u4v − 6u2v3

)
−mM2

3 (u2 + v2)
2

+
z
(
au2 − av2 − 2buv

)
3 (u2 + v2)

2 ,

v̇ =
σ
(
6u2v3 − 2u4v

)
+ lM2 + rM1 −mN1

3 (u2 + v2)
2

−
z
(
2auv + bu2 − bv2

)
3 (u2 + v2)

2 ,

ż = −f
(
u3 − 3uv2

)
+ n

(
3u2v − v3

)
− cz

+ ε sin
[
k
(
3u2v − v3

)]
,

(12)

where M1 = u5 − 4u3v2 + 3uv4, M2 = 6u3v2 − 2uv4 and
N1 = 3u4v − 4u2v3 + v5.

If the initials are (u0, v0, z0) = (0.1, 0.21, 0.15) and the
parameters are given in Eq. (2), then a six-scroll chaotic
system in Eq. (12) is obtained, and the chaotic attractor with
six scrolls is given in Fig. 2.

III. DESIGN OF CHAOTIC ENCRYPTION ALGORITHM

A. Design of Keystream

An encryption algorithm is proposed for image informa-
tion by the chaotic system with six scrolls in Eq. (12).
Firstly, the fourth-order Runge-Kutta algorithm is applied to

(a) (b)

Fig. 2. The multi-scroll chaotic attractor in Eq. (12). (a) Attractor of u vs.
v. (b) Attractor of v vs. z.

the discretization of three-dimensional system (12), and it is
given by

K1 = f(t(i), X(i)),

K2 = f(t(i) + h/2, X(i) +K1h/2),

K3 = f(t(i) + h/2, X(i) +K2h/2),

K4 = f(t(i) + h,X(i) + hK3),

X(i+ 1) = X(i) + h(K1 + 2K2 + 2K3 +K4)/6,

(13)

where i = 1, 2, · · · , n, · · · . Based on Matlab R2020a and Eq.
(13), if the initial values (u0, v0, z0) = (0.1, 0.21, 0.15), the
step h = 0.001 and the time T = 2000, then three chaotic
sequences are given by

X = (X1,X2,X3). (14)

Therefore, the sequences {X1,X2,X3} are used to scramble
and diffuse plaintext information, and the new sequences are
given by following five steps.

Step 1: A plain image P of size M ×N is chosen, and a
sequence W with 256 bits of image P is generated by the
hash function of SHA-256.

Step 2: The sequence W is divided into three parts, and
they are converted to decimal values {W1,W2,W3}. Then
new sequences {V1,V2,V3} are obtained by removing the
first three and the last three values of {W1,W2,W3}.

Step 3: Three secret keys {R1, R2, R3} are obtained by
summing and modulus M of sequences {V1,V2,V3}, and
they are given by

Ri = (

ni∑
j=1

Vi(j)) mod 256, (15)

where ni is the length of Vi (i = 1, 2, 3).
Step 4: New sequences {Z1,Z2,Z3} are obtained by

{R1, R2, R3}, and they are given as follows:
Z1 = fix

(
mod(X1 × 100×R1, 1)× 105

)
,

Z2 = fix
(
mod(X2 × 100×R2, 1)× 105

)
,

Z3 = fix
(
mod(X3 × 100×R3, 1)× 105

)
.

(16)

Therefore, the pseudo-random sequences {Z1,Z2,Z3} can
pass NIST test, and they are used to the encryption algorithm.

Step 5: In order to apply the pseudo-random sequences
{Z1,Z2,Z3} to image encryption, new sequences {Z ′

1,Z
′
2,

Z ′
3} are obtained by a modulo operation, i.e.,

Z ′
1 = Z1 mod 64,

Z ′
2 = Z2 mod 64,

Z ′
3 = Z3 mod 256.

(17)
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B. Design of Encryption Algorithm

Based on the chaotic system with multiple scrolls, the
flowchart of image encryption application is shown in Fig.
3. The plain image P is firstly scrambled in blocks, and it is
encrypted by sequences in Eq. (17). The proposed method of
image encryption is sensitive to plaintext by using the hash
function of SHA-256.

Plain Image Hash Sequence W

SHA-256

Initial Conditons
Multi-scroll Chaotic 

System

Chaotic 

Sequences X

Pseudo-random 

Sequences Z and Z
'Secret Keys R

Encrypted Image

Z1
'

Row Scrambling 

of Block

Diffusion Encryption 

Z3
'

Column Scrambling 

of Block

Z2
'

Fig. 3. Flowchart of image encryption by the chaotic system with six
scrolls in Eq. (12).

According to the encryption algorithm, the scrambling and
diffusion encryptions are designed by the sequences Z ′

i (i =
1, 2, 3), and it is given as follows:

(1) Row Scrambling of Blocks
Step 1: The plaintext is divided into image blocks of size

8× 8, and the number of blocks is M/8×N/8.
Step 2: The sequence Z ′

1 is used for row scrambling of
blocks. The ith and Z ′

1(i)th blocks are exchanged if Z ′
1(i) >

32 (i = 1, 2, · · · ,M/8).
On the contrary, the ith and Z ′

1(i)th blocks are exchanged
if Z ′

1(i) ⩽ 32 (i = M/8, (M − 1)/8, · · · , 1). According to
the row scrambling of blocks, then the encrypted image P1

is obtained by{
P1(i) = P (Z ′

1(i)), (i = 1, 2, · · · ,M/8), Z ′
1(i) > 32,

P1(i) = P (Z ′
1(i)), (i = M/8, · · · , 2, 1), Z ′

1(i) ⩽ 32.

(2) Column Scrambling of Blocks
Similarly, the pseudo-random sequence Z ′

2 is used for
column scrambling of blocks. The ith and Z ′

2(i)th blocks of
scrambled image are exchanged from 1 to N/8 if Z ′

2(i) ⩾
32. Otherwise, the ith and Z ′

2(i)th blocks of scrambled
image are exchanged from N/8 to 1 if Z ′

2(i) < 32, and
the column scrambled image P2 is{

P2(i) = P1(Z
′
2(i)), (i = 1, 2, · · · , N/8), Z ′

2(i) > 32,

P2(i) = P1(Z
′
2(i)), (i = N/8, · · · , 1), Z ′

2(i) ⩽ 32.

(3) Diffusion Encryption
Step 1: The sequence Z ′

3 is applied to the diffusion
encryption of image P2, and the first pixel in P2 is ciphered
by sequence Z ′

3, i.e., P3(1) = P2(1)⊕Z ′
3(1).

Step 2: The rest of P2 is encrypted by the previous pixel
of P2 and the sequence Z ′

3, then the encrypted image P3 is

P3(i) = P2(i)⊕ P2(i− 1)⊕Z ′
3(i), (i = 2, 3, · · · ,M ×N).

C. Decryption Algorithm

The decryption algorithm is designed by the reverse oper-
ation of encryption algorithm, and it is given as follows:

Step 1: The first pixel of encrypted image P3 is decrypted
by the sequence Z ′

3, i.e., P2(1) = P3(1)⊕Z ′
3(1).

Step 2: The rest of image P3 is decrypted by the sequence
Z ′

3 and P2, then the decrypted image P2 is obtained by

P2(i) = P3(i)⊕Z ′
3(i)⊕ P2(i− 1), (i = M ×N, · · · , 3, 2).

Step 3: The scrambled image P2 is divided into M/8 ×
N/8 blocks of size 8 × 8. The ith and Z ′

2(i)th blocks of
matrix P2 are exchanged from N/8 to 1 if Z ′

2(i) ⩽ 32.
On the contrary, the ith and Z ′

2(i)th blocks of matrix P2 are
exchanged from 1 to N/8 if Z ′

2(i) > 32. Then the scrambled
image P1 is decrypted by{

P1(i) = P2(Z
′
2(i)), (i = N/8, · · · , 2, 1), Z ′

2(i) ⩽ 32,

P1(i) = P2(Z
′
2(i)), (i = 1, 2, · · ·N/8), Z ′

2(i) > 32.

Step 4: The ith and Z ′
1(i)th blocks of scrambled image P1

are exchanged from M/8 to 1 if Z ′
1(i) < 32. Otherwise, the

ith and Z ′
1(i)th blocks of scrambled image P1 are exchanged

from 1 to M/8 if Z ′
1(i) > 32. Therefore, the original image

P is recovered by{
P (i) = P1(Z

′
1(i)), (i = M/8, · · · , 2, 1), Z ′

1(i) ⩽ 32,

P (i) = P1(Z
′
1(i)), (i = 1, 2, · · ·M/8), Z ′

1(i) > 32.

D. Results of Experimental Simulation

According to the proposed algorithm of image encryption,
the effectiveness is verified by Matlab R2020a. The Goldhill
image is given as an example of encryption, which the size
of image is 512×512, the initial values of system (12) are
(0.1, 0.21, 0.15). The results of the simulation experiment
are shown in Fig. 4.

In Figs. 4(b) and 4(c), the information of original image P
has already been encrypted by blocks scrambling. One cannot
directly obtain the original information from the encrypted
image P3 in Fig. 4(d), and the original image P has achieved
good encryption results. In Fig. 4(e), the original image
P is obtained by the proposed decryption algorithm with
corrected keys. In Fig. 4(f), the error between the original
image and recovered image is 0, so the decryption algorithm
can correctly recover original information.

Remark 1: In the proposed encryption algorithm, different
images will generate different keys {R1, R2, R3} due to the
uniqueness of the hash sequence of image information. The
original image cannot be successfully recovered if one of
the keys is wrong. The keys include the hash sequence of
plaintext, initial values, and parameters in system (12).

IV. SECURITY ANALYSIS

A. Key Space and Key Sensitivity

An algorithm of image encryption must have a large
enough key space, and it is said to be good key sensitivity
if the ciphered image cannot be recovered successfully by
a key with minor error. Therefore, Goldhill image is given
as an example to decrypt the corresponding ciphertext, when
one key is changed while the others keep unchanged. Ex-
perimental results show the original image is only obtained
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. The results of image encryption and decryption. (a) Original image
P ; (b) Block scrambled image P1; (c) Block scrambled image P2; (d)
Encrypted image P3; (e) Decrypted image with corrected keys; (f) The
error between original image (a) and recovered image (e).

by the correct keys. By the decryption results with different
keys in Table I, and the key space (Abbreviated to “KS”) is
calculated by

KS = (1017)3 × (1016)6 × (1015)4 × 1014 = 10221 > 2734.

Furthermore, the KS of different algorithms are given in
Table II, and it is greater than the minimum requirement
2100 [32].

B. Histogram and χ2 Tests

An algorithm of image encryption usually needs to analyze
the distributions of grayscale values. It may be difficult
for attacker to get pixel value through statistical analysis if
the histogram of ciphered image is uniform. In Fig. 5, the
histograms of Goldhill image and scrambled image are the
same and uneven, but it is uniform for the ciphered image
P3. So, it is very difficult to directly get information from
the encrypted image by the statistical analysis.

The Chi-square test is given to calculate the fitting degree
between the actual values and the theoretical values of two
or more samples [36]. For a gray image of size M ×N , and
the Chi-square test is given by

χ2 =
255∑
i=0

(fi − gi)

gi
, (i = 0, 1, 2, · · · , 255),

where fi is the frequency of each pixel (0, 1, · · · , 255), gi =
(MN)/256 is the expected frequency.

TABLE I
KEY SENSITIVITY OF ENCRYPTION ALGORITHM

Key errors Recovered the original image

|u0 − u′
0| ⩾ 10−16 No

|v0 − v′0| ⩾ 10−15 No

|z0 − z′0| ⩾ 10−16 No

|σ − σ′| ⩾ 10−16 No

|l − l′| ⩾ 10−17 No

|a− a′| ⩾ 10−15 No

|r − r′| ⩾ 10−17 No

|m−m′| ⩾ 10−15 No

|b− b′| ⩾ 10−16 No

|f − f ′| ⩾ 10−15 No

|n− n′| ⩾ 10−17 No

|c− c′| ⩾ 10−16 No

|k − k′| ⩾ 10−14 No

|ε− ε′| ⩾ 10−16 No

TABLE II
THE KEY SPACE OF DIFFERENT ALGORITHMS

Algorithms Key space

The proposed algorithm 2734

Ref. [33] 2366

Ref. [34] 2436

Ref. [35] 2212

(a)
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(e)
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(f)

Fig. 5. Histogram analysis of images. (a) Goldhill image P ; (b) Histogram
of P ; (c) Scrambled image P2; (d) Histogram of P2; (e) Encrypted image
P3; (f) Histogram of P3.
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The Chi-square χ2
0.05(255) = 293.25 if the freedom

degree is 255 and the significance level is 0.05. In Table III,
the results of Chi-square test of original images are greater
than 293.25, while the results of the corresponding encrypted
images are less than 293.25. Therefore, all the histograms
of the encrypted images are uniformly distributed and have
good confidentiality by the proposed encryption algorithm.

TABLE III
THE CHI-SQUARE TEST χ2

0.05(255) OF DIFFERENT IMAGES

Images Goldhill Baboon Peppers

Plaintext 1.6162× 105 1.8760× 105 1.3884× 105

Ciphertext 265.8359 235.7070 272.2539

C. Information Entropy

For a gray image, the information entropy is given to show
the random distribution of pixel values, and it is given by [37]

H = −
255∑
i=0

pi log2(pi), (18)

where pi is the probability of pixel i. In theory, the expected
information entropy for an image with a grayscale level of
256 is equal to 8.

In Table IV, the results of information entropy for different
plaintext and ciphertext are shown according to the formula
in Eq. (18). Obviously, the information entropy of ciphertext
is close to 8, so the ciphered image has effectively hidden
the statistical information of the plaintext.

TABLE IV
THE RESULTS OF INFORMATION ENTROPY

Images Plaintext Ciphertext

Goldhill 7.4778 7.9913

Baboon 7.3579 7.9916

Peppers 7.5925 7.9914

Ref. [38] 7.4456 7.9768

Ref. [39] 7.5925 7.9757

D. Correlation Coefficient Analysis

Usually, the pixel value of an image is very similar to the
adjacent pixel. If n pairs of adjacent pixel values (ki, li) of
an image are randomly given, then the correlation coefficient
of vectors k = {ki} and l = {li} (i = 1, 2, · · · ,M ×N) is
[40]

rkl =
cov(k, l)√
D(k)

√
D(l)

,

cov(k, l) =
1

n

n∑
i=1

(ki − E(k)) (li − E(l)) ,

D(k) =
1

n

n∑
i=1

(ki − E(k))
2
, E(k) =

1

n

n∑
i=1

ki.

In Table V, the correlation coefficients are shown for the
adjacent pixels in three directions when n = 10000, and they

are close to zero when the original images are encrypted by
the proposed encryption algorithm, i.e., the correlation of
adjacent pixels has been significantly reduced.

In Fig. 6, the correlation diagrams of plaintext are given
when n = 1000, and adjacent pixels have high correlation.
In Fig. 7, the distribution of ciphered image is uniform, and
one cannot get the pixel values from the low correlation of
adjacent pixels.

TABLE V
CORRELATION COEFFICIENTS OF IMAGES IN DIFFERENT DIRECTIONS

Images Horizontal Vertical Diagonal Average

Goldhill 0.9747 0.9733 0.9666 0.9547

Encrypted Goldhill −0.0058 0.0167 0.0059 0.0056

Baboon 0.7549 0.8620 0.7259 0.7809

Encrypted Baboon 0.0079 −0.0002 −0.0131 0.0071

Pappers 0.9826 0.9765 0.9674 0.9755

Encrypted Pappers 0.0094 −0.0086 0.0044 0.0074

Ref. [41] 0.0241 −0.0222 0.0169 0.0211

Ref. [42] 0.0069 −0.0028 −0.0047 0.0048

Ref. [43] 0.0272 −0.0114 −0.0484 0.0290

Ref. [44] 0.0214 0.0465 −0.0090 0.0256

(a) (b)

Fig. 6. Correlation analysis of Goldhill image. (a) Pixel values (ki, li) vs.
(ki+1, li) in horizontal direction; (b) Pixel values (ki, li) vs. (ki+1, li+1)
in diagonal direction.

(a) (b)

Fig. 7. Correlation analysis of encrypted Goldhill image. (a) Pixel values
(ki, li) vs. (ki+1, li) in horizontal direction; (b) Pixel values (ki, li) vs.
(ki+1, li+1) in diagonal direction.

E. Crop Attack

Usually, the encrypted image may be damaged or de-
stroyed when an attacker is unable to decipher it, so the abil-
ity to resist crop attack is important. In Fig. 8, the cropping
image is deciphered with correct keys when one-sixteenth
and one-quarter of the ciphered image is cut, respectively.
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(a) (b)

(c) (d)

Fig. 8. Test results of crop attack. (a) encrypted image with cropping
1/16; (b) Deciphered image of cropping image (a); (c) Encrypted image
with cropping 1/4; (d) Decrypted image of cropping image (c).

Obviously, the overall image is roughly deciphered from the
cropping image.

In order to know more about the degree of image restora-
tion after cropping attack, the proportion of different pixels,
mean absolute error (Abbreviated to “MAE”), and mean
relative error (Abbreviated to “MRE”) between the recovered
and original images are calculated by different cropping
positions. In Table VI, the results of MAE and MRE are
small when the encrypted image is damaged in different
positions, and most areas of the cropping image can be
decrypted successfully.

TABLE VI
COMPARISON RESULTS OF DIFFERENT SIZES OF CROP ATTACK

Size of
crop attack

Position of
crop attack

Proportion of
different pixels MAE MRE

1/16

Upper-right 6.32% 4.74 1.86%

Middle 6.38% 4.67 1.83%

Lower-left 6.33% 4.66 1.83%

1/4

Upper-right 25.10% 18.81 7.38%

Middle 25.20% 18.88 7.40%

Lower-left 25.10% 18.65 7.31%

F. Noise Attack Analysis

An efficient algorithm of image encryption must resist
to noise attacks, so the security of proposed algorithm is
discussed by the salt & pepper noise (Abbreviated to “SPN”),
gaussian noise (Abbreviated to “GN”), and speckle noise
(Abbreviated to “SN”). The results of decrypted images are
shown in Figs. 9-11 when the ciphered image P3 is disturbed
by the three types of noise, respectively.

Obviously, the encrypted image can be successfully de-
crypted with noise at different levels. The overall image
information can be recognized, even though there are some
noise points in the decrypted image. The decrypted results

(a) (b)

Fig. 9. The decrypted image when encrypted image is disturbed by SPN
attack. (a) The density of SPN is 10−3. (b) The density of SPN is 10−2.

(a) (b)

Fig. 10. The decrypted image when encrypted image is disturbed by GN
attack. (a) The variance of GN is 10−3. (b) The variance of GN is 10−2.

of ciphered images with SPN are better than the ciphered
image with GN and SN.

In Table VII, the comparisons of the deciphered and the
original images are discussed by the proportion of different
pixels, MAE, and MRE. Most pixel values between the
deciphered and original images are different, but MAE and
MRE are relatively small. Also, the MAE and MRE of SPN
are smaller than the GN and SN. Therefore, the proposed
algorithm can resist to SPN, GN, and SN attacks to some
extent.

TABLE VII
COMPARISON RESULTS OF DIFFERENT NOISE ATTACK

Noise variance Types of noise Proportion of
different pixels MAE MRE

10−2

SPN 90.92% 5.47 2.15%

GN 99.06% 42.43 16.64%

SN 98.54% 31.49 12.35%

10−3

SPN 88.66% 3.35 1.31%

GN 97.98% 23.55 9.23%

SN 97.12% 16.80 6.59%

(a) (b)

Fig. 11. The decrypted image when encrypted image is disturbed by SN
attack. (a) The variance of SN is 10−3. (b) The variance of SN is 10−2.
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G. Differential Attack

In order to compare the differences between two ciphertext
images, the same encryption algorithm and keys are used to
encrypt two plaintext images with a small error of pixel val-
ues, respectively. Based on differential attack, the differences
of two ciphertext images are usually shown by the number of
pixels change rate (Abbreviated to “NPCR”) and the unified
average changing intensity (Abbreviated to “UACI”). The
calculation formulas are given by [45]

NPCR =

∑M
i=1

∑N
j=1 Di,j

M ×N
× 100%,

D(i,j) =

{
1, E(i, j) ̸= E′(i, j),
0, E(i, j) = E′(i, j),

UACI =

∑M
i=1

∑N
j=1

E(i,j)−E′(i,j)
255

M ×N
× 100%,

where E and E′ are ciphered images generated from two
original images with a small error.

The pixel of position (2, 43) in Goldhill image is changed
from 166 to 167, then these two original images are used
to obtain new encrypted images E and E′ by the proposed
encryption algorithm. Similarly, the pixel of position (2, 43)
in Baboon image is changed from 80 to 81, and the pixel of
position (2, 43) in Peppers image is changed from 76 to 77,
then NPCR and UACI are shown in Table VIII, respectively.
Obviously, they are close to the corresponding expected val-
ues 99.6094 and 33.4635. Therefore, the proposed algorithm
can resist differential attack and improve the security of
encrypted information.

TABLE VIII
TEST RESULTS OF NPCR AND UACI (%)

Images NPCR UACI

Goldhill 99.6040 33.5376

Baboon 99.6128 33.4632

Pappers 99.6243 33.4950

Ref. [46] 99.8700 33.2900

Ref. [47] 99.2400 33.3873

Ref. [48] 99.5400 28.2700

Ref. [44] 99.5800 33.4400

H. NIST Test

The National Institute of Standards and Technology (Ab-
breviated to “NIST”) provides 15 tests to show whether a
sequence is random [49]. The sequence is said to be random
if the results of NIST test are greater than 0.01.

In Table IX, the results of NIST test are given for
sequences {Z1,Z2,Z3} in Eq. (16), so the sequences
{Z1,Z2,Z3} pass NIST test.

V. CONCLUSION

A class of chaotic systems with multiple scrolls is inves-
tigated through the transformation of nth order polynomials
for complex numbers, and two examples of chaotic systems
with four-scroll and six-scroll chaotic attractors are proposed.
Similarly, many new chaotic systems with multiple scrolls

TABLE IX
THE RESULTS OF NIST TEST FOR SEQUENCES Zi (i = 1, 2, 3)

Test items Z1 Z2 Z3

Frequency 0.6163 0.8677 0.0519

Frequency within a block 0.9978 0.1538 0.8343

Runs 0.1223 0.8165 0.6787

Longest-run of-ones 0.1453 0.9241 0.5479

Binary matrix rank 0.4944 0.8832 0.1025

Discrete fourier transform 0.2023 0.6163 0.3669

Non-overlapping template matching 0.4906 0.5078 0.5167

Overlapping template matching 0.3838 0.7598 0.7981

Maurer’s universal statistical 0.8978 0.8514 0.0428

Linear complexity 0.9114 0.4559 0.4373

Serial 0.6571 0.2899 0.1848

Approximate entropy 0.2757 0.4190 0.0179

Cumulative sums 0.3970 0.6167 0.7495

Random excursions 0.4604 0.1750 0.4790

Random excursions variant 0.3283 0.3723 0.4686

can be designed according to the proposed method, and it
provides a new approach to design chaotic systems with
multiple scrolls. The sequences of chaotic system with six
scrolls are applied to design encryption algorithm, and they
can pass NIST test. A simple encryption algorithm of image
information is investigated by the blocks scrambling and
pixels diffusion encryption. The effectiveness and feasibility
are verified by the experimental results of image encryption.
According to the secure analyses, the proposed algorithm can
resist some common attacks, such as crop attack and noise
attack. The chaos-based encryption algorithm is suitable
for multimedia information, and it will be applied to the
information encryption of image or video in the future.
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