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Abstract—In today’s fast-evolving technological environment,
ensuring confidentiality is of utmost importance. Cryptography
stands as a critical discipline in safeguarding information from
unauthorized access. It employs various encryption algorithms
to secure data effectively. As digital threats evolve, there’s
a growing demand for unconventional encryption methods
to counter traditional cyber-attacks. This paper introduces
innovative encryption algorithms leveraging special graphs
and public key cryptography techniques, enhancing security
through modular arithmetic properties and enabling more
robust communication safeguards.

A partition V1, V2, . . . , Vk of the vertex set V is called a
chromatic partition of G if each Vi, 1 ≤ i ≤ k is an independent
set of G. The minimum order of a chromatic partition of G
is called chromatic number χ(G). A chromatic partition of G
is called an ordered partition if |V1| = β0 and |Vi| = β0(V −
∪i

j=1Vj). The order of a minimum ordered chromatic partition
of G is called ordered chromatic number χ1(G). It is immediate
that χ1(G) ≥ χ(G). In this paper we extend Nordhaus Gaddum
results to ordered chromatic number.

Index Terms—Bipartite graphs, Corona of two graphs, Star
Graphs, Encryption, Decryption.

I. INTRODUCTION

ALGORITHMS in graphs are methods used to solve
various problems related to graph theory, which in-

volves the study of graphs as mathematical structures. A
graph consists of vertices (or nodes) and edges (or links) that
connect pairs of vertices. Graph algorithms are fundamental
in computer science and are used in many practical applica-
tions, such as network design, social network analysis, and
biological data modeling.

In the past, secure communications were primarily used
by military personnel to ensure the safe transfer of mes-
sages. However, in the modern world, the widespread use
of the internet, mobile phones, and computer technology
has made every individual concerned about the security of
their personal data and information. As technology for data
security advances, new methods to compromise confidential
communications also emerge.

Cryptographic algorithms are the cornerstone of modern
secure communication and data protection. These algorithms
are mathematical constructs designed to encrypt and decrypt
data, ensuring confidentiality, integrity, authentication, and
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non-repudiation in digital transactions. At its core, a crypto-
graphic algorithm involves a set of procedures and rules for
manipulating data to make it unintelligible to anyone without
the appropriate decryption key.

Cryptographic algorithms play a vital role in various
applications, including secure communication over the in-
ternet, digital signatures, secure e-commerce transactions,
and authentication protocols. Their effectiveness depends not
only on the complexity of the algorithm itself but also on
the strength of the keys used and the implementation of
the cryptographic protocols. As technology evolves, cryp-
tographic algorithms continue to adapt to meet the growing
challenges of securing digital information in an increasingly
interconnected world.

Graphs can be used to design different encryption al-
gorithms. The interaction between graph theory and cryp-
tography is fascinating, with recent developments showing
growing interest in using graphs to propose new method-
ologies in various areas of cryptography. In this context,
new algorithms have been defined using existing public key
cryptographic methods and graph structures like bipartite
graphs, star graphs, and the corona of two graphs. The
proposed algorithms can securely send and receive messages
of any length using these graphical structures and some
algebraic properties.

Surekha et al. [14], [15], [16], [17] and Tana et al. [18]
have conducted a comprehensive investigation into the char-
acteristics of cliques in graph structures. This implies a
detailed study focusing on understanding various properties
and behaviors of cliques within graph theory. Isabel Cristina
Lopes et al. [6] have also explored the topic of cliques in
graph structures, indicating another independent study on this
subject.

II. SECURE DATA TRANSFER USING BIPARTITE GRAPHS

In this section, we introduce an encryption algorithm
aimed at ensuring secure and confidential communication be-
tween two entities. This algorithm leverages bipartite graphs,
modular arithmetic, and the properties of co-prime numbers.
We begin by generating both public and private keys.

• Select two random prime number i.e p and q.
• Multiply p and q, i.e n.
• Find the Euler phi function (ϕ) for n.
• ϕ(n) = (p− 1) ∗ (q − 1).
• Choose a random number e that is coprime to ϕ(n).
• compute modular inverse d of e modulo ϕ(n) that is

(d ∗ e) mod ϕ(n) = 1.
• So, (n, e) is the public key and (n, d) is the private key.

Using the above algorithm, both public and private keys
have been generated. Next, we proceed with the encryption
process, as outlined in the formulated algorithm below.

• To encrypt a message m using the public key (n,e),
we first apply the chosen encoding method to convert
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the message into numerical form. Then, we use the
encryption function C(m) = memod n.

• Constructing a path graph using C(m).
• Seperate the graph labels as V1 and V2.
• Form a bipartite graph with this vertex set G(V1,V2).
• Assign some random numbers to the edges as weight

in increasing order.
The receiver then obtains the bipartite graphical structure and
the private key, which are used for the decryption process
according to the algorithm detailed below.

• Arrange the weights of edges in increasing order.
• Arrange the vertices of edges as ordered pairs with

respect to the weights.
• Construct a path graph using the ordered pairs.
• Decrypt the message C using the private key (n, d) by

applying the decryption function D(C) = Cdmod n.
• The necessary alphabets are retrieved using the encod-

ing table.

A B C D E F G H I J K L
1 2 3 4 5 6 7 8 9 10 11 12
M N O P Q R S T U V W X
13 14 15 16 17 18 19 20 21 22 23 24
Y Z
25 26

TABLE I: Numerical Representation

Let’s consider an example to illustrate this algorithm.
To demonstrate the described technique, let’s take an

example that follows the outlined steps. We’ll use the word
M I T and generate public and private keys to encrypt and
decrypt the message.

Generating Public and Private key’s:
• Let us take two prime numbers p = 7 and q = 13.
• Computing the product of p and q, n = p ∗ q, n = 91.
• Computing the Euler’s totient/phi function of n, ϕ(n) =

(p− 1) ∗ (q − 1) = 6 ∗ 12 = 72.
• Let us take e = 23, where 23 is co-prime to 72.
• Computing the private key d. The multiplicative inverse

of 23 modulo 72 is 47. Hence d = 47.
• The public key (n, e) is (91,23) and the private key

(n, d) is (91,47).

Encryption using Public key(n,e):
• The message to be encrypted is MIT.
• Representing the message using numerical representa-

tion table i.e. m1= M = 13, m2= I = 9, m3 = T = 20,
• Applying the encryption function:

– C(m1)= 1323 mod 91 = 13.
– C(m2)= 923 mod 91 = 81.
– C(m3)= 2023 mod 91 = 41.

• Constructing a path graph(Fig. (1a)) using C(m1),
C(m2) and C(m3).

• Seperating the graph lables as V1 = (1,8,4) and V2 =
(3,1).

• Forming the Bipartite graph(Fig. (1b)).
Decryption using Private key(n.d):

• Arranging the weights in increasing order, 10, 20, 30.
• Arranging the vertices of edges as ordered pairs with

respect to the weights, (1,3) (8,1) (4,1).

• Constructing a path graph using the ordered pairs,
(Fig. (1a)).

• Decrypting the message,
– D(C1)= 1347 mod 91 = 13.
– D(C2)= 8147 mod 91 = 9.
– D(C3)= 4147 mod 91 = 20.

• Decoding D(C1), D(C2) and D(C3) using the Numerical
representation table, i.e.13 = M, 9 = I, 20 = T.

• Hence the decrypted message using the Bipartite graph
(Fig. (1b)) is MIT.

13 81 41

(a) Line graph

8

4

1

1

3

10

20

30

(b) Bipartite Graph

Fig. 1: Secure Data Transfer using Bipartite Graph

III. SECURE DATA TRANSFER USING CORONA OF TWO
GRAPHS

In this section, we introduce an encryption algorithm
intended to enable secure and confidential communication
between two entities. This algorithm utilizes bipartite graphs,
modular arithmetic, and the properties of co-prime numbers.
We begin by generating both public and private keys.

• Select two random prime numbers, i.e p and q.
• Multiply p and q, i.e n.
• Find the Euler phi function (ϕ) for n.
• ϕ(n) = (p− 1) ∗ (q − 1).
• Choose a random number e that is coprime to ϕ(n).
• Compute modular inverse d of e modulo ϕ(n) that is

(d ∗ e) mod ϕ(n) = 1.
• So, (n, e) is the public key and (n, d) is the private key.

The algorithm used for generating both public and private
keys operates similarly to the bipartite graph approach.

• Number the alphabets using Table I
• Next, to encrypt the message m using the public key

(n, e), we apply the encryption formula, ai=memod n.
• Select random integers bi in increasing order where

gcd(ai, bi) = 1.
• Consider a corona graph Cx⊙K1 with 2x vertices and

allot weights b1, b2, b3, . . . , bn to the vertices, adjacent
to pendent vertices randomly.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2727-2734

 
______________________________________________________________________________________ 



• Find the inverse of ai (mod bi) for all i and denote
them by ci, that is ci = (ai)

−1 (mod bi) ∀ i.
• Give the numeric values of c1, c2, c3, . . . , cn to pendent

vertices. Send this corona graph Cx⊙K1 to the receiver.
Then, the recipient receives the graphical structure and
the private key, which are used for the decryption process
following the algorithm outlined below.

• To decrypt, arrange all main vertices in ascending order
using the labeled graph.

• Calculate the inverses of the weights of pendent vertices
ci modulo their adjacent vertices bi, denoted as ai for
each i.

• Decrypt the corresponding values using the decryption
formula with the private key (n, d) .

• m = adimod n.
• The necessary letters are retrieved from the encoding

table.
Let’s explore an example of this algorithm.

To illustrate the described technique, we’ll use an example
to demonstrate each step. Let’s take the word MAHE,
generate public and private keys, and proceed to encrypt and
decrypt using these keys.

Generating Public and Private key’s:
• Let us take two prime numbers p = 3 and q = 7.
• Computing the product of p and q, n = p ∗ q, n = 21.
• Computing the Euler’s totient/phi function of n, ϕ(n) =

(p− 1) ∗ (q − 1) = 2 ∗ 6 = 12.
• Let us take e = 17, where 17 is co-prime to 12.
• Computing the private key d. The multiplicative inverse

of 17 modulo 12 is 5. Hence d = 5.
• The public key (n, e) is (21, 17) and the private key

(n, d) is (21, 5).
Encryption using Public key (n, e):

• The message to be encrypted is MAHE
• Representing the Message using Table I, i.e., m1= M =

13, m2 = A = 1, m3 = H = 8, m4 = E = 5.
• Applying the encryption function:

– a1= 1317 mod 21 = 13.
– a2= 117 mod 21 = 1.
– a3= 817 mod 21 = 8.
– a4= 517 mod 21 = 17.

• Selecting random integers bi in increasing order, i.e.,
19 < 21 < 23 < 25.

• Build the corona graph C4 ⊙ K1 and assign random
values to bi on the main vertices, illustrated in Fig. 2a.

• Calculating the inverse of ai (mod bi) for all i.
– c1= 13−1 mod 19 = 3.
– c2= 1−1 mod 21 = 1.
– c3= 8−1 mod 23 = 3.
– c4= 17−1 mod 25 = 3.

• Assign these inverse values to the adjacent pendant
vertices in Fig. (2a), depicted as shown in Fig. (2a).

• Send this labelled graph to the reciever Fig. (2a).
Decryption using Private key (n.d):

• The recipient, after receiving that labeled graph, ar-
ranges the main vertices in ascending order such that
19 < 21 < 23 < 25 and consider these values as bi for
all i = 4.

• Taking inverse of corresponding pendent vertices with
respect to the value of each bi

– a1= 3−1 mod 19 = 13.
– a2= 1−1 mod 21 = 1.
– a3= 3−1 mod 23 = 8.
– a4= 3−1 mod 25 = 17.

• Decrypting the message
– m1= 135 mod 21 = 13.
– m2= 15 mod 21 = 1.
– m3= 85 mod 21 = 8.
– m4= 175 mod 21 = 5.

• Decoding DC1, DC2, C3 and m4 using Table I, i.e. 13
= M, 1 = A, 8 = H, 5 = E.

• Hence the decrypted message using Corona graph C4⊙
K1 (Fig. (2b)) is MAHE

19 25

2123

(a)

19 25

2123

3

1

3

3

(b)

Fig. 2: Secure Data Transfer using Corona of two Grapha

IV. SECURE DATA TRANSFER USING STAR GRAPHS

In this section, we introduce an encryption algorithm
aimed at enabling secure and confidential communication
between two entities. This algorithm utilizes star graphs,
modular arithmetic, and properties of co-prime numbers. We
begin by generating both public and private keys to facilitate
the encryption process.

• Select two random prime number i.e p and q.
• Multiply p and q i.e n
• Find the Euler phi function(ϕ) for n.
• ϕ(n) = (p− 1) ∗ (q − 1).
• Choose a random number e that is coprime to ϕ(n).
• Compute modular inverse d of e modulo ϕ(n) that is

(d ∗ e) mod ϕ(n) = 1.
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• So, (n, e) is the public key and (n, d) is the private key.
The algorithm used for generating both public and private

keys follows a similar approach as that used for bipartite
graphs.

• Number the Alphabets using Table I.
• Then to encrypt the message m using the public

key (n, e) we apply the encryption formula C(m) =
memod n.

• Take a star graph S(x+1) = (K1 ⊙ Kx) , such that
the number of corner vertices is equal to the length of
message.

• Label the edges e1, e2, e3, . . . , en.
• Assign labels to each vertex using the values obtained

from the public key cryptographic method.
• Give the weights w1, w2, w3, . . . , wn to each edge

e1, e2, e3, . . . , en
• Subtract increasing power of 10 from each vertex label.
• V1 − 101, V2 − 102, . . . , Vn − 10n, where the resulting

values becomes the weights of the corresponding edges.
• The final graph is the star graph with edge’s weights.

Next, the recipient receives the graphical structure and the
private key, which are utilized for decryption using the
specified algorithm below.

• To decrypt, organize the edge weights in ascending
order.

• Sum up the increasing powers of 10 accordingly.
• Apply the decryption formula D(C) = Cdmod n to the

resulting number.
• Decode the characters from the encoding table to re-

trieve the desired text.
Here’s an example illustrating this algorithm.

To demonstrate the described technique, we’ll use an
example to illustrate each step. Let’s take the word Manipal,
generate public and private keys, and proceed to encrypt and
decrypt using these keys.

Generating Public and Private key’s:
• Let us take two prime numbers p = 3 and q = 11.
• Computing the product of p and q, n = p ∗ q, n = 33.
• Computing the Euler’s totient/phi function of n, ϕ(n) =

(p− 1) ∗ (q − 1) = 2 ∗ 10 = 20.
• Let us take e = 13, where 13 is co-prime to 20.
• Computing the private key d. The multiplicative inverse

of 13 modulo 20 is 17. Hence d = 17.
• The public key (n, e) is (33, 13) and the private key

(n, d) is (33, 17).
Encryption using Public key (n, e):

• The Message to be encrypted is Manipal
• Representing the message using Table 1 table i.e. m1=

M = 13, m2= a = 1, m3 = n = 14, m4 = i = 9, m5
= p = 16, m6 = a = 1, m7 = l = 12.

• Applying the encryption function:
– C(m1)= 1313 mod 33 = 19.
– C(m2)= 113 mod 33 = 1.
– C(m3)= 1413 mod 33 = 5.
– C(m4)= 913 mod 33 = 3.
– C(m5)= 1613 mod 33 = 4.
– C(m6)= 113 mod 33 = 1.
– C(m7)= 1213 mod 33 =12.

• Taking a star graph S(7+1) = (K1 ⊙ K7) Fig. (3a) in
such a way that edges are labeled as e1, e2, e3, . . . , en.

• Assigning labels to each vertex using values obtained
from the public key cryptographic method, the resulting
graph appears as depicted in Fig. (4a)

• Afterwards, assign weights wi, to the edges of the
vertices, where for all i ∈ {1, 2, 3, 4, 5, 6, 7} with
the weights ordered as follows: w1(19) < w2(1) <
w3(5) < w4(3) < w5(4) < w6(1) < w7(12).

• The weights are derived by subtracting the increasing
powers of 10 from each corresponding numeric value
adjacent in Fig. (4a):

– weight of edge e1 = w1 = 19− 10 = 9,
– weight of edge e2 = w2 = 1− 102 = −99,
– weight of edge e3 = w3 = 5− 103 = −995,
– weight of edge e4 = w4 = 3− 104 = −9997,
– weight of edge e5 = w5 = 4− 105 = −99996,
– weight of edge e6 = w6 = 1− 106 = −999999,
– weight of edge e7 = w7 = 12− 107 = −9999988,

• The resulting star graph is depicted in Fig. (5a). This
graph, labeled accordingly, is then transmitted to the
second authority. Now, let’s outline the decryption pro-
cess. Initially, the recipient receives the labeled graph,
as illustrated in Fig. (5a).

Decryption using Private key (n, d):
• The first step involves arranging the edge weights in

ascending order based on their modulo values. i. e. |9| <
| − 99| < | − 995| < | − 9997| < | − 99996| < | −
999999| < | − 9999988|

• Add the increasing powers of 10 to each adjacent value
so that
|9 + 10| < | − 99 + 102| < | − 995 + 103| < | −
9997+ 104| < | − 99996+ 105| < | − 999999+ 106| <
| − 9999988 + 107|

• Through this mod operation, we get the values:
19,1,5,3,4,1,12

• Applying the decryption formula
– D(m1)= 1917 mod 33 = 13
– D(m2)= 117 mod 33 = 1
– D(m3)= 517 mod 33 =14
– D(m4)= 317 mod 33 = 9
– D(m5)= 417 mod 33 = 16
– D(m6)= 117 mod 33 = 1
– D(m7)= 1217 mod 33 = 12

• Finally, we get the values 13,1,14,9,16,1,12, Through
the encoding table, we get their respective letters as M
a n i p a l. Get the required hidden text.

1

14

9

16

1

12

13

(a)

Fig. 3: Secure Data Transfer using Star Graphs
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1

5

3

4

1

12

19

(a)

Fig. 4: Secure Data Transfer using Star Graphs

-99

-995

-9997

-99996

-999999

-9999988

9

(a)

Fig. 5: Secure Data Transfer using Star Graphs

Painting the vertices of a graph G is called a colouring
of G. A colouring is called a proper colouring of G if no
two adjacent vertices receive the same colour. The minimum
number of colours required to colour all the vertices of a
graph G is called the chromatic number χ(G) of G.

A set D is said to be independent if no two vertices D
are adjacent. The maximum order of an independent set is
called independence number β0(G).

We can also define the chromatic number in another way
as follows. Any proper colouring of G partition the vertex
set into independent sets. Thus a partition V1, V2, . . . , Vk

of the vertex set V is called a chromatic partition of G
if each Vi, 1 ≤ i ≤ k is an independent set of G. Then
the minimum order of a chromatic partition of G is called
chromatic number χ(G).

In this partition of vertex set in to independent sets, it is not
necessary that the partition contain a maximum independent
set. This fact made us to define ordered chromatic partition
and ordered chromatic number as follows.

V. ORDERED CHROMATIC NUMBER

A chromatic partition of G is called an ordered parti-
tion if |V1| = β0 and |Vi| = β0(V −∪i

j=1Vj), i = 2, 3, . . . , k
. The order of a minimum ordered chromatic partition of G
is called ordered chromatic number χ1(G). It is immediate
that χ1(G) ≥ χ(G).

Example V.1. The minimum chromatic partition of any
cycle Cn and any complete graph Kn are examples of
chromatically ordered partitions.

Fig. 6: Double Star

The minimum chromatic partition of any double star
K1,n ∗K1,m is not chromatically ordered. Let v1 and v2 are
two supports of a double star and S1={v1 ∪ set of all pendant
vertices adjacent to v2} and S2={v2 ∪ set of all pendant
vertices adjacent to v1}. Then S1 and S2 form a minimum
chromatic partition of the double star which is not an ordered
partition as |S1| ̸= β0(K1,n ∗ K1,m). Let S3={set of all
pendant vertices}, S4 = {v1} S5 = {v2} . Then S3, S4 and
S5 is an ordered minimum chromatic partition of the double
star. Therefore χ1(K1,n∗K1,m) = 3 > 2 = χ(K1,n∗K1,m).

We quote another example.

Example V.2. The graph G shown in the Fig 7 is an example
of a graph which is not tree for which χ1(G) = 3 > 2 =
χ(G).

Fig. 7: A graph for which χ1(G) ≥ χ(G).

Proposition V.1. For any graph G,

χ1 ≥ χ ≥ β̄0

and χ̄1 ≥ χ̄ ≥ β0

Proof: By definition we have χ1 ≥ χ and it is well
known that χ(G) ≥ ω(G) = β̄0. Thus we have χ1 ≥ χ ≥
β̄0. Complimenting this inequality (that is applying the first
inequality to Ḡ) we get the second inequality.

A. Nordhaus - Gaddum Type Result

Bounds for sum and product of chromatic numbers
of a graph and its compliment were developed by Nordhaus
and Gaddum [10]
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Proposition V.2. [10] For any graph G

2
√
p ≤ χ+ χ̄ ≤ p+ 1

p ≤ χχ̄ ≤ (
p+ 1

2
)2

We now extend this inequality to sum and product of
independence numbers of a graph and its compliment.

Proposition V.3. For any graph G

p
(χ1 + χ̄1)

χ1χ̄1
≤ β0 + β̄0 ≤ χ+ χ̄ ≤ χ1 + χ̄1 ≤ p+ 1

p2

χ1χ̄1
≤ β0β̄0 ≤ χχ̄ ≤ χ1χ̄1 ≤

(
p+ 1

2

)2

Proof: From Proposition V.1, it follows that

β0 + β̄0 ≤ χ+ χ̄ ≤ χ1 + χ̄1

and
β0β̄0 ≤ χχ̄ ≤ χ1χ̄1.

Let {V1, V2, . . . , Vk} denote a minimum ordered chromatic
partition of G such that χ1(G) = k. Given |V1| = β0 and
β0 ≥ |Vi| for 2 ≤ i ≤ k, it follows that

χ1β0 ≥ p,

leading to
β0 ≥ p

χ1
.

By a similar argument, we find that

β̄0 ≥ p

χ̄1
.

Thus, we have
β0β̄0 ≥ p,

establishing the lower bound for the second inequality.
Since the geometric mean of two positive numbers does

not exceed their arithmetic mean, we obtain

β0 + β̄0 ≥ p

χ1
+

p

χ̄1
= p

(
χ1 + χ̄1

χ1χ̄1

)
,

providing the lower bound for the second inequality.
To show that

χ1 + χ̄1 ≤ p+ 1,

we apply induction on p. The base case holds for p = 1.
Assume χ1 + χ̄1 ≤ p is true for graphs with p− 1 vertices.
Let H be a graph with p vertices and H̄ its complement.
Removing a vertex v from H gives graphs G = H − v and
Ḡ = H̄ − v with p− 1 vertices. We find that

χ1(H) ≤ χ1(G) + 1

and
χ̄1(H) ≤ χ̄1(G) + 1.

Case 1: If χ1(H) < χ1(G) + 1 or χ̄1(H̄) < χ̄1(Ḡ) + 1,
then

χ1(H) + χ̄1(H) ≤ p+ 2,

leading to
χ1(H) + χ̄1(H) ≤ p+ 1.

Case 2: If χ1(H) = χ1(G) + 1 and χ̄1(H̄) = χ̄1(Ḡ) + 1,
we find that the removal of v from H reduces the chromatic

number, so
d ≥ χ1(G)

and d(v) in H̄ is

p− d− 1 ≥ χ̄1(Ḡ).

Hence,
χ1(G) + χ̄1(Ḡ) ≤ p− 1,

leading to
χ1(H) + χ̄1(H) ≤ p.

In all cases, we conclude that

χ1(H) + χ̄1(H) ≤ p+ 1.

Finally, since the geometric mean of two positive numbers
does not exceed their arithmetic mean, we obtain

4χ1χ̄1 ≤ (χ1 + χ̄1)
2 ≤

(
p+ 1

2

)2

,

providing the desired upper bound for the second inequality.
This result can also be extended to domination and indepen-
dent domination numbers.

Corollary V.3.1. For any graph G

γ + γ̄ ≤ i+ ī ≤ β0 + β̄0 ≤ χ+ χ̄ ≤ χ1 + χ̄1 ≤ p+ 1

γ + γ̄ ≤ i+ ī ≤ β0β̄0 ≤ χχ̄ ≤ χ1χ̄1 ≤
(
p+ 1

2

)2

VI. VERTEX CLIQUE DOMINATION

The partition number θ(G) of a graph, introduced by
Berge [2], represents the minimum number of cliques needed
to cover all the vertices. Choudam et al. [4] referred to it
as the vertex clique covering number and explored its edge
counterpart, the edge clique covering number θ1(G), which
is the least number of cliques required to cover all edges in
the graph.

Building on these concepts, a new type of domination was
defined: vertex clique domination. In this context, a vertex v
is said to clique-dominate a clique l if v is connected to l.
A subset D of vertices is termed a vertex clique dominating
set (VCD-set) if every clique in the graph is dominated by
at least one vertex from D. The vertex clique domination
number, denoted as γvc(G), indicates the size of the smallest
VCD-set in the graph.

Conversely, a set F of cliques in K(G) is defined as a
clique vertex dominating set (CVD-set) if every vertex in
G is dominated by at least one clique from F . The clique
vertex domination number, γcv(G), is the size of the smallest
CVD-set in G.

Example VI.1. For the graph G of Fig. 8, γvc = 7 and
γcv = 13

Note VI.1.
1) For any triangle free graph G, γvc(G) = α0(G).
2) We observe that

(i) n0 = γvc.
(ii) If G has no isolates, then γve = n0 = γvc.

(iii) γcv = θ0.
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Fig. 8

E Sampathkumar and Prabha S Neeralagi [12] obtained
the following bounds.

Proposition VI.2. For any graph G, γvc = n0 ≤ p−∆

R. S. Bhat et. al. [3] obtained the following bounds.

Proposition VI.3. For any graph G,
q

∆ve
≤ γve = γvc

Proposition VI.4. For any graph G,
p

∆cv
=

p

ω
≤ θ0 = γcv

Proof: We know that
p

β0
≤ χ(G). But χ(Ḡ) = θ0 and

β0(Ḡ) = ω. Thus
p

β0(Ḡ)
≤ χ(Ḡ) gives

p

ω
≤ θ0.

We obtain some new bounds for neighborhood number
using the new definitions.

Proposition VI.5. For any graph G, γvc ≤ pc. Equality
holds if G is a clique star.

Proof: Since the set of all polycliqual vertices is a VCD
set of G we have γvc ≤ pc.

Now we give vertex clique domination number of newly
defined graphs.

Proposition VI.6.

1) If G is a clique cycle with k cliques, γvc(G) =

⌈
k

2

⌉
.

2) If G is a clique path with k cliques, γvc(G) =

⌈
k

2

⌉
.

3) If G has a vertex of degree p− 1, γvc(G) = 1.
4) If G is a clique star with c cut-vertices, γvc(G) = c.

Proposition VI.7. Let G be any graph with k cliques and
maximum VC degree ∆vc, then⌈

k

∆vc

⌉
≤ γvc (1)

Further the bound is sharp.

Proof: Since any polycliqual vertex can clique dominate

atmost ∆vc cliques, we need atleast
⌈

k

∆vc

⌉
vertices to clique

dominate all the cliques of G. This yields the bound in (1).
The bound is sharp for any clique complete graph.

Example VI.2. For the graph G of Figure 9, number of
cliques k = 8, maximum vc-degree ∆vc = 3 and γvc = 3.

Thus
⌈

k

∆vc

⌉
=

⌈
8

3

⌉
= 3 = γvc

Surekha et al. define clique-free sets in their work [16]. We
present a result similar to Gallai’s Theorem concerning the

G

l1 l
2

l4

l
3

l
6

l
5

l7

l
8

Fig. 9

vertex clique domination number. To begin, we will discuss
the following Proposition.

Proposition VI.8. Let G be a (p,q) graph and S ⊆ V , then
S is a VCD set of G if and only if V-S is a clique free set of
G.

Proof: Let S be a vertex clique dominating (VCD) set
of G. Since each clique in G is dominated by at least one
vertex from S, it follows that at least one vertex from every
clique must belong to S. Consequently, the set V −S cannot
form any cliques in G, which means V − S is clique-free.

Conversely, suppose S is a clique-free set of G. If V − S
were not a VCD set, there would exist at least one clique k ∈
G that is not dominated by any vertex in V −S. This implies
that all vertices of k must be included in S. Therefore, ⟨S⟩
would contain the clique k, contradicting the assumption that
S is a clique-free set of G.

Proposition VI.9. For any graph G with p vertices,

γvc + βvc = p

Proof: Let S be a γvc-set of G. According to Proposi-
tion VI.8, V − S is a clique-free set of G. Thus, we have
βvc ≥ |V − S| = p − γvc, leading to γvc + βvc ≥ p.
(i)

Conversely, let D be a βvc-set of G. Again, by Proposi-
tion VI.8, V −D is a VCD set of G, giving us γvc ≤ |V −
D| = p−βvc and therefore γvc+βvc ≤ p. (ii)

The result then follows from (i) and (ii).
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