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Abstract—The Fibonacci sequence (FS) can be found in
various aspects of nature. This sequence has applications in
multiple fields of mathematics and real-world scenarios. The FS
is used to build various algebraic structures, including the
Fibonacci group, Fibonacci graph, Fibonacci lattice, Fibonacci
quaternion and Fibonacci octonion. This theory has gained
significant attention recently and is now considered a major
area of number theory. In recent years, there has been
considerable interest in the growth of knowledge in the general
area of Fibonacci numbers and related mathematical problems.
Triple Fibonacci sequences (TFS) have gained popularity
recently, although multiplicative triple equations of recurrence
relations are less well-known. In 1202, Leonardo of Pisa, also
known as Fibonacci (which means "son of Bonacci"), introduced
the results of his investigation into expanding a rabbit
population. The FS is recognized as a sequence with astonishing
properties. In 1985, K.T. Attanasov introduced the Coupled
Fibonacci Sequence (CFS), and further developments were
made in 1987. However, compared to the additive form of TFS,
the multiplicative form of TFS is less well-known. The
multiplicative triple Fibonacci sequences (MTFS) of the second
and third order represent a novel extension of the classical FS,
introducing three specific schemes for the second order and nine
specific schemes for the third order. This mathematical study
explores the intricate relationships between numbers in a
multiplicative context, revealing fascinating patterns and
properties.

Index Terms- FS, CFS, TFS, MTFS.

I. INTRODUCTION
ne well-known integer sequence is the Fibonacci
sequence (FS). Mathematicians have long been

fascinated by this series. The FS has applications in numerous
fields, including architecture, engineering, computer science,
physics, nature, art, and more. By altering the recurrence
relation, the initial condition, or both, the FS can be
generalized. This broader form is known as the generalized
Fibonacci sequence. Several authors have explored second-
order generalized Fibonacci sequences in the literature. The
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Fibonacci numbers appear in many remarkable scenarios
andare abundant in nature, often represented in images of
fruits, vegetables, and flowers. Mathematical scholars have
been deeply interested in the study of Fibonacci numbers and
related mathematics for centuries.
Triple Fibonacci sequences (TFS) represent a novel

approach to generalizing the Coupled Fibonacci Sequence
(CFS). The TFS is a significant advancement in the field of
FS and extends the CFS, offering a wide range of intriguing
properties and applications. The multiplicative triple
Fibonacci sequences (MTFS), an extension of the classical
FS, have garnered substantial interest in recent mathematical
research, particularly in the context of second and third-order
derivations under specific schemes. The FS, known for its
ubiquity in nature and applications across diverse fields,
serves as the foundation for exploring the multiplicative
variations proposed in this study.
The TFS represents a fresh approach to the generalization

of the CFS. It is a significant advancement in the field of FS
and a generalization of the CFS, offering a wide range of
fascinating properties and applications. The MTFS, an
extension of the classical FS, has garnered substantial interest
in recent mathematical research, particularly concerning
second and third-order derivations under specific schemes.
The FS, known for its ubiquity in nature and applications
across diverse fields, composes the foundation for exploring
the multiplicative variations proposed in this study.
There has been a great deal of research on the TFS. J. Z.

Lee and J. S. Lee [1] were the first to propose the TFS.
Koshy’s book [2] is an excellent source for these applications.
In 1985, Attanasov [3, 4] popularized the concept of the CFS
and introduced a new TFS design. The TFS connects three
integer sequences, where the elements of one sequence are
part of the generalization of the others, and vice versa. Singh
and Sikhwal [4, 7] computed the MCFS and additive TFS,
both have significant properties.
Under two distinct schemes, Kiran Singh Sisodiya,

Vandana Gupta, and Kiran Sisodiya [8] investigated several
features of the fourth-order MCFS. Omprakash Sikhwal,
Mamta Singh, and Shweta Jain [6] examined various aspects
of the fifth-order CFS. In 2014, Krishna Kumar Sharma et al.
[13] formulated the additive-linked Fibonacci sequences of r-
th order and demonstrated their diverse features. Bijendra
Singh and Omprakash Sikhwal [9] explored both the
primitive aspects of second-order TFS and several features of
additive TFS. The MTFS of the second order was examined
from multiple perspectives by Mamta Singh, Shikha
Bhatnagar, and Omprakash Sikhwal [10]. The properties of
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second-order MTFS were extensive by Satish Kumar, Hari
Kishan, and Deepak Gupta [11]. Additionally, K.S. Sisodiya,
V. Gupta, and V. H. Badshah [12] illustrated different
characteristics of second-order TFS. B. Singh, Kiran Singh
Sisodiya, and Kiran Sisodiya [14] further enhanced the
second-order MTFS and provided convinced fundamental
characteristics. Shoukralla [15] obtained a numerical solution
to the first kind of Fredholm integral equation using the
matrix form of the second-kind chebyshev polynomials.
The second-order MTFS introduces a novel dimension to

the classical sequence by incorporating three distinct initial
values and employing three specific schemes for its evolution.
This extension beyond the traditional Fibonacci paradigm
unveils a richer tapestry of numerical relationships and
behaviors, prompting a deeper investigation into the
underlying mathematical structure. Building upon this
exploration, the study delves into the third-order MTFS,
expanding its complexity by introducing nine specific
schemes. This extension amplifies the intricacies of the
sequence, offering a more nuanced understanding of its
behavior and potential applications. The literature
surrounding FS and its derivatives has witnessed a surge in
interest due to their relevance in various scientific and
computational domains. Previous studies have often focused
on additive properties and relationships within the Fibonacci
framework. However, the current research contributes
significantly by extending the scope to multiplicative
operations under specific schemes, thereby paving the way
for novel insights into the mathematical landscape. This
literature review sets the stage for a comprehensive analysis
of MTFS, emphasizing its potential impact on both
theoretical mathematics and practical applications.
Overall, the MTFS of the second and third order, with

three and nine specific schemes appropriately, presents a
unique and intricate exploration of mathematical sequences,
contributing to a broader understanding of Fibonacci-related
structures and their potential applications. In the second order,
the sequence is generated by considering three initial values
and using a set of rules that dictate the multiplication of the
last three terms to obtain the subsequent term. Exploring
different schemes adds complexity and diversity to the
sequence, uncovering unique numerical behaviors. Moving
into the third order, the investigation expands to nine distinct
schemes, each contributing to the richness and complexity of
the sequence. The interplay of these schemes yields an MTFS
sequence with intricate dynamics, offering mathematicians
and researchers a wealth of material for analysis and
exploration.
This introduction encapsulates a pioneering study in the

realm of mathematical sequences, showcasing the remarkable
versatility and adaptability of the Fibonacci framework when
subjected to multiplicative operations. The exploration of
specific schemes introduces a nuanced understanding of the
sequence's evolution, offering a solid platform for further
research and diverse applications in various mathematical and
computational domains.

Fig. 1: Fibonacci Numbers Spiral

In Fig. 1, The Fibonacci spiral in the figure is constructed by arranging
squares whose side lengths correspond to Fibonacci numbers (1, 1, 2, 3, 5, 8,
13, 21, 34, 55, etc.). Each square’s dimensions represent the sequence’s
increasing values. By connecting the corners of these squares with quarter-
circle arcs, the figure forms a spiral. This spiral visually demonstrates the
Fibonacci sequence's exponential growth pattern and its approximation of the
golden ratio. Such spirals are commonly found in nature, such as in the
arrangement of sunflower seeds, shells, and galaxies, highlighting the
connection between mathematics and natural phenomena.

Fig. 2: Types of Fibonacci Sequence

Fig. 2 illustrates different variations of the Fibonacci sequence. CFS are
modified version where each term is generated based on a coupling between
previous terms. MCFS variations where the relationship between the terms
involves multiplication and coupling of previous terms.TFS is an extension
of the Fibonacci sequence where the next term is calculated based on the
previous three term instead of two. MTFS is an extension where the terms
are calculated based on a multiplicative relationship among three previous
terms.

Fig. 3: Hierarchical Structure of CFS Under Addition
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Fig. 3 illustrates hierarchical structure of the CFS under addition, with
different orders and schemes: 1st order CFS represents the basic CFS with
two schemes, where the terms are derided by adding two coupled sequences.
2nd order CFS are more complex sequence with four schemes, extending the
coupling process to a second level. 3rd order CFS involves eight schemes,
further expanding the coupling and addition process. 4th order CFS are more
advanced version with sixteen schemes, counting the pattern of CFS under
addition. 5th order CFS are most complex, involving thirty-two schemes,
representing the highest order of coupling in this structure.

Fig. 4: Structure of MCFS Under Multiplication
Fig. 4 outlines the structure of the MCFS under multiplication ,

showcasing different orders and schemes. 1st order MCFS is most basic form
of MCFS with two schemes, where terms are generated using a
multiplication process between coupled sequences. 2nd order MCFS is more
advanced version with four schemes, extending the multiplication based
coupling to a second level. 3rd order MCFS increases in complexity with
eight schemes, involving further multiplication of coupled sequence. 4th
order MCFS is higher level sequence with sixteen schemes, expanding the
multiplicative coupling process even further. 5th order MCFS is most
complex sequence, involving thirty-two schemes, representing the highest
level of multiplicative coupling in the FS structure.

Fig. 5: Structure of TFS

Fig. 5 represents the structure of the TFS under addition, featuring different
orders and schemes. 1st order TFS is the basic form of the TFS, where each
term is derived from the sum of the previous three terms, with three schemes
for generating the sequence. 2nd order TFS is more complex extension,
incorporating with nine schemes, where the coupling and addition process
are applied at the second level. 3rd order TFS involves twenty-seven schemes,
expanding the addition process to further include previous terms at an even
higher level. 4th order TFS is most complex version in this series, with
eighty-one schemes, involving a highly intricate addition process across
multiple levels.

Fig. 6: Structure of MTFS
Fig. 6 illustrates the structure of the MTFS, showcasing increasing
complexity through various orders and schemes. 1st order MTFS generates
terms by multiplying the previous three terms, utilizing three schemes for
sequence generation. 2nd order MTFS is more complex version that applies
the multiplicative relationship at a second level, incorporating nine schemes
to enhance the sequence formation. 3rd order MTFS further expands the
multiplicative structure, using twenty-seven schemes for generating terms
through the multiplication of three previous terms in more intricate patterns.
4th order MTFS is most advanced level in this series, with eighty-one
schemes, where the multiplicative relationships become increasingly
elaborate across multiple levels.

II. SECOND ORDER MTFS
Let {Ӿ�}�=0

∞ , {Ұ�}�=0
∞ ��� {Ƶ�}�=0

∞ be three infinite sequences
with initial values �, �, �, �, � and � which are referred to as
the 3-F Sequence or TFS.

If Ӿ0 = �, Ұ0 = �, Ƶ0 = �, Ӿ1 = �, Ұ1 = � and Ƶ1 = �

Then the there are nine different Multiplicative Triple
Fibonacci Sequence schemes, each defined by initial values
�, � and � .These sequences evolve through distinct
multiplicative relationships, generating unique patterns and
behaviors. Additionally, we will introduce parameters � , � ,
and � to further enhance the complexity and richness of these
sequences. J. Z.Lee and J. S.Lee [1] defined following nine
different schemes of multiplicative triple Fibonacci sequences
are as follows:
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Table I:All the schemes of MTFS of Second order
Scheme Ӿ�+2 Ұ�+2 Ƶ�+2

1 Ұ�+1. Ƶ� Ƶ�+1. Ӿ� Ӿ�+1. Ұ�

2 Ƶ�+1. Ұ� Ӿ�+1. Ƶ� Ұ�+1. Ӿ�

3 Ӿ�+1. Ұ� Ұ�+1. Ƶ� Ƶ�+1. Ӿ�

4 Ұ�+1. Ӿ� Ƶ�+1. Ұ� Ӿ�+1. Ƶ�

5 Ӿ�+1. Ƶ� Ұ�+1. Ӿ� Ƶ�+1. Ұ�

6 Ƶ�+1. Ӿ� Ӿ�+1. Ұ� Ұ�+1. Ƶ�

7 Ӿ�+1. Ӿ� Ұ�+1. Ұ� Ƶ�+1. Ƶ�

8 Ұ�+1. Ұ� Ƶ�+1. Ƶ� Ӿ�+1. Ӿ�
9 Ƶ�+1. Ƶ� Ӿ�+1. Ӿ� Ұ�+1. Ұ�

Properties of seventh, eighth and ninth scheme. Below are
the first few terms of the seventh schemes:

Table II: Some initial values of seventh scheme of MTFS
� Ӿ� Ұ� Ƶ�
0 � � �
1 � � �
2 �� �� ��
3 ��2 ��2 ��2

4 �2�3 �2�3 �2�3

5 �3�5 �3�5 �3�5

The eight scheme's initial terms are listed below:

Table III: Some initial terms of eighth scheme of MTFS
� Ӿ� Ұ� Ƶ�
0 � � �
1 � � �
2 �� �� ��
3 ��2 ��2 ��2

4 �2�3 �2�3 �2�3

5 �3�5 �3�5 �3�5

Following are the first few terms of the 9th schemes:

Table IV:Some initial terms of ninth scheme of MTFS
� Ӿ� Ұ� Ƶ�

0 � � �
1 � � �
2 �� �� ��
3 ��2 ��2 ��2

4 �2�3 �2�3 �2�3

5 �3�5 �3�5 �3�5

O. P. Sikhwal, M. Singh, and S. Bhatnagar [10] examined
a wide range of second-order results.

III. MAIN RESULTS OF 2ND ORDER MTFS
We will present some other results on the MTFS of Second

order under three specific schemes and Third Order under
nine schemes in this paper.

Now, under Schemes 7th, 8th and 9th, we introduce some
results of the MTFS of Second Order:

Theorem 1: For each whole number �:

(a) Ӿ�+1 = Ӿ0
��Ӿ1

��+1

(b) Ұ�+1 = Ұ0
��Ұ1

��+1

(c) Ƶ�+1 = Ƶ0
��Ƶ1

��+1

Proof: These results are confirmed by the induction
hypothesis.

(a) If � = 0, then

Ӿ1 = Ӿ0
�0Ӿ1

�1

= Ӿ1

For � = 1, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate
for some integer � ≥ 1. Then

Ӿ�+2 = Ӿ�+1Ӿ� (By Scheme 7)

= Ӿ0
��Ӿ1

��+1Ӿ0
��−1Ӿ1

�� (By given Hypothesis)

= Ӿ0
��+��−1Ӿ1

��+1+��

= Ӿ0
��+1Ӿ1

��+2

The conclusion is valid for all integers � ≥ 0 . Similar
evidence is available for the remaining parts (b) and (c).

Example based on Theorem 1

Consider a Fibonacci sequence �� , where each term is
the sum of the two preceding terms. This sequence typically
starts with 0 and 1.

0,1,1,2,3,5,8,13, 21………

�0 = 0, �1 = 1, �2 = 1, �3 = 2, �4 = 3, �5 = 5 and so
on..

Let {Ӿ�}�=0
∞ , {Ұ�}�=0

∞ and {Ƶ�}�=0
∞ be three sequences

where each term is the product of the two preceding ones,
such that

{Ӿ�}�=0
∞ = 1,3,3,9,27,243, . . . . . . . . . . . .

Where,

Ӿ0 = 1, Ӿ1 = 3, Ӿ2 = 3, Ӿ3 = 9, Ӿ4 = 27, Ӿ5 = 243 and
so on...
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{Ұ�}�=0
∞ = 2,3,6,18,108,1944. . . . . . . .

Where,

Ұ0 = 2, Ұ1 = 3, Ұ2 = 6, Ұ3 = 18, Ұ4 = 108, Ұ5 = 1944
and so on…

{Ƶ�}�=0
∞ = 1,4,4,16,64,1024, . . . . . . . .

Where,

Ƶ0 = 1, Ƶ1 = 4, Ƶ2 = 4, Ƶ3 = 16, Ƶ4 = 64, Ƶ5 = 1024
and so on...

Now we are going to apply the result of part (a) of
theorem 1

Ӿ�+1 = Ӿ0
��Ӿ1

��+1

Put � = 4, Ӿ4+1 = Ӿ0
�4Ӿ1

�4+1

⇒ Ӿ5 = Ӿ0
�4Ӿ1

�5

= (1)3(3)5

= 243

Now we are going to apply the result of part (b) of
theorem 1 Ұ�+1 = Ұ0

��Ұ1
��+1

Put � = 4, Ұ4+1 = Ұ0
�4Ұ1

�4+1

⇒ Ұ5 = Ұ0
�4Ұ1

�5

= (2)3(3)5

= 1944

Now we are going to apply the result of part (c) of
theorem 1 Ƶ�+1 = Ƶ0

��Ƶ1
��+1

Put � = 4, Ƶ4+1 = Ƶ0
�4Ƶ1

�4+1

⇒ Ƶ5 = Ƶ0
�4Ƶ1

�5

= (1)3(4)5

= 1024

Hence the result is confirmed.

Theorem 2: For each natural number �;

Ӿ�Ұ�Ƶ� = (Ӿ0Ұ0Ƶ0)��−1(Ӿ1Ұ1Ƶ1)��

Proof: We will confirm this result with the help of
induction hypothesis

If � = 1, then

Ӿ1Ұ1Ƶ1 = (Ӿ0Ұ0Ƶ0)�0(Ӿ1Ұ1Ƶ1)�1

= (Ӿ1Ұ1Ƶ1)

For n=1, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate
for some integer n ≥ 2.

Then

Ӿ�+1Ұ�+1Ƶ�+1 = (Ӿ�Ӿ�−1)(Ұ�Ұ�−1)(Ƶ�Ƶ�−1)

= Ӿ�Ұ�Ƶ� Ӿ�−1Ұ�−1Ƶ�−1

= (Ӿ0Ұ0Ƶ0)��−1(Ӿ1Ұ1Ƶ1)��(Ӿ0Ұ0Ƶ0)��−2(Ӿ1Ұ1Ƶ1)��−1

=(Ӿ0Ұ0Ƶ0)��−1+��−2(Ӿ1Ұ1Ƶ1)��+��−1

=(Ӿ0Ұ0Ƶ0)��(Ӿ1Ұ1Ƶ1)��+1

The conclusion is valid for all integers � ≥ 1.

Example based on Theorem 2

Consider a Fibonacci sequence �� , where each term is
obtained by adding the two preceding terms. This sequence
usually begins with 0 and 1.

0,1,1,2,3,5,8,13, 21…………

�0 = 0, �1 = 1, �2 = 1, �3 = 2, �4 = 3, �5 = 5 and so
on.

Let {Ӿ�}�=0
∞ , {Ұ�}�=0

∞ and {Ƶ�}�=0
∞ be three sequences

where each term is the product of the two preceding ones,
such that

{Ӿ�}�=0
∞ = 2,4,8,32,256. . . . . . . . . . . .

Where,

Ӿ0 = 2, Ӿ1 = 4, Ӿ2 = 8, Ӿ3 = 32, Ӿ4 = 256 and so on...
{Ұ�}�=0

∞ = 1,1,1,1,1,1. . . . . . . .

Where,

Ұ0 = 1, Ұ1 = 1, Ұ2 = 1, Ұ3 = 1, Ұ4 = 1 and so on...

{Ƶ�}�=0
∞ = 2,3,6,18,108,1944, . . . . . . . .

Where,

Ƶ0 = 2, Ƶ1 = 3, Ƶ2 = 6, Ƶ3 = 18, Ƶ4 = 108 and so on...

Now we are going to apply the result of theorem 2

Ӿ�Ұ�Ƶ� = (Ӿ0Ұ0Ƶ0)��−1(Ӿ1Ұ1Ƶ1)��

Put � = 4
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Ӿ4Ұ4Ƶ4 = (Ӿ0Ұ0Ƶ0)�4−1(Ӿ1Ұ1Ƶ1)�4

⇒ 256 × 1 × 108 = (2 × 1 × 2)2(4 × 1 × 3)3

⇒ 27648 = (4)2(12)3

= 16 × 1728

= 27648

Hence the result is verified.

Theorem 3: For each whole number �;

(a) Ӿ�Ӿ�+1Ӿ�+2 = Ӿ0
2��+1Ӿ1

2��+2

(b) Ұ�Ұ�+1Ұ�+2 = Ұ0
2��+1Ұ1

2��+2

(c) Ƶ�Ƶ�+1Ƶ�+2 = Ƶ0
2��+1Ƶ1

2��+2

Proof: These results are confirmed by the induction
hypothesis.

If � = 0, then Ӿ0Ӿ1Ӿ2 = Ӿ0
2�1Ӿ1

2�2

= Ӿ0
2
Ӿ1

2

= Ӿ0Ӿ0Ӿ1Ӿ1

= Ӿ0Ӿ1Ӿ0Ӿ1

= Ӿ0Ӿ1Ӿ2 (By Scheme 7)

For � = 0, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate
for some integer n ≥ 1.

Then

Ӿ�+1Ӿ�+2Ӿ�+3 = (Ӿ�+1Ӿ�+2Ӿ�+1Ӿ�+2) (By Scheme 7)

= (Ӿ�+1Ӿ�+1)(Ӿ�+2Ӿ�+2)

= (Ӿ�−1Ӿ�Ӿ�+1)(Ӿ�Ӿ�+1Ӿ�+2)

(By given Hypothesis)

= (Ӿ0
2��Ӿ1

2��+1)(Ӿ0
2��+1Ӿ1

2��+2)

= Ӿ0
2��+2��+1Ӿ1

2��+1+2��+2

= Ӿ0
2��+2Ӿ1

2��+3

The conclusion is valid for all integers � ≥ 0.

For the remaining sections (b) and (c), comparable
evidence is provided.

Example based on Theorem 3

Consider a Fibonacci sequence �� , where each term is
obtained by adding the two preceding terms. This sequence
usually begins with 0 and 1.

0,1,1,2,3,5,8,13,21,…………

�0 = 0, �1 = 1, �2 = 1, �3 = 2, �4 = 3, �5 = 5 and so
on...

Let {Ӿ�}�=0
∞ , {Ұ�}�=0

∞ and {Ƶ�}�=0
∞ be three sequences

where each term is the product of the two preceding ones,
such that

{Ӿ�}�=0
∞ = 4,5,20,100,2000,200000. . . . . . . . . . . .

Where,

Ӿ0 = 4, Ӿ1 = 5, Ӿ2 = 20, Ӿ3 = 100, Ӿ4 = 2000 and so
on...

{Ұ�}�=0
∞ = 1,7,7,49,343,16807. . . . . . . .

Where,

Ұ0 = 1, Ұ1 = 7, Ұ2 = 7, Ұ3 = 49, Ұ4 = 343 and so on...

{Ƶ�}�=0
∞ = 2,4,8,32,256,8192. . . . . . . .

Where,

Ƶ0 = 2, Ƶ1 = 4, Ƶ2 = 8, Ƶ3 = 32, Ƶ4 = 256 and so on...

Now we are going to apply the result part (a) of theorem
3

Ӿ�Ӿ�+1Ӿ�+2 = Ӿ0
2��+1Ӿ1

2��+2

For � = 2, Ӿ2Ӿ3Ӿ4 = Ӿ0
2�3Ӿ1

2�4

⇒ Ӿ2Ӿ3Ӿ4 = Ӿ0
2�3Ӿ1

2�4

⇒ 20 × 100 × 2000 = 4456

⇒ 20000 = 20000

Now we are going to apply the result part (b) of theorem
3

Ұ�Ұ�+1Ұ�+2 = Ұ0
2��+1Ұ1

2��+2

For � = 2, Ұ2Ұ3Ұ4 = Ұ0
2�3Ұ1

2�4

⇒ Ұ2Ұ3Ұ4 = Ұ0
2�3Ұ1

2�4

⇒ 7 × 49 × 343 = 1476

⇒ 117649 = 117649

Now we are going to apply the result part (c) of theorem
3
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Ƶ�Ƶ�+1Ƶ�+2 = Ƶ0
2��+1Ƶ1

2��+2

For � = 2, Ƶ2Ƶ3Ƶ4 = Ƶ0
2�3Ƶ1

2�4

⇒ Ƶ2Ƶ3Ƶ4 = Ƶ0
2�3Ƶ1

2�4

⇒ 8 × 32 × 256 = 2446

⇒ 65536 = 65536

Hence the result is applicable.

Theorem 4: For each whole number � and every natural
no. � ≥ 2;

(a) Ӿ�+�+1Ұ�+�−1 = Ӿ�
��Ӿ�+1

��+1Ұ�
��−2Ұ�+1

��−1

(b) Ұ�+�+1Ƶ�+�−1 = Ұ�
��Ұ�+1

��+1Ƶ�
��−2Ƶ�+1

��−1

(c) Ƶ�+�+1Ӿ�+�−1 = Ƶ�
��Ƶ�+1

��+1Ӿ�
��−2Ӿ�+1

��−1

Proof: These results are confirmed by the induction
hypothesis.

If � = 2 thenӾ�+3Ұ�+1 = Ӿ�+2Ӿ�+1Ұ�+1

= Ӿ�+1Ӿ�Ӿ�+1Ұ�+1

= Ӿ�
1Ӿ�+1

2 Ұ�
0Ұ�+1

1

= Ӿ�
�2Ӿ�+1

�3 Ұ�
�0Ұ�+1

�1

For � = 2, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate
for some integer � ≥ 3.

Then

Ӿ�+�+2Ұ�+� = Ӿ�+�+1Ӿ�+�Ұ�+�−1Ұ�+�−2

= (Ӿ�+�+1Ұ�+�−1)(Ӿ�+�Ұ�+�−2)

= Ӿ�
��Ӿ�+1

��+1Ұ�
��−2Ұ�+1

��−1Ӿ�
��−1Ӿ�+1

�� Ұ�
��−3Ұ�+1

��−2

= Ӿ�
��+��−1Ӿ�+1

��+1+��Ұ�
��−2+��−3Ұ�+1

��−1+��−2

= Ӿ�
��+1Ӿ�+1

��+2Ұ�
��−1Ұ�+1

��

The conclusion is valid for all integers � ≥ 0, � ≥ 2.

Similar evidence is available for the remaining parts (b)
and (c).

Example based on Theorem 4

Let �� be a Fibonacci sequence whose terms are the sum
of the two preceding ones. This sequence commonly starts
from 0 and 1.

0,1,1,2,3,5,8,13,21,…………

�0 = 0, �1 = 1, �2 = 1, �3 = 2, �4 = 3, �5 = 5 and so
on...

Let {Ӿ�}�=0
∞ , {Ұ�}�=0

∞ and {Ƶ�}�=0
∞ be three sequences

whose terms is the multiplication of the two preceding ones
such that

{Ӿ�}�=0
∞ = 1,3,3,9,27,243, . . . . . . . . . . . .

Where,

Ӿ0 = 1, Ӿ1 = 3, Ӿ2 = 3, Ӿ3 = 9, Ӿ4 = 27, Ӿ5 =
243, Ӿ6 = 6561 and so on...

{Ұ�}�=0
∞ = 2,3,6,18,108,1944. . . . . . . .

Where,

Ұ0 = 2, Ұ1 = 3, Ұ2 = 6, Ұ3 = 18, Ұ4 = 108, Ұ5 = 1944
and so on...

{Ƶ�}�=0
∞ = 1,4,4,16,64,1024, . . . . . . . .

Where,

Ƶ0 = 1, Ƶ1 = 4, Ƶ2 = 4, Ƶ3 = 16, Ƶ4 = 64, Ƶ5 = 1024
and so on...

Now we are going to apply the result of part (a) theorem
4

Ӿ�+�+1Ұ�+�−1 = Ӿ�
��Ӿ�+1

��+1Ұ�
��−2Ұ�+1

��−1

For � = 2 and � = 3

Ӿ6Ұ4 = Ӿ2
�3Ӿ3

�4Ұ2
�1Ұ3

�2

⇒ 108 × 6561 = 329361181

⇒ 708588 = 708588

Similarly, we can apply the result in parts (b) and (c).

Theorem 5: For every integer � ≥ 0, � ≥ 2;

(a) Ӿ�+�+1Ƶ�+�−1 = Ӿ�
��Ӿ�+1

��+1Ƶ�
��−2Ƶ�+1

��−1

(b) Ұ�+�+1Ӿ�+�−1 = Ұ�
��Ұ�+1

��+1Ӿ�
��−2Ӿ�+1

��−1

(c) Ƶ�+�+1Ұ�+�−1 = Ƶ�
��Ƶ�+1

��+1Ұ�
��−2Ұ�+1

��−1

Proof: A similar proof can be given as in theorem 4.

Theorem 6: For every integer n ≥ 0;

(a) Ӿ0Ӿ�+4 = Ӿ0
��+3−1Ӿ1

��+4

(b) Ұ0Ұ�+4 = Ұ0
��+3−1Ұ1

��+4

(c) Ƶ0Ƶ�+4 = Ƶ0
��+3−1Ƶ1

��+4

Proof: We can prove the theorem by the method of
mathematical induction.
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We can also prove theorem 1 to theorem 6 with the help
of schemes 8th and 9th.

IV. 3rd ORDER MTFS
Let {Ӿ�}�=0

∞ , {Ұ�}�=0
∞ ��� {Ƶ�}�=0

∞ be three infinite sequences
with initial values �, �, �, �, �, �, �, � and �, which are
referred to as the 3-F Sequence or TFS.

If Ӿ0 = �, Ұ0 = �, Ƶ0 = �, Ӿ1 = �, Ұ1 = �, Ƶ1 = �, Ӿ2 =
�, Ұ2 = �, Ƶ2 = �,

Then the following are twenty-seven different MTFS
schemes:

Table V: All the schemes of MTFS of third order

Scheme Ӿ�+3 Ұ�+3 Ƶ�+3
1 Ұ�+2. Ƶ�+1. Ӿ� Ƶ�+2. Ӿ�+1. Ұ� Ӿ�+2. Ұ�+1. Ƶ�

2 Ӿ�+2. Ӿ�+1. Ӿ� Ұ�+2. Ұ�+1. Ұ� Ƶ�+2. Ƶ�+1. Ƶ�

3 Ӿ�+2. Ƶ�+1. Ұ� Ұ�+2. Ӿ�+1. Ƶ� Ƶ�+2. Ұ�+1. Ӿ�

4 Ƶ�+2. Ұ�+1. Ӿ� Ӿ�+2. Ƶ�+1. Ұ� Ұ�+2. Ӿ�+1. Ƶ�

5 Ӿ�+2. Ұ�+1. Ƶ� Ұ�+2. Ƶ�+1. Ӿ� Ƶ�+2. Ӿ�+1. Ұ�

6 Ӿ�+2. Ӿ�+1. Ұ� Ұ�+2. Ұ�+1. Ƶ� Ƶ�+2. Ƶ�+1. Ӿ�

7 Ӿ�+2. Ұ�+1. Ӿ� Ұ�+2. Ƶ�+1. Ұ� Ƶ�+2. Ӿ�+1. Ƶ�

8 Ұ�+2. Ӿ�+1. Ӿ� Ƶ�+2. Ұ�+1. Ұ� Ӿ�+2. Ƶ�+1. Ƶ�

9 Ӿ�+2. Ӿ�+1. Ƶ� Ұ�+2. Ұ�+1. Ӿ� Ƶ�+2. Ƶ�+1. Ұ�

10 Ӿ�+2. Ƶ�+1. Ӿ� Ұ�+2. Ӿ�+1. Ұ� Ƶ�+2. Ұ�+1. Ƶ�

11 Ƶ�+2. Ӿ�+1. Ӿ� Ӿ�+2. Ұ�+1. Ұ� Ұ�+2. Ƶ�+1. Ƶ�

12 Ұ�+2. Ұ�+1. Ƶ� Ƶ�+2. Ƶ�+1. Ӿ� Ӿ�+2. Ӿ�+1. Ұ�

13 Ұ�+2. Ƶ�+1. Ұ� Ƶ�+2. Ӿ�+1. Ƶ� Ӿ�+2. Ұ�+1. Ӿ�

14 Ƶ�+2. Ұ�+1. Ұ� Ӿ�+2. Ƶ�+1. Ƶ� Ұ�+2. Ӿ�+1. Ӿ�

15 Ұ�+2. Ƶ�+1. Ƶ� Ƶ�+2. Ӿ�+1. Ӿ� Ӿ�+2. Ұ�+1. Ұ�

16 Ƶn+2. Ұn+1. Ƶn Ӿn+2. Ƶn+1. Ӿn Ұn+2. Ӿn+1. Ұn

17 Ƶ�+2. Ƶ�+1. Ұ� Ӿ�+2. Ӿ�+1. Ƶ� Ұ�+2. Ұ�+1. Ӿ�

18 Ƶ�+2. Ӿ�+1. Ұ� Ӿ�+2. Ұ�+1. Ƶ� Ұ�+2. Ƶ�+1. Ӿ�

19 Ұ�+2. Ӿ�+1. Ұ� Ƶ�+2. Ұ�+1. Ƶ� Ӿ�+2. Ƶ�+1. Ӿ�

20 Ӿ�+2. Ұ�+1. Ұ� Ұ�+2. Ƶ�+1. Ƶ� Ƶ�+2. Ӿ�+1. Ӿ�

21 Ұ�+2. Ұ�+1. Ӿ� Ƶ�+2. Ƶ�+1. Ұ� Ӿ�+2. Ӿ�+1. Ƶ�

22 Ӿ�+2. Ƶ�+1. Ƶ� Ұ�+2. Ӿ�+1. Ӿ� Ƶ�+2. Ұ�+1. Ұ�

23 Ƶ�+2. Ӿ�+1. Ƶ� Ӿ�+2. Ұ�+1. Ӿ� Ұ�+2. Ƶ�+1. Ұ�

24 Ƶ�+2. Ƶ�+1. Ӿ� Ӿ�+2. Ӿ�+1. Ұ� Ұ�+2. Ұ�+1. Ƶ�

25 Ұ�+2. Ӿ�+1. Ƶ� Ƶ�+2. Ұ�+1. Ӿ� Ӿ�+2. Ƶ�+1. Ұ�

26 Ұ�+2. Ұ�+1. Ұ� Ƶ�+2. Ƶ�+1. Ƶ� Ӿ�+2. Ӿ�+1. Ӿ�

27 Ƶ�+2. Ƶ�+1. Ƶ� Ӿ�+2. Ӿ�+1. Ӿ� Ұ�+2. Ұ�+1. Ұ�

Below are the first few terms of the first scheme:

Table VI: Some initial terms of first scheme of MTFS

� Ӿ� Ұ� Ƶ�
0 � � �
1 � � �
2 � � �
3 ��� ��� ���
4 �2�2� �2�2� �2�2�
5 �4�3�2 �4�3�2 �4�3�2

Following are the first few terms of the second scheme:

Table VII:Some initial terms of second scheme of MTFS

� Ӿ� Ұ� Ƶ�
0 � � �
1 � � �
2 � � �
3 ��� ��� ���
4 ��2�2 ��2�2 ��2�2

5 �2�3�4 �2�3�4 �2�3�4

The initial terms of the third scheme are listed below:

Table VIII:Some initial terms of third scheme of MTFS

� Ӿ� Ұ� Ƶ�
0 � � �
1 � � �
2 � � �
3 ��� ��� ���
4 ����� ����� ���ℎ�

Below are the first few terms of the 4th scheme:

Table IX: Some initial terms of fourth scheme of MTFS

� Ӿ� Ұ� Ƶ�
0 � � �
1 � � �
2 � � �
3 ��i ��� ���
4 ��2�2 ��2�2 ��2�2

Below are the first few terms of the 5th scheme:

Table X: Some initial terms of fifth scheme of MTFS

� Ӿ� Ұ� Ƶ�
0 � � �
1 � � �
2 � � �
3 ��� ��� ���
4 �2�2� �2�2� �2�2�

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2645-2655

 
______________________________________________________________________________________ 



Below are the first few terms of the 18th scheme:

Table XI: Some initial terms of eighteenth scheme of
MTFS

� Ӿ� Ұ� Ƶ�
0 � � �
1 � � �
2 � � �
3 ��� ��� ���
4 �2�2� �2�2� �2�2�

The initial terms of the twenty-fifth scheme are listed
below:

Table XII: Some initial terms of twenty-fifth scheme of
MTFS

� Ӿ� Ұ� Ƶ�
0 � � �
1 � � �
2 � � �
3 ��� ��� ���
4 ����� ���ℎ� �����
5 �2�2ℎ���� ℎ2�2����� �2�2����ℎ

The following are the first few terms of the 26th scheme:

Table XIII: Some initial terms of twenty-sixth scheme of
MTFS

� Ӿ� Ұ� Ƶ�

0 � � �
1 � � �
2 � � �
3 ��� ��� ���
4 ��2�2 ��2�2 ��2�2

5 �2�3�4 �2�3�4 �2�3�4

The following are the first few terms of the 27th scheme:

Table XIV: Some initial terms of twenty-seventh scheme
of MTFS

� Ӿ� Ұ� Ƶ�

0 � � �
1 � � �
2 � � �
3 ��� ��� ���
4 ��2�2 ��2�2 ��2�2

5 �2�3�4 �2�3�4 �2�3�4

V. MAIN RESULTS OF 3RD ORDER MTFS
Now we present some results of MTFS of third order under

1st, 2nd, 3rd, 4th, 5th, 18th , 25th, 26th and 27th:

Theorem 7: For each natural no. � ≥ 2:

�=0
� Ӿ�+6Ұ�+6Ƶ�+6�

�=0
� Ӿ�+4Ұ�+4Ƶ�+4�

=
(Ӿ�+5Ұ�+5Ƶ�+5)(Ӿ�+6Ұ�+6Ƶ�+6)

(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)

Proof: We demonstrate these findings through induction
hypothesis:

If � = 2, then

�=0
2 Ӿ�+6Ұ�+6Ƶ�+6�

�=0
2 Ӿ�+4Ұ�+4Ƶ�+4�

=
(Ӿ6Ұ6Ƶ6)(Ӿ7Ұ7Ƶ7)(Ӿ8Ұ8Ƶ8)
(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)(Ӿ6Ұ6Ƶ6)

=
(Ӿ7Ұ7Ƶ7)(Ӿ8Ұ8Ƶ8)
(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)

For n = 2, the conclusion is correct.

We'll proceed by assuming that the outcome is accurate
for some integer � ≥ 2.

Then

�=0
�+1Ӿ�+6Ұ�+6Ƶ�+6�

�=0
�+1Ӿ�+4Ұ�+4Ƶ�+4�

=
(Ӿ�+7Ұ�+7Ƶ�+7) �=0

� Ӿ�+6Ұ�+6Ƶ�+6�
(Ӿ�+5Ұ�+5Ƶ�+5) �=0

� Ӿ�+4Ұ�+4Ƶ�+4�

=
(Ӿ�+7Ұ�+7Ƶ�+7)(Ӿ�+5Ұ�+5Ƶ�+5)(Ӿ�+6Ұ�+6Ƶ�+6)

(Ӿ�+5Ұ�+5Ƶ�+5)(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)

=
(Ӿ�+6Ұ�+6Ƶ�+6)(Ӿ�+7Ұ�+7Ƶ�+7)

(Ӿ4Ұ4Ƶ4)(Ӿ5Ұ5Ƶ5)

The conclusion is valid for all integers � ≥ 0.

Theorem 8: For each whole no. �:

(Ӿ�Ұ�Ƶ�)(Ӿ�+1Ұ�+1Ƶ�+1)
(Ӿ�+3Ұ�+3Ƶ�+3)

=
1

(Ӿ�+2Ұ�+2Ƶ�+2)

Proof: By induction hypothesis, we have

If � = 0, then

(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)
(Ӿ3Ұ3Ƶ3)

=
(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)

(Ұ2Ƶ1Ӿ0)(Ƶ2Ӿ1Ұ0)(Ӿ2Ұ1Ƶ0)

=
(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)

(Ӿ0Ұ0Ƶ0)(Ӿ1Ұ1Ƶ1)(Ӿ2Ұ2Ƶ2)

=
1

(Ӿ2Ұ2Ƶ2)

For � =0, the conclusion is correct.
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We'll proceed by assuming that the outcome is accurate
for some integer � ≥ 1. Then

(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)
(Ӿ�+4Ұ�+4Ƶ�+4)

=
(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)

(Ӿ�+3Ӿ�+2Ӿ�+1)(Ұ�+3Ұ�+2Ұ�+1)(Ƶ�+3Ƶ�+2Ƶ�+1)

=
(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)

(Ӿ�+1Ұ�+1Ƶ�+1)(Ӿ�+2Ұ�+2Ƶ�+2)(Ӿ�+3Ұ�+3Ƶ�+3)

=
1

(Ӿ�+3Ұ�+3Ƶ�+3)

The conclusion is valid for all integers � ≥ 0.

VI. CONCLUSION
The study of the MTFS of the second order under three

specific schemes and the third order under nine specific
schemes has illuminated a fascinating realm of mathematical
intricacies and potential applications. This investigation into
these extended FS has deepened our understanding of their
structural properties and unveiled diverse numerical
relationships beyond the classical Fibonacci framework. The
second-order exploration, featuring three distinct initial
values and evolving through three specific schemes, has
demonstrated the sequence's adaptability and complexity in
response to multiplicative operations. The numerical patterns
and relationships discovered within this context contribute
valuable insights to the existing body of FS literature.
Extending the inquiry to the third order, with nine specific
schemes guiding the multiplicative evolution, has further
enriched the narrative. The intricate dynamics introduced by
these schemes underscore the sequence's versatility and offer
a wealth of patterns for exploration. This research goes
beyond the traditional additive perspectives of FS, opening
new avenues for mathematical inquiry and potential
applications in cryptography, number theory, and
computational algorithms. Reflecting on the MTFS under
specific schemes, this study not only expands the theoretical
understanding of mathematical sequences but also holds
promise for practical applications in various scientific and
computational domains. The findings underscore the
importance of exploring unconventional operations within
well-established mathematical frameworks, paving the way
for future research and innovative applications in
mathematics and related disciplines.
The explorations of the MTFS of the second order under

three specific schemes and the third order under nine specific
schemes have revealed a rich tapestry of mathematical
intricacies and potential applications. The study not only
extended the classical TFS but also introduced multiplicative
factors that add a layer of complexity and depth to the
sequences' behavior. Through a systematic analysis of the
recurrence relations and initial conditions, we observed the
emergence of distinct patterns under each specific scheme.
The second-order MTFS exhibited unique properties

influenced by carefully designed schemes, demonstrating the

sensitivity of the sequence to the choice of initial conditions.
Expanding our exploration to the third-order case,
introducing nine specific schemes further diversified the
mathematical landscape. The interaction of three factors
within each scheme resulted in a wide range of dynamic
behaviors, highlighting the versatility and complexity of these
multiplicative sequences. The results of this research enhance
the theoretical understanding of multiplicative sequences and
create opportunities for practical applications. The
periodicities and convergence behaviors observed provide
valuable insights into potential applications in mathematical
modeling, cryptography, and coding theory.
Moreover, the specific schemes identified in this study

offer a roadmap for future investigations into other order
multiplicative sequences and their applications. In conclusion,
the MTFS of the second and third order exemplifies the
elegance and versatility of mathematical sequences. The
interweaving of factors and the influence of carefully crafted
schemes deepen our appreciation for the inherent beauty and
complexity present in these sequences, motivating further
research and exploration in the broader field of mathematical
sequences and their applications.
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