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Abstract—This paper investigates a single-server queuing
inventory system with impatient customers and multiple vaca-
tion strategies, where the first vacation is a working vacation.
After a customer completes the service, he or she will bring
a product away with probability r or not to bring a product
away with probability 1 − r. Based on the M/M/1 queuing
model, we construct a three-dimensional Markov process to
represent the number of customers, inventory level, and server
state in the system. The steady-state conditions of the system are
obtained by the Neuts-Rao truncation method. Using the matrix
geometric solution method, the steady-state performance indi-
cators are derived. In addition, the cost function is established
to do optimization analysis of the system. Finally, numerical
experiments are conducted to analyze the effects of variations
in system parameters on the performance indicators, and to
determine the optimal inventory strategy and minimum cost
under specific system parameters.

Index Terms—inventory system, impatient customers, op-
tional consumption, quasi-birth and death process

I. INTRODUCTION

THE queuing phenomenon is very common in daily
life, such as when buying things in the mall, handling

business in the bank, etc. The inventory level in a service
system will reduce as customers consume products. When
the inventory reaches a certain level, the manager should send
a replenishing request in time to meet customer demand. If
the customer demand is not satisfied, the customer will leave
the system dissatisfied, thus causing a loss to the system.
Therefore, proper inventory control is of great significance
to the system. Sigman and Simchi-Levi [1] first introduced
the inventory policy to the queuing system. Based on the
M/G/1 queuing model, they investigated the queuing inven-
tory system with limited inventory and obtained this system’s
performance indicators using a matrix geometric solution.
Berman et al. [2] investigated an inventory management
system with service facilities. Under the assumption that
demand and service rates are fixed constants, it is possible to
determine both the optimal order quantity and the associated
system cost. Schwarz et al. [3] formally defined the system
combining queuing and inventory as a queuing-inventory
system. In this system, customer arrivals follow a Poisson
distribution. Service times and replenishment times follow
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an exponential distribution. They analyzed several different
replenishment strategies for a queuing-inventory system,
based on the M/M/1 model with lost sales when inventory
is empty. Finally, the steady-state probability distribution of
the system can be obtained. Saffari et al. [4] continued to
study the M/M/1 queuing inventory system more deeply.
They incorporated the concept of lost sales and extended the
distribution of replenishment times to a general distribution.
Performance metrics and cost functions were established to
determine the optimal order quantity.

Daniel and Ramanarayanan [5] first integrated vacation
theory into the (s, S) inventory system. When inventory
reaches zero, the server immediately enters a vacation state,
and customers are immediately lost. They used renewal
theory and convolution theorem to determine the steady-state
probability of the system. Krishnamoorthy and Viswanath
[6] investigated a production inventory system with server
vacations, where production time and customer arrivals have
Markovian. Finally, they derived the system’s stability, state
distribution, and various performance metrics. Yue and Qin
[7] analyzed a production-inventory system with server va-
cations and production equipment downtime. Additionally,
the steady-state joint distribution of inventory level and
queue length can be determined by using the quasi-birth
and death process. Then they established a cost function
and conducted numerical analysis. Zhang [8] studied a
vacation queuing-inventory system with an (s, S) inventory
strategy and multiple vacation strategies. Moreover, matrix
analysis along with the theory of Markov processes was
utilized to ascertain the steady-state probability distribution
of the system. The relationship between vacation rate and
performance indicators was analyzed. At last, under service
level constraints, the optimal inventory strategy and cost
were determined using a genetic algorithm. Ye and Yue
[9] studied a queuing inventory system with synchronized
multiple vacations at partial servers. They derived the sys-
tem’s steady-state probability and performance indicators
using a quasi-birth-and-death process and matrix-geometric
solution. Finally, they analyzed the effect of each parameter
on the cost function through numerical experiments. Xu
et al. [10] introduced a hybrid vacation mechanism that
combines multiple vacations with single working vacations.
They studied the queuing inventory system model with lost
sales and (s, S) strategy. Using Markov theory, they derived
the steady-state probability vector of the system and related
performance indicators. Besides, they also established the
optimal cost function and analyzed the impact of various
parameters on this function.

In real life situations, customers tend to become impatient
while waiting in line and may exit the queue, causing
disruptions to the system. Haight [11] was the first to
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study the M/M/1 queuing model with stops in 1957. In this
model, when the number of people in the system exceeds
k, customers no longer enter the system. Moreover, Haight
[12] in 1959 continued to study the M/M/1 queuing model
with customers exiting midway. If a customer’s waiting time
exceeds a certain threshold, they choose to leave the system.
Kumar [13] studied that customers who enter the system
with probability p and probability q(= 1 − p) do not enter
the system. When the system population does not exceed
k, differential equations were used to derive the steady-
state probabilities. In 2015, Ammar [14] studied the M/M/1
model with impatient customers and system vacations. The
server enters a vacation state after completing service, and
during this period, only impatient customers are observed.
If a customer arrives while the server is on vacation and
their waiting time exceeds the maximum threshold, they
will exit the system. In addition, the system state was
analyzed and numerically illustrated to determine the impact
of each parameter on performance indicators. Melikov et al.
[15] investigated queuing inventory systems with impatient
customers, considering both finite and infinite waiting spaces.
They used exact and approximate algorithms to analyze the
models and conduct numerical experiments. Shan and Yue
[16] studied the M/M/1/N queuing inventory system model
with impatient customers and multiple working vacations.
They considered two cases: the server takes a vacation
when inventory is empty, and the server takes a vacation
when there are no customers. The steady-state probability
distribution and related performance indicators were obtained
using matrix-iterative methods. Fu et al. [17] examined two
fault types involving a standby service station and initiation
time within the framework of an M/M/1 queuing model.
They derived the steady-state equilibrium conditions and
probability vectors for the system through matrix geomet-
ric methods, calculated the steady-state queue length, and
ultimately performed numerical analysis using Matlab to
interpret their findings. Yang et al. [18] investigated the
M/M/1 repairable queuing system characterized by two types
of server failures and passive clients, employing quasi-birth-
and-death (QBD) processes along with matrix geometric
techniques for their analysis. They presented the steady-state
conditions, derived the probability vectors at equilibrium, and
calculated various steady-state queuing metrics as well as
reliability measures.

In the literature on queuing-inventory systems, it is often
assumed that customers must take a product when they leave
the system. However, Krishnamoorthy et al. [19] studied
a queuing-inventory system with service times, considering
both (s,Q) and (s, S) inventory strategies. They examined
customers either take one product or not after receiving the
service with a certain probability. By calculating the marginal
product of the joint distribution of customer and inventory
numbers, the optimal inventory strategy and the optimal
cost are determined. Manikandan and Nair [20] studied
retry M/M/1/1 queueing inventory system with impatient
customers, where a customer may takes one product with
a certain probability after service. The study also considers
the lost sales when the inventory is empty. Based on the
(s,Q) inventory policy, they calculated the system’s steady-
state probabilities, provided performance indicators and a
cost function. Dinkai et al. [21] studied the inventory system

model with geometric batch demand. In this model, when the
inventory is empty, the server begins multiple vacations. The
number of products required by the customer to receive the
service obeys the geometric distribution. What’s more, they
used the quasi-birth-and-death process and matrix-geometric
solutions to obtain the system’s steady-state distribution.
Additionally, a genetic algorithm was used to perform a
sensitivity analysis of the system’s parameters.

This paper considers both impatient customers and cus-
tomers who consume a product with probability r. It adopts
the hybrid vacation model from [10] to make the model more
realistic. Based on the (s, S) inventory strategy, the paper
studies an M/M/1 queuing-inventory model with impatient
customers and hybrid vacations. When the inventory is
empty, the server initiates the first vacation as a working va-
cation in the multiple vacation strategy. A three-dimensional
Markov process is established, incorporating the number of
customers, inventory level, and server status. Finally, the
Neuts-Rao truncation method is used to determine the steady-
state probability vector, and we provide several performance
indicators. Furthermore, numerical experiments using a ge-
netic algorithm are conducted to find the optimal production
strategy and cost.

Section 2 of this paper provides a detailed description of
the system model. Section 3 conducts a steady-state analysis
of the system, deriving the steady-state balance conditions
and presenting the steady-state distribution using matrix-
geometric solutions. Section 4 gives some relevant system
performance indicators. Section 5 examines the impact of
varying system parameters on system performance indicators,
constructs a mean cost function, and analyzes parameter
sensitivities through numerical experiments.Section 6 gives
the conclusion of this paper.

II. MODEL DESCRIPTION

1) Service Rules: There is a single server present in
the system. The service time of each customer follows
the exponential distribution, and the server only serves one
customer. The system adopts the First-Come-First-Served
(FCFS) discipline.

2) Customer Arrival: Customer arrival follows the Poisson
process with rate λ (λ > 0). The customer accepts the service
when the inventory in the system is not zero. After the service
is completed, the customer will either take away one product
with the probability r(0 < r < 1) or not to take away one
product with the probability 1− r.

3) Vacation Policy: The server takes a multiple vacation
policy where the first vacation is a working vacation. When
the system inventory level is zero, the server initiates the first
vacation, which is a working vacation. During the working
vacation period, the server stops serving if the inventory is
zero. If the products arrive, the server serves a customer at
a lower service rate µw, similar to the regular busy period.
The customer still takes a product with probability r. When
the working vacation ends and the inventory level is not
zero, the server goes directly into the regular busy period.
When the working vacation ends and the inventory level is
still zero, the server initiates a full vacation. During the
full vacation period, the server stops any service. If the
inventory is non-zero after the full vacation, the server enters
the regular busy period, during which the service rate is
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µb (µb > µw). Otherwise, if the inventory remains empty, the
server initiates another full vacation. If the inventory level
is non-zero at the end of the working vacation, the server
goes directly into the regular busy period. Working vacation
time and full vacation time follow exponential distributions
with parameters θw (θw > 0) and θv (θv > 0), respectively.
As shown in Figure 1:

working 

vacation

regular busyfull vacation

regular busyfull vacation

Inventory 0

...

Inventory 0=

Inventory 0=

Inventory 0=

Inventory 0

Fig. 1. The server vacation process.

4) Customer State: When the server on a working vacation,
the waiting customers in the system may become impatient
due to the low service rate of the server. The impatient
waiting time T follows an exponential distribution with
parameter ξ. When the server is in the regular busy period,
the waiting customers will not be impatient.

5) The system is loss-based: When a customer enters the
system, if it is during a working vacation or a standard busy
period, they will wait until the service is completed before
leaving. Conversely, if the system is on the full vacation,
customers will not enter the system.

6) Replenishment Strategy: The system takes the (s, S)
replenishment strategy. A replenishment demand will be sent
when the system inventory level drops to s. The inventory
level will get to S(s < S) one time after a replenishment
time which obeys an exponential distribution with parameter
η(η > 0).

7) The customer arrival process, server vacation time,
system replenishment time, customer impatience time, and
server service time during working vacations and regular
busy periods are all independent of each other.

III. STEADY-STATE ANALYSIS

A. Steady-state Distribution

Let N (t) denotes the number of customers in the system
at time t, and I (t) denotes the inventory level of the system
at time t and J (t) denotes the state of the server in the
system at time t. The definition of J (t) is as follows:

J (t) =



0, system is in full vacation period
at time t,

1, system is in working vacation period
at time t,

2, system is in working vacation period
at time t.

Then ϕ(t) = {(N(t), I(t), J(t)) , t ≥ 0} is a Markov
process with the state space: Ω = {(n, 0, j) , j = 0, 1} ∪
{(n, i, j) , j = 1, 2} ∪ {(n, S, j) , j = 0, 1, 2} .

The state transition diagram of the system is shown in
Figure 2.

The state process ϕ(t) is a level-dependent quasi-birth-
and-death (LDQBD) process, and the infinitesimal genera-
tor of the process can be written as follows:

Q =



A0 C
B1 A1 C

B2 A2 C
. . . . . . . . .

Bk Ak C
. . . . . . . . .


,

where

A0 =



a00 h0

a01 h1

. . .
...

a01 h1

a02
. . .

a02
a03


,

where

a00 =

(
−η 0
θw −(η + λ+ θw)

)
,

a01 =

(
−(η + λ+ θw) θw

0 −(η + λ)

)
,

a02 =

(
−(λ+ θw) θw

0 −λ

)
,

a03 =

 −θv 0 θv
0 −(λ+ θw) θw
0 0 −λ

 ,

h0 =

(
η 0 0
0 η 0

)
, h1 =

(
0 η 0
0 0 η

)
,

Ai (i ≥ 1) =



ai0 h0

ai1 h1

. . .
...

ai1 h1

ai2
. . .

ai2
ai3


,

where
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Fig. 2. The state transition diagram of the system.

ai0 =

(
−η 0
θw −(η + λ+ iξ)

)
,

ai1 =

(
−(η + λ+ θw + iξ + µw) θw

0 −(η + λ+ µb)

)
,

ai2 =

(
−(λ+ θw + iξ + µw) θw

0 −(λ+ µb)

)
,

ai3 =

 −θv 0 θv
0 −(λ+ θw + iξ + µw) θw
0 0 −(λ+ µb)

 ,

Bi (i ≥ 1) =



bi0
U0 bi1

U1 bi1
. . . . . .

0 0
U1 bi1


,

where

bi0 =

(
0 0
0 iξ

)
,

bi1 =

(
iξ + µw(1− r) 0

0 µb(1− r)

)
,

U0 =

(
0 µwr
0 µbr

)
, U1 =

(
µwr 0
0 µbr

)
,

C =



0
λ

. . .
0

λ
λ


.

Ai(i ≥ 0), Bi(i ≥ 1) and C are all square matrices of
the order 2S + 3.

B. Steady-state Balance Condition

The steady-state probability vector of the system is solved
according to the Neuts-Rao truncation approximation method
(details can be found in the literature [22]). We assume
that the LDQBD process does not change anymore from
a certain level, the generator matrix of this truncated-tailed
can be obtained:
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Q∗ =



A0 C
B1 A1 C

B2 A2 C
. . . . . . . . .

BN AN C
BN AN C

. . . . . . . . .


,

From the matrix of Q∗, the process is a quasi-birth-
and=birth process. Let H = BN +AN + C, then we get:

H =



G0 h0

U0 G1 h1

U1 G1 h1

. . . . . .
...

U1 G1 h1

U1 G2

. . . . . .
U2 G3


,

where,

G0 =

(
−η 0
θw −(η + θw)

)
,

G1 =

(
−(η + θw + µbr) θw

0 −(η + µbr)

)
,

G2 =

(
−(θw + µbr) θw

0 −µbr

)
,

G3 =

 −θv 0 θv
0 −(θw + µbr) θw
0 0 −µbr

 ,

U2 =

 0 0
µwr 0
0 µbr

 .

Let φ = (φ0,0, φ0,1, φ1,1, φ1,2, · · · , φS,0, φS,1, φS,2) be
the steady-state probability vector,then φ satisfis the balance
equations {

πQ = 0,
πe = 1,

(1)

where e is a column vector of appropriate dimension with
all elements 1. According to Eq(1), we can obtain:

−ηφ00 + θwφ0,1 = 0, (2)

− (η + θw)φ0,1 + µwrφ1,1 + µbrφ1,2 = 0, (3)

− (η + θw + µwr)φi,1 + µwrφi+1,1 = 0, 1 ≤ i ≤ s, (4)

θwφi,1 − (η + µbr)φi,2 + µbrφi+1,2 = 0, 1 ≤ i ≤ s, (5)

− (θw + µwr)φi,1+µwrφi+1,1 = 0, s+1 ≤ i ≤ S−1, (6)

θwφi,1 − µbrφi,2 + µbrφi+1,2 = 0, s+ 1 ≤ i ≤ S − 1, (7)

ηφ0,0 − θvφS,0 = 0, (8)

η

(
s∑

i=0

φi,1

)
− (θw + µwr)φS,1 = 0, (9)

η
s∑

i=1

φi,2 + θvφS,0 + θwφS,1 − µbrφS,2 = 0. (10)

From the Eq(2) to Eq(10), we can get:

φi,1 =

(
µwr

µwr + θw

)S−s−1(
µwr

µwr + θw + η

)s−i+1

φS,1,

1 ≤ i ≤ s,
(11)

φi,1 =

(
µwr

µwr + θw

)S−i

φS,1, s+ 1 ≤ i ≤ S − 1, (12)

φi,2 =
θw
µbr

[(
µbr

η + µbr

)s−i+1

φS,1 − φi,1

]

+

(
µbr

η + µbr

)s−i+1

φS,2, 1 ≤ i ≤ s,

(13)

φi,2 = φS,2 +
θw
µbr

(φS,1 − φi,1) , s+ 1 ≤ i ≤ S − 1, (14)

φ1,1 =

(
µwr

µwr + θw + η

)s(
µwr

µwr + θw

)S−s−1

φS,1, (15)

φ1,2 =
θw
µbr

[(
µbr

η + µbr

)s

φS,1 − φ1,1

]
+

(
µbr

µbr + η

)s−i+1

φS,2,

(16)

φ0,1 =
µwr

η + θw
φ1,1 +

µbr

η + θw
φ1,2, (17)

φ0,0 =
θw
η
φ0,1, (18)

φS,0 =
θw
θv

φ0,1, (19)

φS,2 =
η

µbr

s∑
i=1

φi,2 +
θv
µbr

φS,0 +
θw
µbr

φS,1, (20)

φS,1 =
η

θw + µwr
. (21)

Through the iteration of the formula, it can be found
that φ0,0, φ0,1, φ1,1, φ1,2, · · · , φS,0, φS,2 can be expressed
by φS,1, φS,1 can be solved according to φe = 1. The system
state process is normal and only if φCe < φBNe. Therefore,
by the matrix BN and C:

φCe = λ
S∑

i=0

φi,1+λ
S∑

i=1

φi,2,

φBNe = Nξ
S∑

i=0

φi,1+µw

S∑
i=1

φi,1 + µb

S∑
i=1

φi,2.

Finally, the steady-state balance condition of the system
is:

(λ−Nξ)φ0,1 < (µw − λ)
S∑

i=1

φi,1+(µb − λ)
S∑

i=1

φi,2.

C. Matrix Geometric Solution

The process ϕ(t) is an LDQBD process, and the steady-
state probability distribution is defined as follows:
πn,i,j = lim

t→∞
π {N(t) = n, I(t) = i, J(t) = j} , (n, i, j) ∈ Ω,

where

π = (π0, π1, ...) ,

πi = (πi,0,0, πi,0,1, πi,1,1, πi,1,2, . . . , πi,S,0, πi,S,1, πi,S,2) , i ≥ 0.
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The steady-state probability vector satisfies the system of
equations: {

πQ = 0,
πe = 1,

(22)

where e is a column vector of appropriate dimension with
all elements 1.

The system state process returns normally if and only if
the matrix quadratic equation:

R2BN +RAN + C = 0, (23)

has a minimum non-negative solution R of spectral radius
sp (R) < 1 , and

(π0, π1, · · · , πN−1)B [R] = 0, (24)

has a positive solution, where

B [R] =


A0 C
B1 A1 C

. . . . . . . . .
BN−1 AN−1 C

BN RBN +AN

 ,

the system steady-state probability vector has the following
matrix geometric solution form:

πk = πNRk−N , k ≥ N, (25)

and satisfies the following equations:
(π0, π1, · · · , πN )B[R] = 0,
πk = πNRk−N , k ≥ N,(

N−1∑
i=0

πi + πN (I −R)
−1

)
e = 1,

(26)

where e is a column vector of appropriate dimension with
elements all 1, and I is a unit array of order (N+1)×(2S+3).

IV. STEADY-STATE PERFORMANCE INDICATORS

1) The mean queue length is given by

Ed =

∞∑
n=0

n(πn00 + πnS0) +

∞∑
n=0

S∑
i=0

nπni1 +

∞∑
n=0

S∑
i=1

nπni2.

(27)
2) The mean inventory level is given by

Einv =
∞∑

n=0

S∑
i=0

iπni1 +
∞∑

n=0

S∑
i=1

iπni2 +
∞∑

n=0

SπnS0. (28)

3) The mean replenishment rate of the system, which is
the mean number of the replenishment per unit of time is
given by

Er = η

( ∞∑
n=0

s∑
i=0

nπni1 +
∞∑

n=0

s∑
i=1

nπni2 +
∞∑

n=0

πn00

)
.

(29)
4) The mean replenishment, which is the mean number of

items replenished by the system in a single replenishment
process is given by

Eq =

∞∑
n=0

s∑
i=0

(S − i)πni1 +

∞∑
n=0

s∑
i=1

(S − i)πni2 +

∞∑
n=0

Sπn00.

(30)

5) The mean number of lost customers due to customer
impatient is given by

El =
∞∑

n=0

S∑
i=0

nξπni1 + λ
∞∑

n=0

(πn00 + πnS0). (31)

6) The mean loss rate caused by customers not consuming
products after receiving services is given by

Ep =
∞∑

n=0

s∑
i=1

µw(1− r)πni1 +
∞∑

n=0

s∑
i=1

µb(1− r)πni2.

(32)
7) The mean vacation rate of server is given by

Evac = θw

∞∑
n=0

s∑
i=0

πni0 + θv

∞∑
n=0

πn00. (33)

V. NUMERICAL ANALYSIS

Within the following section, numerical experiments are
conducted to investigate the influences of system parameters
on the steady-state performance indicators, such as the mean
inventory level of the system, the mean number of lost
customers due to customer impatience, the mean replenish-
ment rate per unit of time, and the mean loss rate due to
products not taken away by customers. In addition, a mean
cost function is constructed to analyze the effect of parameter
variations on the optimal inventory strategy and the optimal
cost.

A. Effects of parameters on the performance indicators

Parameter settings for each figure are shown in Table 1:

Table 1. System Parameter Settings

Figure number Parameter settings

Figure 3, Figure 7, Figure 11, Figure 15 (s, S, ξ, θv , θw, µw, µb, r)
=(5, 10, 2, 12, 1, 6, 0.7)

Figure 4, Figure 8, Figure 12, Figure 16 (s, S, λ, η, θw, µw, µb, r)
=(5, 10, 4, 1, 2, 1, 6, 0.7)

Figure 5, Figure 9, Figure 13, Figure 17 (s, S, λ, η, ξ, θv , µb, r)
=(5, 10, 4, 1, 2, 1, 6, 0.7)

Figure 6, Figure 10, Figure 14, Figure 18 (s, S, λ, η, θv , θw, µw, µb)
=(5, 10, 4, 1, 2, 1, 1, 6)

1) The mean inventory level:
Assuming the extent of variation of η is 0 ≤ η ≤ 6,

the figure 3 illustrates the mean inventory level increases
with η. η increases, the mean replenishment time of the
system decreases. Replenishment will arrive more timely, so
the average inventory level is higher. Assuming the extent
of variation of λ is 2 ≤ λ ≤ 6, the mean inventory level
decreases as λ increases. λ larger, more customers enter
the system and there is a greater demand for inventory. The
average inventory level decreases accordingly.

As seen in Figure 4, the mean inventory level decreases as
θv increases. As θv increases, the average time that the server
is on full vacation decreases. Consequently, the time spent in
the busy period and working vacation increases. This leads
to a higher demand for inventory by customers, resulting
in a decrease in the mean inventory level. Conversely, the
mean inventory level increases with ξ. A larger ξ indicates
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Fig. 3. Effect of λ and η on the mean inventory level.

Fig. 4. Effect of θv and ξ on the mean inventory level.

a shorter impatience time for customers, leading to shorter
wait times in the queue and faster customer attrition. As
a result, the demand for inventory decreases, causing the
average inventory level to rise.

As seen in Figure 5, the mean inventory level decreases
as µw and θw increase. The increase in µw results in an
enhanced service rate during the working vacation, thereby
expediting inventory depletion and reducing the average
inventory level.As θw increases, the server’s average time
in working vacation shortens, while the time spent in full
vacation and the busy period lengthens. A longer busy period
increases customer demand for inventory, further decreasing
the mean inventory level.

As shown in Figure 6, the mean inventory level decreases
as r increases. A higher r indicates a greater probability
that customers will choose to take a product, leading to
higher demand for inventory and a lower mean inventory
level. When ξ is treated as a continuous variable, the mean
inventory level increases with ξ. This result is consistent
with the scenario where ξ is treated as a discrete variable
(see Figure 4 for details). As ξ reaches a certain threshold,
representing a certain level of customer attrition, the change
in average inventory level gradually stabilizes.

Fig. 5. Effect of µw and θw on the mean inventory level.

Fig. 6. Effect of r and ξ on the mean inventory level.

2) The mean number of lost customers due to customer
impatient:

Fig. 7. Effect of λ and η on the mean customer loss.

As seen in Figure 7, we assume the extent of variation of
λ is 2 ≤ λ ≤ 6 and the extent of variation of η is 0 ≤ η ≤ 3.
The mean customer loss increases with λ. The larger λ means
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more customers enter the system, depleting inventory faster
and triggering working vacations sooner. During working
vacations, customer impatience increases, leading to higher
customer loss. Conversely, the mean customer loss decreases
with η. The larger η is, the shorter the mean replenishment
time means the replenishment arrives timely, the slower the
system enters the working vacation time represents less likely
to become impatient, so the mean customer loss is smaller.

Fig. 8. Effect of θv and ξ on the mean customer loss.

As seen in Figure 8, the mean customer loss decreases as
θv increases.As θv increases, the system spends less time in
full vacation and more time in the busy period, resulting in a
smaller mean customer loss. Conversely, the mean customer
loss increases with ξ. ξ is larger, the mean impatience time
of customers waiting to be served in the system is shorter,
and customers are lost more quickly.
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Fig. 9. Effect of µw and θw on the mean customer loss.

As seen in Figure 9, the mean customer loss decreases
as µw and θw increases. The higher µw during a working
vacation, the less likely customers are to become impatient,
resulting in lower mean customer loss. The larger θw is, the
shorter the mean working vacation time, the longer the time
in full vacation and busy periods. Therefore, more customers
are likely to take away one product, which makes the mean
customer loss smaller.

Fig. 10. Effect of r and ξ on the mean customer loss.

As seen in Figure 10, The average customer loss rate due
to impatience increases with r. As r grows, the probability
of customers taking products increases, leading to a faster
reduction in inventory levels. Consequently, the system enters
working vacation more quickly, resulting in greater customer
loss. As ξ increases, the mean customer loss rate first rises
and then declines. A larger ξ shortens the average impatience
time of customers waiting for service, leading to faster cus-
tomer attrition and a higher mean loss rate. However, when
attrition reaches a certain point, new customers entering the
system cannot keep pace with the loss rate, causing the mean
customer loss rate to eventually decrease.

3) The mean replenishment rate:
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Fig. 11. Effect of λ and η on the mean replenishment rate.

As seen in Figure 11, the mean replenishment rate in-
creases as η. As the value of η increases, the replenish-
ment time decreases, leading to a rapid product flow into
the system. What’s more. This reduces the likelihood of
the system entering a working vacation period, allowing
customers to consume more products during regular busy
periods. Consequently, there is an increase in the number
of replenishments and a corresponding growth in the mean
replenishment rate.

As seen in Figure 12, the mean replenishment rate in-
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Fig. 12. Effect of θv and ξ on the mean replenishment rate.

creases with θv . When θv is greater, the server has shorter
periods of full vacation and enters the busy period more
quickly, during which customers demand more inventory,
causing the mean replenishment rate to increase. The mean
replenishment rate decreases with increasing ξ. A larger ξ
shortens the impatience time of customers waiting to be
served in the system, leading to more customers being lost.
As a result, due to reduced customer demand for inventory,
the mean replenishment rate decreases.
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Fig. 13. Effect of µw and θw on the mean replenishment
rate.

As seen in Figure 13, the mean replenishment rate in-
creases with θw and µw. As θw increases, the average time
the system is on working vacation decreases,while the time
in the busy period increases, leading to higher inventory
demand. Thus, the mean replenishment rate rises with θw.
µw increases, the service rate during working vacation also
rises, resulting in greater customer demand for inventory and
a higher mean replenishment rate.

As seen in Figure 14, the mean replenishment rate in-
creases as r increases. As r increases, the probability that
customers take products increases, leading to higher in-
ventory demand and a greater mean replenishment rate.
Conversely, as ξ increases, the impatience time of customers

Fig. 14. Effect of r and ξ on the mean replenishment rate.

waiting for service shortens, resulting in more customer loss,
reduced inventory demand, and a lower mean replenishment
rate.

4) The mean loss rate caused by customers not consuming
products after receiving services:

Fig. 15. Effect of λ and η on the mean loss rate.

As seen in Figure 15, we assume the extent of variation
of λ is 2 ≤ λ ≤ 6 and the extent of variation of η is
0 ≤ η ≤ 3. The mean loss rate increases with the increase
of λ and η. The larger λ is, the more customers enter the
system, and the number of customers choosing not to take
away one product will also increase, so the mean loss rate is
greater. The larger η is, the shorter the replenishment time is,
the faster the replenishment arrives, and inventory levels are
more adequate. So the more likely customers are to choose
not to take products.

As seen in Figure 16, the mean loss rate increases with
the increase of θv . As θv increases, the system spends less
time in full vacation and more time in working vacation
and busy periods. During these periods, customers have the
option to not take products, leading to a higher mean loss
rate. The mean loss rate of customers who do not take away
the products decreases with the increase of ξ. The larger ξ
is, the more customers waiting to be served in the system
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Fig. 16. Effect of θv and ξ on the mean loss rate.

are lost due to impatience, and the number of customers
who choose not to take away one product decreases as well.
Consequently, the mean loss rate decreases.
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Fig. 17. Effect of µw and θw on the mean replenishment
rate.

As seen in Figure 17, the mean loss rate of customers not
taking products away increases with µw and θw. A higher
µw corresponds to a higher service rate during the working
vacation, reducing the likelihood of customer impatience. As
a result, more customers wait in the system, leading to an
increase in the number of customers who choose not to take a
product, thus increasing the mean loss rate. θw increases, the
time in working vacation becomes shorter, the busy period
time may become longer. During the busy period, customers
are less likely to become impatient, leading to an increase in
the number of customers who choose not to take a product,
thereby increasing the average loss rate.

As seen in Figure 18, the mean loss rate of products not
taken away by customers decreases as r increases. The larger
r is, the less likely that the customer will not take away one
product, and the smaller the mean loss rate is. When r = 1,
the customer who receives the service will certainly choose
to take away a product. So at this time, the loss rate is zero.

Fig. 18. Effect of r and ξ on the mean replenishment rate.

B. Optimal inventory strategy and optimal cost

Based on each performance indicator of the system, an
expression for the mean function of the system per unit time
is established:
F (s, S) = C0Ed+C1Ei+C2ErEq+C3Er+C4El+(C4+C5)Ep,

where C0 is the mean waiting cost per unit of the customer,
C1 represents the inventory holding cost per unit of time, C2

is the cost of replenishing a unit of product, C3 is the cost
of a fixed order per replenishment, C4 is the cost of losses
caused by customers dropping out of the queue, C5 is the
cost of consuming the service received by the customer, and
C4+C5 is the cost of losses that the customer does not take
away with the product after receiving the service.

Genetic algorithm is used to find the optimal inventory
strategy and the optimal cost of the system and analyze the
effect of variation of different parameters on the optimal in-
ventory strategy and the optimal cost function. The inventory
cost is taken as C0 = 50, C1 = 2, C2 = 15, C3 = 10,
C4 = 100, C5 = 5. The results obtained are given by Table
2 to Table 9.

Table 2. Impact of λ on optimal strategy and cost function.

λ 2.5 3 3.5 4 4.5

(s, S) (5,13) (6,16) (7, 18) (8, 21) (9, 23)

F (s, S) 141.9705 177.2169 218.1528 268.9048 338.4923

Fixed parameter µw = 1, µb = 6, η = 1, r = 0.7, ξ =
2, θw = 2, θv = 1, the effect of the change of parameter λ
on the optimal strategy and cost function is shown in Table
2. The larger λ is, the greater the demand for inventory, the
safety stock level s and the maximum stock level S are also
gradually increased, and the optimal cost is also increased
with the increase of λ. Parameter λ has a greater effect on
the optimal inventory strategy and optimal cost.

Fixed parameter λ = 4, µw = 1, µb = 6, r = 0.7, ξ = 2,
θw = 2, θv = 1, the influence of the change of parameter η
on the optimal strategy and cost function is shown in Table 3.
The larger η is, the replenishment arrives faster, both s and S
decrease gradually, and the optimal cost decreases gradually.
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Table 3. Impact of ξ on optimal strategy and cost function.

η 1 1.5 2 2.5 3

(s, S) (8,21) (7,17) (6,15) (5,13) (5,12)

F (s, S) 268.9048 260.7964 256.3553 253.4294 251.5425

Parameter η has a significant effect on the optimal inventory
strategy and optimal cost.

Table 4. Impact of r on optimal strategy and cost function.

r 0.4 0.5 0.6 0.7 0.8

(s, S) (5,12) (6,15) (7,18) (8,21) (10,23)

F (s, S) 378.1632 341.7438 305.3250 268.9048 232.4222

Fixed parameter λ = 4, µw = 1, µb = 6, η = 1, ξ = 2,
θw = 2, θv = 1, the influence of the change of parameter r
on the optimal strategy and cost function is shown in Table
4. The larger r is, the higher the probability that the customer
takes away the product, s and S both increase gradually, and
the optimal cost increases. Parameter r has a greater impact
on the optimal inventory strategy and optimal cost.

Table 5. Impact of ξ on optimal strategy and cost function.

ξ 1.5 2 2.5 3 3.5

(s, S) (9,21) (8,21) (8,20) (8,20) (7,19)

F (s, S) 269.6100 268.9048 268.1765 267.5367 266.9517

Fixed parameter λ = 4, µw = 1, µb = 6, η = 1, r =
0.7, θw = 2, θv = 1, the influence of the change of parameter
ξ on the optimal strategy and cost function is shown in
Table 5. The larger parameter ξ is, customers in the queue
lose faster, meanwhile s, S and the optimal cost decrease.
Parameter ξ has less effect on the optimal inventory strategy
and optimal cost.

Table 6. Impact of θw on optimal strategy and cost function.

θw 2 4 6 8 10

(s, S) (8,21) (8,21) (9,21) (9,21) (9,21)

F (s, S) 268.9048 269.0252 269.0915 269.1128 269.1201

Fixed parameter λ = 4, µw = 1, µb = 6, η = 1, r = 0.7, ξ =
2, θv = 1, the influence of the change of parameter θw on
the optimal strategy and cost function is shown in Table 6.
The larger parameter θw is, the slightly larger s and optimal
cost are. Parameter θw has no significant effect on optimal
inventory and optimal cost.

Table 7. Impact of θv on optimal strategy and cost function.

θv 1 3 5 7 9

(s, S) (8,21) (7,20) (7,19) (7,19) (7,19)

F (s, S) 268.9048 266.8839 266.3700 266.1374 266.0081

Fixed parameter λ = 4, µw = 1, µb = 6, η = 1, r =
0.7, ξ = 2, θw = 2, the change of parameter θv on the

optimal strategy and cost function is shown in Table 7. The
larger the parameter θv is, s decreases slightly, S and the
optimal cost decrease gradually. Furthermore, the influence
exerted by the parameter θv on the optimal inventory strategy
and the optimal cost is comparatively insignificant.

Table 8. Impact of µw on optimal strategy and cost
function.

µw 1 2 3 4 5

(s, S) (8,21) (8,21) (8,21) (8,20) (8,20)

F (s, S) 268.9048 268.7702 268.6555 268.5546 268.4658

Fixed parameter λ = 4, µb = 6, η = 1, r = 0.7, ξ =
2, θw = 2, θv = 1, the influence of the change of parameter
µw on the optimal strategy and cost function is shown in
Table 8. The larger µw is, the system’s maximum inventory
level S and optimal cost decrease slightly, and the parameter
µw has a smaller effect on the optimal inventory strategy and
a non-significant effect on the optimal cost.

Table 9. Impact of µb on optimal strategy and cost function.

µb 6 7 8 9 10

(s, S) (8,21) (8,21) (8,20) (8,20) (8,20)

F (s, S) 268.9048 235.4509 218.4337 208.1193 201.2012

Fixed parameter λ = 4, µw = 1, η = 1, r = 0.7, ξ =
2, θw = 2, θv = 1, the influence of the change of parameter
µb on the optimal strategy and cost function is shown in
Table 9. The larger the parameter µb, the larger the service
rate of the attendant during the regular busy period, the
slightly smaller the system maximum inventory level S, and
the optimal cost gradually decreases. Parameter µb has a
smaller impact on the optimal inventory strategy and a more
significant impact on the optimal cost.

VI. CONCLUSION

This paper investigates the M/M/1 queuing inventory sys-
tem with a hybrid vacation strategy, considering impatient
customers and multiple vacations, where the first vacation is
a working vacation. It is assumed that a customer selectively
takes one product after receiving service. The customer’s
impatience time, the server’s service time and vacation time,
and the replenishment time follow exponential distributions.
Markov’s theory is used to establish the quasi-birth-and-
death process, and a matrix geometric solution is utilized to
obtain the system’s steady-state vector. System-related per-
formance indicators are established, and the system’s mean
cost function is constructed. Through numerical experiments,
we examined the impact of system parameters λ, µw, µb, η,
r, ξ, θw, θv on the optimal inventory strategy and the optimal
cost. The results indicate that λ, η, r, ξ has a more significant
impact on the optimal inventory and the optimal cost.
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