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Abstract—A directed graph, consisting of vertices linked
by directed edges or arcs, is a crucial structure utilized in
analyzing various scenarios such as electrical circuits, optimal
routes, and social connections. Graph theory introduces graph
products, a binary operation applied to graphs. Similarly,
directed graphs can undergo product operations analogous to
those of standard graphs. Several authors have explored specific
product operations in directed graphs, including the Cartesian,
lexicographic, and strong products. In this study, we broaden
the scope by extending definitions of product operations from
standard graphs, such as categorical, modular, disjunctive,
homomorphic, rooted, and corona products, to directed graphs.
Furthermore, we delve into their properties.

Index Terms—graph, directed graph, graph product, directed
graph product.

I. INTRODUCTION

GRAPHS serve as invaluable data structures for depict-
ing real-world connections, finding application across

diverse domains owing to their ability to abstract complex
scenarios. However, the symmetrical nature of graphs may
not always align with the representation required for spe-
cific contexts, leading to the emergence of directed graphs
[3], [6]. Directed graphs provide a means to analyze and
address problems ranging from electrical circuits and project
scheduling to identifying shortest paths and understand-
ing social dynamics. Within graph theory, the concept of
graph product, a binary operation applied to graphs, is
introduced [5]. Similarly, akin to the definitions of graph
products, product operations can be devised for directed
graphs. Various researchers, including Bozovic [1], Changat
et al. [2], Feigenbaum [4], Manion [7], Potocnik et al. [8],
Thamizharasi et al. [9], and Wei et al. [10] have explored
diverse product operations in directed graphs such as Carte-
sian, lexicographic, and strong products. This paper extends
the definitions of product operations from graphs such as
categorical, modular, disjunctive, homomorphic, corona, and
rooted products to directed graphs and scrutinizes some of
their properties.
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II. CATEGORICAL (OR TENSOR OR KRONECKER)
PRODUCT OF DIRECTED GRAPHS

This section presents the definition of the categorical
product of two directed graphs. Additionally, we provide
some theorems related to the number of vertices and arcs,
as well as the sum of indegrees, outdegrees and degrees in
the resulting graph. Examples are included to demonstrate
these results and to clarify the concepts involved.

Definition II.1. Consider two directed graphs ∆1 =
(T1, R1) and ∆2 = (T2, R2). The categorical product of
∆1 and ∆2, denoted as ∆1 × ∆2, forms a directed graph
with the vertex set T (∆1 ×∆2) = T1 × T2 and the arc set
R(∆1 × ∆2). Here, an arc ((v1, v

′
1), (v2, v

′
2)) in ∆1 × ∆2

exists if and only if there exists an arc (v1, v2) in ∆1 and
an arc (v′1, v

′
2) in ∆2.

Example 1. Let ∆1 = (T1, R1) represent a directed graph
with a vertex set T1 = {v1, v2, v3, v4, v5} and arc set
R1 = {(v3, v2), (v3, v1), (v3, v4), (v5, v3), (v4, v5)} which
is shown in Fig. 1. Let ∆2 = (T2, R2) denote a directed

Fig. 1: Directed Graph ∆1 = (T1, R1)

graph with a vertex set T2 = {u1, u2, u3, u4} and arc
set R2 = {(u3, u1), (u3, u2), (u3, u4)} which is shown in
Fig. 2. The illustration in Fig. 3 showcases the categorical

Fig. 2: Directed Graph ∆2 = (T2, R2)

product of the directed graphs ∆1 and ∆2, represented as
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D = ∆1 ×∆2.

Fig. 3: ∆ = ∆1 ×∆2

Theorem 1. Suppose ∆1 = (T1, R1) and ∆2 = (T2, R2)
are two directed graphs. Then, the categorical product of ∆1

and ∆2, denoted as ∆1×∆2, comprises |T1||T2| vertices and
|R1||R2| arcs.

Proof: The vertex set of ∆1×∆2 is T1×T2 which con-
tains |T1||T2| elements. Therefore total number of vertices
in ∆1×∆2 is |T1||T2|. Also we know, ((ve, vf ), (vk, vl)) is
an arc in ∆1×∆2 if and only if (ve, vk) is an arc in ∆1 and
(vf , vl) is an arc in ∆2. There are |R1| arcs in ∆1 and |R2|
arcs in ∆2. Thus, there are |R1||R2| possible choices for
selecting a pair of arcs am and an, where one arc belongs
to ∆1 and the other to ∆2. Let’s assume am represents the
arc (ve, vk) in ∆1, and an represents the arc (vf , vl) in
∆2. Consequently, this selected pair of arcs forms an arc
((ve, vf ), (vk, vl)) in ∆1 × ∆2. Hence ∆1 × ∆2 contains
totally |R1||R2| arcs.

Example 2. Consider the directed graphs ∆1 and ∆2 given
in Example 1.
Here we have, the total count of vertices in ∆1 ×∆2 = 20
and |T1||T2| = 5 · 4 = 20.
That is, the total count of vertices in ∆1 ×∆2 = |T1||T2|.
Also, total count of arcs in ∆1 ×∆2 = 15 and |R1||R2| =
5 · 3 = 15.
That is, total count of arcs in ∆1 ×∆2 = |R1||R2|.

Corollary 1. Let ∆1 = (T1, R1) and ∆2 = (T2, R2) be two
directed graphs and ∆1×∆2 = (T (∆1×∆2), R(∆1×∆2))
be their categorical product . Then

1) ∑
(u,v)∈T (∆1×∆2)

ideg∆1×∆2(u, v) =

∑
(u,v)∈T (∆1×∆2)

odeg∆1×∆2
(u, v) = |R1||R2|,

2) ∑
(u,v)∈T (∆1×∆2)

deg∆1×∆2
(u, v) = 2|R1||R2|,

where ideg∆1×∆2
(u, v), odeg∆1×∆2

(u, v) and
deg∆1×∆2(u, v) represent the indegree, outdegree, and
degree of the vertex (u, v) respectively in ∆1 ×∆2.

Proof:
1) According to Theorem 1, ∆1×∆2 is a directed graph

containing |R1||R2| arcs. As each arc contributes 1
to the sums,∑

(u,v)∈T (∆1×∆2) ideg∆1×∆2
(u, v) and∑

(u,v)∈T (∆1×∆2) odeg∆1×∆2
(u, v), we have∑

(u,v)∈T (∆1×∆2)

ideg∆1×∆2
(u, v) =

∑
(u,v)∈T (∆1×∆2)

odeg∆1×∆2
(u, v) = |R1||R2|.

2) It is known that the degree of a vertex (u, v) in ∆1×
∆2 is equal to the sum of its indegree and outdegree
in ∆1 × ∆2, since it is a directed graph. So by part
(1) of this theorem,∑

(u,v)∈T (∆1×∆2)

deg∆1×∆2
(u, v) = 2|R1||R2|.

Example 3. Consider the directed graphs ∆1 and ∆2, and
the categorical product ∆1 ×∆2 given in Example 1. Here
we have, ∑

u∈T (∆1×∆2)

ideg u = 15,

∑
u∈T (∆1×∆2)

odeg u = 15

and
|R1||R2| = 5 · 3 = 15.

That is, ∑
u∈T (∆1×∆2)

ideg u =
∑

u∈T (∆1×∆2)

odeg u

= |R1||R2|.

Also, ∑
u∈T (∆1×∆2)

deg u = 30

and
2(|R1||R2|) = 2(5 · 3) = 30

That is, ∑
u∈T (∆1×∆2)

deg u = 2(|R1||R2|).

III. MODULAR PRODUCT OF DIRECTED GRAPHS

In this section, we define the modular product of two
directed graphs. The section also offers several theorems
that focus on the structural properties of the resulting graph,
including vertex and arc counts, indegree, outdegree, and
degree. These theorems are illustrated through examples that
validate and explain the findings.

Definition III.1. Consider two directed graphs ∆1 =
(T1, R1) and ∆2 = (T2, R2). The modular product ∆1©∆2

is a directed graph having vertex set T (∆1©∆2) = T1×T2
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and arc set R(∆1©∆2), where ((v1, v
′
1), (v2, v

′
2)) is an arc

in ∆1©∆2 if and only if
1) an arc (v1, v2) exists in ∆1, and another arc (v′1, v

′
2)

exists in ∆2 or
2) (v1, v2) does not form an arc in ∆1, and likewise,

(v′1, v
′
2) does not constitute an arc in ∆2.

Example 4. Let ∆1 = (T1, R1) represent a directed
graph with a vertex set T1 = {v1, v2, v3, v4} and arc set
R1 = {(v1, v3), (v1, v4), (v4, v1), (v3, v4), (v3, v2)} which is
shown in Fig. 4. Let ∆2 = (T2, R2) denote a directed

Fig. 4: Directed Graph ∆1 = (T1, R1)

graph with a vertex set T2 = {u1, u2, u3} and arc set
R2 = {(u2, u1), (u2, u3)} which is shown in Fig. 5. The

Fig. 5: Directed Graph ∆2 = (T2, R2)

resulting modular product of these two directed graphs, ∆1

and ∆2, denoted as D = ∆1©∆2, is depicted in Fig. 6.

Theorem 2. Let ∆1 = (T1, R1) and ∆2 = (T2, R2) be two
directed graphs. Then ∆1 © ∆2 contains |T1||T2| vertices
and |R1||R2|+(|T1|(|T1|−1)−|R1|)(|T2|(|T2|−1)−|R2|)
arcs.

Proof: The vertex set of ∆1©∆2 is T1×T2 which con-
tains |T1||T2| elements. Therefore total number of vertices
in ∆1 © ∆2 is |T1||T2|. Also we know, ((ve, vf ), (vk, vl))
is an arc in ∆1©∆2 if and only if

1) the arc (ve, vk) is present in ∆1, and the arc (vf , vl)
exists in ∆2 or

2) the pair (ve, vk) does not form an arc in ∆1, and
similarly, the pair (vf , vl) does not constitute an arc
in ∆2.

Each arc in ∆1©∆2 satisfies only one of the two conditions
mentioned above; both cannot be fulfilled simultaneously.
Hence, to ascertain the overall count of arcs in ∆1 © ∆2,

Fig. 6: ∆ = ∆1©∆2

we must aggregate the number of arcs produced by each
condition.

Let’s consider the initial condition for adjacency, where
(ve, vk) represents an arc in ∆1, and (vf , vl) denotes an
arc in ∆2. There are |R1| arcs in ∆1 and |R2| arcs in
∆2. Hence, we can select a pair of arcs am and an such
that one is from ∆1 and the other is from ∆2 in |R1||R2|
different ways. Suppose am represents the arc (ve, vk) in
∆1, and an represents the arc (vf , vl) in ∆2. This pairing
of arcs results in an arc ((ve, vf ), (vk, vl)) in ∆1©∆2. In
essence, we obtain |R1||R2| arcs satisfying the first condition
of adjacency.

Now, let’s consider the second condition for adjacency,
where (ve, vk) is not an arc in ∆1 and (vf , vl) is not an arc in
∆2. We can select two distinct vertices ve and vk in ∆1 such
that (ve, vk) is not an arc in ∆1 in (|T1|(|T1| − 1)− |R1|)
different ways. Similarly, we can choose two distinct vertices
vf and vl in ∆2 such that (vf , vl) is not an arc in ∆2 in
(|T2|(|T2| − 1)− |R2|) different ways.

Let ve and vk be two vertices in ∆1 such that (ve, vk)
is not an arc in ∆1, and let vf and vl be two vertices in
∆2 such that (vf , vl) is not an arc in ∆2. This yields an
arc ((ve, vf ), (vk, vl)) in ∆1 © ∆2. Therefore, the second
condition for adjacency yields a total of (|T1|(|T1| − 1) −
|R1|)(|T2|(|T2| − 1)− |R2|) arcs in ∆1©∆2.

Consequently, the total number of arcs in ∆1 © ∆2 is
(|T1|(|T1|− 1)−|R1|)(|T2|(|T2|− 1)−|R2|) + |R1||R2|.

Example 5. Consider the directed graphs ∆1 and ∆2 given
in Example 4.
Here we have, the total count of vertices in ∆1©∆2 = 12
and |T1||T2| = 4 · 3 = 12.
That is, the total count of vertices in ∆1©∆2 = |T1||T2|.
Also, total count of arcs in ∆1©∆2 = 38 and |R1||R2|+
(|T1|(|T1| − 1)− |R1|)(|T2|(|T2| − 1)− |R2|) = 5 · 2 + (4 ·
3− 5)(3 · 2− 2) = 38.
That is, total count of arcs in ∆1 © ∆2 = |R1||R2| +
(|T1|(|T1| − 1)− |R1|)(|T2|(|T2| − 1)− |R2|).

Corollary 2. Let ∆1 = (T1, R1) and ∆2 = (T2, R2) be two
directed graphs and ∆1©∆2 = (T (∆1©∆2), R(∆1©∆2))
be their modular product. Then
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1) ∑
(u,v)∈T (∆1©∆2)

ideg∆1©∆2
(u, v)

=
∑

(u,v)∈T (∆1©∆2)

odeg∆1©∆2
(u, v)

= (|T1|(|T1| − 1)− |R1|)(|T2|(|T2| − 1)

−|R2|) + |R1||R2|,

2) ∑
(u,v)∈T (∆1©∆2)

deg∆1©∆2(u, v)

= 2(|T1|(|T1| − 1)− |R1|)(|T2|(|T2| − 1)

−|R2|) + 2|R1||R2|,

where ideg∆1©∆2(u, v), odeg∆1©∆2(u, v) and
deg∆1©∆2(u, v) represent the indegree, outdegree and
degree of the vertex (u, v) respectively, in ∆1©∆2.

Proof:
1) According to Theorem 2, ∆1©∆2 forms a directed

graph containing (|T1|(|T1| − 1) − |R1|)(|T2|(|T2| −
1)− |R2|) + |R1||R2| arcs. Since each arc contributes
1 to the sums

∑
(u,v)∈T (∆1©∆2) ideg∆1©∆2

(u, v) and∑
(u,v)∈T (∆1©∆2) odeg∆1©∆2

(u, v), we have∑
(u,v)∈T (∆1©∆2)

ideg∆1©∆2(u, v)

=
∑

(u,v)∈T (∆1©∆2)

odeg∆1©∆2(u, v)

= (|T1|(|T1| − 1)− |R1|)(|T2|(|T2| − 1)

−|R2|) + |R1||R2|.

2) The degree of a vertex (u, v) in ∆1©∆2 equals the
sum of its indegree and outdegree in ∆1©∆2 because
it is a directed graph. So by part (1) of this theorem,∑

(u,v)∈T (∆1©∆2)

deg∆1©∆2
(u, v)

= 2(|T1|(|T1| − 1)− |R1|)(|T2|(|T2| − 1)

−|R2|) + 2|R1||R2|.

Example 6. Consider the directed graphs ∆1 and ∆2, and
the modular product ∆1©∆2 given in Example 4. Here we
have, ∑

u∈T (∆1©∆2)

ideg u = 38,

∑
u∈T (∆1©∆2)

odeg u = 38

and

|R1||R2|+(|T1|(|T1|−1)−|R1|)(|T2|(|T2|−1)−|R2|) = 38.

That is, ∑
u∈T (∆1©∆2)

ideg u =
∑

u∈T (∆1©∆2)

odeg u

= |R1||R2|+ (|T1|(|T1| − 1)− |R1|)(|T2|(|T2| − 1)

−|R2|).

Also, ∑
u∈T (∆1©∆2)

deg u = 76

and

2(|R1||R2|+ (|T1|(|T1| − 1)− |R1|)(|T2|(|T2| − 1)

−|R2|)) = 2(38) = 76

That is, ∑
u∈T (∆1©∆2)

deg u = 2(|R1||R2|+ (|T1|(|T1| − 1)

−|R1|)(|T2|(|T2| − 1)− |R2|)).

IV. DISJUNCTIVE (OR CO-NORMAL PRODUCT) PRODUCT
OF DIRECTED GRAPHS

This section gives the definition of the disjunctive product
of two directed graphs. Theorems related to vertex and arc
counts, as well as degree sums, are presented to explore the
properties of the disjunctive product. Examples accompany
the theorems to provide practical insights and demonstrate
the results clearly.

Definition IV.1. Consider two directed graphs ∆1 =
(T1, R1) and ∆2 = (T2, R2). The disjunctive product
∆1 ∗∆2 forms a directed graph with the vertex set T (∆1 ∗
∆2) = T1 × T2 and the arc set R(∆1 ∗ ∆2). Here, an arc
((v1, v

′
1), (v2, v

′
2)) exists in ∆1 ∗ ∆2 if and only if either

(v1, v2) is an arc in ∆1 or (v′1, v
′
2) is an arc in ∆2.

Example 7. Let ∆1 = (T1, R1) represent a directed
graph with a vertex set T1 = v1, v2, v3, v4 and an arc
set R1 = (v3, v1), (v3, v2), (v4, v3), (v2, v1), as illustrated
in Fig. 7. Let ∆2 = (T2, R2) represent a directed

Fig. 7: Directed Graph ∆1 = (T1, R1)

graph with a vertex set T2 = u1, u2, u3 and an arc set
R2 = (u2, u1), (u3, u2), (u3, u1), as depicted in Fig. 8.
Thus, the disjunctive product of these two directed graphs,
∆1 and ∆2, denoted by D = ∆1∗∆2, is illustrated in Fig. 9.

Theorem 3. Consider two directed graphs ∆1 = (T1, R1)
and ∆2 = (T2, R2). The disjunctive product of ∆1 and
∆2, denoted as ∆1 ∗ ∆2, contains |T1||T2| vertices and
|R1||T2|2 + |R2||T1|2 − |R1||R2| arcs.

Proof: The vertex set of ∆1∗∆2 is denoted by T1×T2,
holding a count of |T1||T2| elements. Consequently, the
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Fig. 8: Directed Graph ∆2 = (T2, R2)

Fig. 9: ∆ = ∆1 ∗∆2

overall count of vertices within ∆1∗∆2 amounts to |T1||T2|.
Additionally, an arc exists between (ve, vf ) and (vk, vl)
within ∆1 ∗∆2 if and only if (ve, vk) forms an arc in ∆1

or if (vf , vl) forms an arc in ∆2.
Each arc in ∆1 ∗ ∆2 arises from just one of these

conditions, and it’s possible for both conditions to hold
simultaneously. To determine the overall count of arcs in
∆1 ∗∆2, we tally the arcs generated by each condition and
then subtract the count of arcs formed by both.

Let’s explore the first adjacency condition, where (ve, vk)
forms an arc in ∆1. The number of vertices in T1 × T2, in
the form (ve, vp) with ve fixed in T1 and vp ∈ T2, equals
|T2|. Similarly, the count of vertices in T1×T2, in the form
(vk, vq) with vk fixed in T1 and vq ∈ T2, is |T2|. Among
these 2|T2| vertices, we can select 2 vertices, one in the form
(ve, vp) and the other in the form (vk, vq) in |T2||T2| =
|T2|2 distinct ways. Corresponding to each selection, an arc
((ve, vp), (vk, vq)) emerges in ∆1 ∗ ∆2. There exist |R1|
distinct arcs in ∆1, such as the arc (ve, vk). Therefore, the
number of arcs generated by this condition corresponds to
the number of arcs in the directed graph ∆1 multiplied by
|T2|2, resulting in |R1||T2|2 arcs.

The second condition for adjacency specifies that (vf , vl)
forms an arc in ∆2. Like the first condition, the count of arcs
formed by the second condition for adjacency is |R2||T1|2.

Subsequently, we compute the number of arcs formed by
both conditions. ∆1 comprises |R1| arcs, and ∆2 comprises
|R2| arcs. Therefore, we can select a pair of arcs am and
an, one from ∆1 and the other from ∆2, in |R1||R2| distinct
ways. Let’s say am represents the arc (ve, vk) in ∆1, and an
represents the arc (vf , vl) in ∆2. This chosen pair of arcs

gives rise to an arc ((ve, vf ), (vk, vl)) in ∆1 ∗ ∆2. Conse-
quently, |R1||R2| arcs satisfy both adjacency conditions.

Therefore, the total count of arcs in ∆1 ∗ ∆2 is derived
as |R1||T2|2 + |R2||T1|2 − |R1||R2|.

Example 8. Consider the directed graphs ∆1 and ∆2 given
in Example 7.
Here we have, the total count of vertices in ∆1 ∗∆2 = 12
and |T1||T2| = 4 · 3 = 12.
That is, the total count of vertices in ∆1 ∗∆2 = |T1||T2|.
Also, total count of arcs in ∆1 ∗∆2 = 72 and |R1||T2|2 +
|R2||T1|2 − |R1||R2| = 4 · 9 + 3 · 16− 4 · 3 = 72.
That is, total count of arcs in ∆1 ∗ ∆2 = |R1||T2|2 +
|R2||T1|2 − |R1||R2|.

Corollary 3. Let ∆1 = (T1, R1) and ∆2 = (T2, R2) be two
directed graphs and ∆1 ∗∆2 = (T (∆1 ∗∆2), R(∆1 ∗∆2))
be their disjunctive product. Then

1) ∑
(u,v)∈T (∆1∗∆2)

ideg∆1∗∆2(u, v)

=
∑

(u,v)∈T (∆1∗∆2)

odeg∆1∗∆2(u, v)

= |R1||T2|2 + |R2||T1|2 − |R1||R2|,

2) ∑
(u,v)∈T (∆1∗∆2)

deg∆1∗∆2(u, v)

= 2|R1||T2|2 + 2|R2||T1|2 − 2|R1||R2|,

where ideg∆1∗∆2(u, v), odeg∆1∗∆2(u, v) and
deg∆1∗∆2

(u, v) represent the indegree, outdegree and
degree of the vertex (u, v) respectively, in ∆1 ∗∆2.

Proof:
1) According to Theorem 3, ∆1 ∗ ∆2 forms a directed

graph with |R1||T2|2 + |R2||T1|2 − |R1||R2|
arcs. As each arc contributes 1 to the
sums

∑
(u,v)∈T (∆1∗∆2) ideg∆1∗∆2(u, v) and∑

(u,v)∈T (∆1∗∆2) odeg∆1∗∆2
(u, v), we have∑

(u,v)∈T (∆1∗∆2)

ideg∆1∗∆2
(u, v)

=
∑

(u,v)∈T (∆1∗∆2)

odeg∆1∗∆2
(u, v)

= |R1||T2|2 + |R2||T1|2 − |R1||R2|.

2) The degree of a vertex (u, v) in ∆1 ∗∆2 is the sum
of its indegree and outdegree in ∆1 ∗∆2 since it is a
directed graph. So by part (1) of this theorem,∑

(u,v)∈T (∆1∗∆2)

deg∆1∗∆2
(u, v)

= 2|R1||T2|2 + 2|R2||T1|2 − 2|R1||R2|.

Example 9. Consider the directed graphs ∆1 and ∆2, and
the disjunctive product ∆1 ∗∆2 given in Example 7. Here
we have, ∑

u∈T (∆1∗∆2)

ideg u = 72,
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∑
u∈T (∆1∗∆2)

odeg u = 72

and
|R1||T2|2 + |R2||T1|2 − |R1||R2| = 72.

That is, ∑
u∈T (∆1∗∆2)

ideg u =
∑

u∈T (∆1∗∆2)

odeg u

= |R1||T2|2 + |R2||T1|2 − |R1||R2|.

Also, ∑
u∈T (∆1∗∆2)

deg u = 144

and
2(|R1||T2|2 + |R2||T1|2 − |R1||R2|)

= 2(72) = 144

That is, ∑
u∈T (∆1∗∆2)

deg u = 2(|R1||T2|2 + |R2||T1|2

−|R1||R2|).

V. HOMOMORPHIC PRODUCT OF DIRECTED GRAPHS

This section introduces the definition of the homomorphic
product of two directed graphs. We also present theorems
regarding the number of vertices, arcs, and degree sums in
the resulting product. Examples are provided to justify and
illustrate the theoretical results discussed in this section.

Definition V.1. Consider two directed graphs ∆1 = (T1, R1)
and ∆2 = (T2, R2). Then, the homomorphic product
∆1 n ∆2 forms a directed graph with a set of vertices
T (∆1 n∆2) = T1×T2 and set of arcs R(∆1 n∆2), where
((v1, v

′
1), (v2, v

′
2)) is an arc in ∆1 n ∆2 if and only if

1) v1 = v2 or
2) the arc (v1, v2) exists in ∆1, and (v′1, v

′
2) is not an arc

in ∆2.

Example 10. Let ∆1 = (T1, R1) represent a directed graph
with a vertex set T1 = {v1, v2, v3, v4} and arc set R1 =
{(v2, v1), (v4, v2), (v2, v3), (v3, v4)} which is shown in Fig.
10. Let ∆2 = (T2, R2) denote a directed graph with a vertex

Fig. 10: Directed Graph ∆1 = (T1, R1)

set T2 = {u1, u2, u3} and arc set R2 = {(u2, u3), (u2, u1)}
which is shown in Fig. 11. Then the homomorphic product
of these two directed graphs ∆1 and ∆2, represented by
D = ∆1 n ∆2, is shown in Fig. 12.

Theorem 4. Let ∆1 = (T1, R1) and ∆2 = (T2, R2) be two
directed graphs. Then the homomorphic product ∆1 n ∆2

Fig. 11: Directed Graph ∆2 = (T2, R2)

Fig. 12: ∆ = ∆1 n ∆2

contains |T1||T2| vertices and 2|T1|
(|T2|

2

)
+ |R1|(|T2|(|T2| −

1)− |R2|) arcs.

Proof: The vertex set of ∆1n∆2 is T1×T2 which con-
tains |T1||T2| elements. Therefore total number of vertices
in ∆1 n∆2 is |T1||T2|. Also we know, ((ve, vf ), (vk, vl)) is
an arc in ∆1 n ∆2 if and only if

1) ve = vk or
2) the arc (ve, vk) is present in ∆1, and (vf , vl) is not an

arc in ∆2.
Each arc in ∆1n∆2 is formed by one of these two require-
ments; they cannot both be true simultaneously. Therefore,
to determine the total number of arcs in ∆1 n ∆2, we sum
the number of arcs generated by each condition.

Let’s explore the first condition for adjacency, where ve =
vk. Suppose v is any vertex in ∆1. The directed graph ∆2

contains |T2| vertices. We can select 2 distinct vertices v′

and v′′ from ∆2 in
(|T2|

2

)
different ways. For each choice,

we obtain 2 arcs ((v, v′), (v, v′′)) and ((v, v′′), (v, v′)) in
∆1 n ∆2. Like v, there are a total of |T1| vertices in ∆1.
Hence, the first condition of adjacency yields 2|T1|

(|T2|
2

)
arcs

in ∆1 n ∆2.
Now, let’s consider the second condition for adjacency,

where (ve, vk) is an arc in ∆1 and (vf , vl) is not an arc in
∆2. We can select two different vertices ve and vk in ∆1

such that there is an arc (ve, vk) in ∆1, in |R1| different
ways. Similarly, we can select two different vertices vf and
vl in ∆2 such that (vf , vl) is not an arc in ∆2, which can be
done in |T2|(|T2|−1)−|R2| different ways. Let ve and vk be
two vertices in ∆1 such that (ve, vk) forms an arc in ∆1, and
let vf and vl be two vertices in ∆2 such that (vf , vl) is not an
arc in ∆2. With this arrangement, an arc ((ve, vf ), (vk, vl))
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is established in ∆1 n ∆2. Thus, the second condition for
adjacency contributes |R1|(|T2|(|T2|−1)−|R2|) arcs in ∆1n
∆2. Consequently, the total number of arcs in ∆1 n ∆2 is
2|T1|

(|T2|
2

)
+ |R1|(|T2|(|T2| − 1)− |R2|).

Example 11. Consider the directed graphs ∆1 and ∆2 given
in Example 10.
Here we have, the total count of vertices in ∆1 n ∆2 = 12
and |T1||T2| = 4 · 3 = 12.
That is, the total count of vertices in ∆1 n ∆2 = |T1||T2|.
Also, total count of arcs in ∆1 n∆2 = 40 and 2|T1|

(|T2|
2

)
+

|R1|(|T2|(|T2| − 1) − |R2|) = (2 · 4 · 3) + 4(3 · 2 − 2) =
24 + 16 = 40.
That is, total count of arcs in ∆1 n ∆2 = 2|T1|

(|T2|
2

)
+

|R1|(|T2|(|T2| − 1)− |R2|).

Corollary 4. Let ∆1 = (T1, R1) and ∆2 = (T2, R2) be two
directed graphs and ∆1n∆2 = (T (∆1n∆2), R(∆1n∆2))
be their homomorphic product. Then

1) ∑
(u,v)∈T (∆1n∆2)

ideg∆1n∆2(u, v)

=
∑

(u,v)∈T (∆1n∆2)

odeg∆1n∆2(u, v)

= 2|T1|
(
|T2|
2

)
+ |R1|(|T2|(|T2| − 1)− |R2|),

2) ∑
(u,v)∈T (∆1n∆2)

deg∆1n∆2
(u, v) =

4|T1|
(
|T2|
2

)
+ 2|R1|(|T2|(|T2| − 1)− |R2|),

where ideg∆1n∆2(u, v), odeg∆1n∆2(u, v) and
deg∆1n∆2

(u, v) represent the indegree, outdegree and
degree of the vertex (u, v) respectively, in ∆1 n ∆2.

Proof:
1) According to Theorem 4, ∆1 n ∆2 constitutes a

directed graph with 2|T1|
(|T2|

2

)
+ |R1|(|T2|(|T2| −

1) − |R2|) arcs. As each arc contributes 1
to the sums

∑
(u,v)∈T (∆1n∆2) ideg∆1n∆2(u, v) and∑

(u,v)∈T (∆1n∆2) odeg∆1n∆2
(u, v), we have∑

(u,v)∈T (∆1n∆2)

ideg∆1n∆2(u, v)

=
∑

(u,v)∈T (∆1n∆2)

odeg∆1n∆2(u, v)

= 2|T1|
(
|T2|
2

)
+ |R1|(|T2|(|T2| − 1)− |R2|).

2) The degree of a vertex (u, v) in ∆1 n ∆2 is the sum
of its indegree and outdegree in ∆1 n ∆2 because it
is a directed graph. So by part (1) of this theorem,∑

(u,v)∈T (∆1n∆2)

deg∆1n∆2(u, v) =

4|T1|
(
|T2|
2

)
+ 2|R1|(|T2|(|T2| − 1)− |R2|).

Example 12. Consider the directed graphs ∆1 and ∆2, and
the homomorphic product ∆1 n ∆2 given in Example 10.
Here we have, ∑

u∈T (∆1n∆2)

ideg u = 40,

∑
u∈T (∆1n∆2)

odeg u = 40

and

2|T1|
(
|T2|
2

)
+ |R1|(|T2|(|T2| − 1)− |R2|) = 40.

That is, ∑
u∈T (∆1n∆2)

ideg u =
∑

u∈T (∆1n∆2)

odeg u

= 2|T1|
(
|T2|
2

)
+ |R1|(|T2|(|T2| − 1)− |R2|).

Also, ∑
u∈T (∆1n∆2)

deg u = 80

and

2(2|T1|
(
|T2|
2

)
+ |R1|(|T2|(|T2| − 1)− |R2|))

= 2(40) = 80

That is, ∑
u∈T (∆1n∆2)

deg u

= 2(2|T1|
(
|T2|
2

)
+ |R1|(|T2|(|T2| − 1)− |R2|))

= 4|T1|
(
|T2|
2

)
+ 2|R1|(|T2|(|T2| − 1)− |R2|).

VI. ROOTED PRODUCT OF DIRECTED GRAPHS

Here, we define the rooted product of directed graphs. The
section includes several theorems that analyze the number of
vertices, arcs, and degree distributions in the rooted product.
To support these theoretical findings, examples are given to
help visualize the construction and its properties.

Definition VI.1. Let’s say ∆1 = (T1, R1) represents a
directed graph, and ∆2 = (T2, R2) signifies a rooted
directed graph with a root vertex vr. The rooted product
of ∆1 and ∆2, denoted as ∆1 ◦vr

∆2, forms a directed
graph. This resulting graph has a vertex set defined as
T (∆1 ◦vr

∆2) = {vi,r : vi ∈ T1 and vr is the root
vertex of ∆2} ∪ {vi,j : vi ∈ T1 and vj is a vertex
in T2 excluding the root vertex of ∆2}, along with an
arc set described as R(∆1 ◦vr

∆2) = {(vi,r, vk,r) : vr
represents the root vertex in ∆2 and (vi, vk) denotes an arc
in ∆1} ∪ {(vi,k, vi,l) : vi ∈ T1 and (vk, vl) forms an arc in
∆2}.

Example 13. Consider ∆1 = (T1, R1), a directed
graph with a vertex set T1 = v1, v2, v3 and an arc set
R1 = (v1, v2), (v3, v1), (v2, v3), as depicted in Fig. 13.
Consider ∆2 = (T2, R2), a rooted directed graph with a
vertex set T2 = v1, v2, v3, v4, a root vertex v2, and an arc
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Fig. 13: Directed Graph ∆1 = (T1, R1)

Fig. 14: Rooted Directed Graph ∆2 = (T2, R2)

set R2 = (v1, v2), (v3, v2), (v2, v4), (v4, v2), as illustrated
in Fig. 14.
The rooted product of ∆1 and ∆2 from these two soft
directed graphs is depicted in Fig. 15.

Fig. 15: ∆ = ∆1 ◦v2
∆2

Theorem 5. Consider ∆1 = (T1, R1) as a directed graph
and ∆2 = (T2, R2) as a rooted directed graph with the
root vertex vr. Then, the rooted product of ∆1 and ∆2,
denoted by ∆1 ◦vr

∆2, comprises |T1||T2| vertices and
(|R1|+ |T1||R2|) arcs.

Proof: By definition, the vertex set of ∆1 ◦vr
∆2 is

given by T (∆1 ◦vr
∆2) = {vi,r : vi ∈ T1 and vr is the root

vertex of ∆2} ∪ {vi,j : vi ∈ T1 and vj is a vertex in T2

other than the root vertex of ∆2}. To find the total number
of vertices in ∆1 ◦vr

∆2, we add up the counts of vertices
in these two sets which are disjoint.

Consider the set {vi,r : vi ∈ T1 and vr is the root vertex
of ∆2} which contains |T1| elements. Then, let’s examine
the set {vi,j : vi ∈ T1 and vj is a vertex in T2 other than the
root vertex of ∆2} which contains |T1|(|T2| − 1) vertices.
Hence, the total number of vertices in ∆1 ◦vr

∆2 = |T1|+
|T1|(|T2| − 1) = |T1||T2|.

The arc set of ∆1 ◦vr
∆2 is given by R(∆1 ◦vr

∆2) =
{(vi,r, vk,r) : vr is the root vertex in ∆2 and (vi, vk) is an
arc in ∆1} ∪ {(vi,k, vi,l) : vi ∈ T1 and (vk, vl) is an arc in
∆2}. To obtain the total count of arcs in ∆1 ◦vr

∆2, we sum
up the number of arcs contained in these two disjoint sets.

Consider the set {(vi,r, vk,r) : vr is the root vertex in ∆2

and (vi, vk) is an arc in ∆1} which contains |R1| arcs. Then,
let’s examine the set {(vi,k, vi,l) : vi ∈ T1 and (vk, vl) is an
arc in ∆2} which contains |R2| arcs corresponding to each
vertex vi, i = 1, 2, . . . |T1| and hence totally |T1||R2| arcs.
Therefore, total count of arcs in ∆1◦vr

∆2 is |R1|+|T1||R2|.

Example 14. Consider the directed graphs ∆1 and ∆2 and
the rooted product ∆1 ◦v2 ∆2 given in Example 13.
Here we have, the total count of vertices in ∆1 ◦v2 ∆2 = 12
and |T1||T2| = 3.4 = 12.
That is, total number of vertices in ∆1 ◦v2

∆2 =
|T1||T2|.
Also, total count of arcs in ∆1 ◦v2 ∆2 = 15 and |R1| +
|T1||R2| = 3 + 3.4 = 15.
That is, total count of arcs in ∆1 ◦vr

∆2= |R1|+ |T1||R2|.

Corollary 5. Consider ∆1 = (T1, R1) as a directed graph
and ∆2 = (T2, R2) as a rooted directed graph with the root
vertex vr. Let ∆1 ◦vr ∆2 = (T (∆1 ◦vr ∆2), R(∆1 ◦vr ∆2))
represent the rooted product of ∆1 and ∆2. Then,

(i)
∑

u∈T (∆1◦vr∆2)

ideg u =
∑

u∈T (∆1◦vr∆2)

odeg u

= |R1|+ |T1||R2|

(ii)
∑

u∈T (∆1◦vr∆2)

deg u = 2(|R1|+ |T1||R2|),

where odeg u, ideg u and deg u represent the out-degree, in-
degree and degree of the vertex u respectively, in the rooted
product ∆1 ◦vr

∆2.

Proof: (i) Considering the rooted product ∆1 ◦vr
∆2 =

(T (∆1◦vr ∆2), R(∆1◦vr ∆2)), according to Theorem 5, the
number of arcs in ∆1◦vr ∆2 is |R1|+|T1||R2|. As the rooted
product ∆1◦vr

∆2 is a directed graph having |R1|+ |T1||R2|
arcs, we have∑

u∈T (∆1◦vr∆2)

ideg u =
∑

u∈T (∆1◦vr∆2)

odeg u

= |R1|+ |T1||R2|,

since each arc in the rooted product ∆1 ◦vr
∆2 con-

tributes one to each of the sums
∑

u∈T (∆1◦vr∆2) ideg u and∑
u∈T (∆1◦vr∆2) odeg u.

(ii) Since, deg u = ideg u + odeg u and by part (i) of this
corollary we have,∑

u∈T (∆1◦vr∆2)

deg u = 2(|R1|+ |T1||R2|).
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Example 15. Consider the directed graphs ∆1 and ∆2, and
the rooted product ∆1 ◦v2

∆2 given in Example 13. Here we
have, ∑

u∈T (∆1◦vr∆2)

ideg u =

0 + 4 + 1 + 0 + 4 + 0 + 1 + 0 + 4 + 0 + 0 + 1 = 15,∑
u∈T (∆1◦vr∆2)

odeg u =

1 + 2 + 1 + 1 + 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1 = 15

and
|R1|+ |T1||R2| = 3 + 3.4 = 15.

That is, ∑
u∈T (∆1◦vr∆2)

ideg u =
∑

u∈T (∆1◦vr∆2)

odeg u

= |R1|+ |T1||R2|.

Also, ∑
u∈T (∆1◦vr∆2)

deg u =

1 + 2 + 1 + 6 + 1 + 2 + 1 + 6 + 1 + 2 + 1 + 6 = 30

and
2(|R1|+ |T1||R2|) = 2(3 + 3.4) = 30.

That is, ∑
u∈T (∆1◦vr∆2)

deg u = 2(|R1|+ |T1||R2|).

VII. CORONA PRODUCT OF DIRECTED GRAPHS

This section gives the definition of the corona product
of two directed graphs. Theorems related to vertex and arc
counts, as well as degree sums, are presented to explore the
properties of the corona product. Examples accompany the
theorems to provide practical insights and demonstrate the
results clearly.

Definition VII.1. Consider two directed graphs, ∆1 =
(T1, R1) and ∆2 = (T2, R2). The corona product of ∆1

and ∆2, represented as ∆1�∆2, is a directed graph with a
vertex set T (∆1�∆2) = T1 ∪{vi,j : i = 1, 2, . . . , |T1|, j =
1, 2, . . . , |T2|} and arc set R(∆1 �∆2) = R1 ∪ {(vi, vi,j) :
i = 1, 2, . . . , |T1|, j = 1, 2, . . . , |T2|} ∪ {(vi,j , vi,k) : i =
1, 2, . . . , |T1| and vjvk is an arc in ∆2}.

Example 16. Let ∆1 = (T1, R1) represent a directed
graph with a vertex set T1 = {v1, v2, v3, v4} and arc set
R1 = {(v1, v2), (v1, v3), (v1, v4), (v4, v1), (v4, v2), (v2,
v3), (v4, v3)} which is shown in Fig. 16.
Let ∆2 = (T2, R2) be a directed graph with
a vertex set T2 = v1, v2, v3 and an arc set
R2 = (v2, v1), (v2, v3), (v3, v2), as depicted in Fig. 17.
Then, the corona product of these two directed graphs, ∆1

and ∆2, is denoted by ∆ = ∆1 � ∆2, and it is illustrated
in Fig. 18.

Theorem 6. Consider two directed graphs, ∆1 = (T1, R1)
and ∆2 = (T2, R2). Then, the corona product of ∆1 and

Fig. 16: Directed Graph ∆1 = (T1, R1)

Fig. 17: Directed Graph ∆2 = (T2, R2)

∆2, denoted by ∆1�∆2, comprises |T1|+ |T1||T2| vertices
and |R1|+ |T1||T2|+ |T1||R2| arcs.

Proof: By definition, the vertex set of ∆1 � ∆2 is
T1 ∪ {vi,j : i = 1, 2, . . . , |T1|, j = 1, 2, . . . , |T2|}. Here,
T1 contains |T1| vertices and {vi,j : i = 1, 2, . . . , |T1|, j =
1, 2, . . . , |T2|} contains |T1||T2| vertices. Hence, the total
number of vertices in ∆1 �∆2 is |T1|+ |T1||T2|.

The arc set of ∆1�∆2 is R(∆1�∆2) = R1∪{(vi, vi,j) :
i = 1, 2, . . . , |T1|, j = 1, 2, . . . , |T2|} ∪ {(vi,j , vi,k) : i =
1, 2, . . . , |T1| and vjvk is an arc in ∆2}. That is, the arc
set of ∆1 � ∆2 is the union of three disjoint sets of arcs.
So, to get the total count of arcs in ∆1 � ∆2, we add the
number of arcs contained in each set. The set R1 contains
|R1| arcs. Consider the set {(vi, vi,j) : i = 1, 2, . . . , |T1|, j =
1, 2, . . . , |T2|}. This set contains |T2| arcs with vi as their
end vertex, for a particular i, and i takes |T1| different values.
So, the set {(vi, vi,j) : i = 1, 2, . . . , |T1|, j = 1, 2, . . . , |T2|}
contains |T1||T2| arcs. Consider the set {(vi,j , vi,k) : i =
1, 2, . . . , |T1| and vjvk is an arc in ∆2}. This set contains
|R2| arcs each, corresponding to all i, and i takes |T1|
different values. So, the set {(vi,j , vi,k) : i = 1, 2, . . . , |T1|
and vjvk is an arc in ∆2} contains |T1||R2| arcs. Therefore,
the total count of arcs in ∆1�∆2 is |R1|+|T1||T2|+|T1||R2|.

Example 17. Consider the directed graphs ∆1 and ∆2 given
in Example 16.
Here we have, the total count of vertices in ∆1 �∆2 = 16
and |T1|+ |T1||T2| = 4 + (4.3) = 16.
That is, the total count of vertices in ∆1 � ∆2 = |T1| +
|T1||T2|.
Also, total count of arcs in ∆1 � ∆2 = 31 and |R1| +
|T1||T2|+ |T1||R2| = 7 + 4.3 + 4.3 = 31.
That is, total count of arcs in ∆1 �∆2 = |R1|+ |T1||T2|+
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Fig. 18: ∆ = ∆1 �∆2

|T1||R2|.

Corollary 6. Let ∆1 = (T1, R1) and ∆2 = (T2, R2) be two
directed graphs. Let ∆1�∆2 = (T (∆1�∆2), R(∆1�∆2))
be the corona product of ∆1 and ∆2. Then

(i)
∑

u∈T (∆1�∆2)

ideg u =
∑

u∈T (∆1�∆2)

odeg u

= |R1|+ |T1||T2|+ |T1||R2|

(ii)
∑

u∈T (∆1�∆2)

deg u

= 2(|R1|+ |T1||T2|+ |T1||R2|),

where ideg u, odeg u and deg u represent the in-degree, out-
degree and degree of the vertex u respectively, in ∆1�∆2.

Proof: (i) Let’s consider the corona product of ∆1 and
∆2 denoted by ∆1 � ∆2 = (T (∆1 � ∆2), R(∆1 � ∆2)).
According to Theorem 6, the number of arcs in ∆1 � ∆2

is given by |R1| + |T1||T2| + |T1||R2|. Since the product
∆1�∆2 is a directed graph with |R1|+ |T1||T2|+ |T1||R2|
arcs, we have∑

u∈T (∆1�∆2)

ideg u =
∑

u∈T (∆1�∆2)

odeg u

= |R1|+ |T1||T2|+ |T1||R2|,

since each arc in the corona product ∆1 � ∆2 con-
tributes 1 each to the sums

∑
u∈T (∆1�∆2) ideg u and∑

u∈T (∆1�∆2) odeg u.
Hence, ∑

u∈T (∆1�∆2)

ideg u =
∑

u∈T (∆1�∆2)

odeg u

= |R1|+ |T1||T2|+ |T1||R2|.

(ii) Since, deg u = ideg u + odeg u and by part (i) of this
corollary we have,∑

u∈T (∆1�∆2)

deg u = 2(|R1|+ |T1||T2|+ |T1||R2|).

Example 18. Consider the directed graphs ∆1 and ∆2, and
the corona product ∆1�∆2 given in Example 16. Here we
have, ∑

u∈T (∆1�∆2)

ideg u = 2 + 2 + 2 + 1 + 2 + 2 + 2 + 3+

2 + 2 + 2 + 2 + 2 + 2 + 2 + 1 = 31,∑
u∈T (∆1�∆2)

odeg u = 2 + 1 + 6 + 2 + 1+

3 + 4 + 2 + 1 + 6 + 2 + 1 = 31

and

|R1|+ |T1||T2|+ |T1||R2| = 7 + 4.3 + 4.3 = 31.

That is, ∑
u∈T (∆1�∆2)

ideg u =
∑

u∈T (∆1�∆2)

odeg u

= |R1|+ |T1||T2|+ |T1||R2|.

Also,∑
u∈T (∆1�∆2)

deg u = 2 + 4 + 3 + 7 + 2 + 4 + 3 + 6 + 6+

2 + 4 + 3 + 7 + 2 + 4 + 3 = 62

and

2(|R1|+ |T1||T2|+ |T1||R2|) = 2(7 + 4.3 + 4.3)

= 2.31 = 62

That is, ∑
u∈T (∆1�∆2)

deg u = 2(|R1|+ |T1||T2|+ |T1||R2|).

VIII. CONCLUSION

The graph product is a binary operation that applies
to graphs. Similar to how product operations are defined
in graphs, we can establish corresponding operations in
directed graphs. Numerous authors have delved into product
operations within directed graphs, such as the Cartesian,
lexicographic, and strong products. This paper expanded the
definitions of product operations from graphs like categori-
cal, modular, disjunctive, homomorphic, corona, and rooted
products adapting them to directed graphs and exploring
certain properties associated with them.
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