Abstract
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
Algorithm
Algorithmen
Algorithmen
Algorithmen
Algorithmen kobot based on the Beetle Ante
kind of two-degree-of-freedom (2-DOF) upper limb exoskeleton
kind of two-degree-of-freedom (2-DOF) upper limb exoskeleton
kind of two-degree-of-freedom (2-DOF) upper limb exoskeleton
 Figure Limb Exoskeleton

etle Antennae Search

ithm

<sub>run He, Lie Yu and Lei Ding

engaged in heavy lifting tasks. The purpose of such robots is

usually to enable the robotic limb to move in unison with the

human limb. M</sub> **procedure Antennae Search
etle Antennae Search**
ithm
yun He, Lie Yu and Lei Ding
engaged in heavy lifting tasks. The purpose of such robots is
usually to enable the robotic limb to move in unison with the
human limb. More IAENG International Journal of Applied Mathematics

Robust PID Control for Upper Limb Exoskeleton

Robot based on the Beetle Antennae Search

Algorithm

Fenggang Liu, Lang Rao, Zhaoyun He, Lie Yu and Lei Ding IAENG International Journal of Applied Mathematics

bust PID Control for Upper Limb Exoskeleton

Robot based on the Beetle Antennae Search

Algorithm

Fenggang Liu, Lang Rao, Zhaoyun He, Lie Yu and Lei Ding

engaged in hea Algorithm Fenggang Liu, Lang Rao, Zhaoyun He, Lie Yu and Lei Ding

robot. Delsoel OIT THE BOOTLY TRICHTER
 roof the Consister of the Connected body
 roof the Connected body
 robot. This paper presents a computational model for one usually to enable the robotic line

robot. This ro **imitate the upper shoulder and elbow joints. The dynamic of the upper short of the upper shoulder and elbow joints of the upper shoulder and elbow joints of the upper limb expected in the upper shoulder and elbow joints o The School Set of direct** Current (DC) motors are severally used to the relationship per presents a computational model for one is usually to enable the robotic kind of two-degree-of-freedom (2-DOF) upper limb exoskeleton **Example 19** Fenggang Liu, Lang Rao, Zhaoyun He, Lie Yu and Lei D
 dubtract—This paper presents a computational model for one usually to enable the robotic

kind of two-degree-of-freedom (2-DOF) upper limb exoskeleton
 Fenggang Liu, Lang Rao, Zhaoyun He, Lie Yu and
 Abstract—This paper presents a computational model for one

is usually to enable the

kind of two-degree-of-freedom (2-DOF) upper limb exoskeleton

pluman limb. Moreo

robo Fenggang Liu, Lang Rao, Zhaoyun He, Lie Yu and Lei D

engaged in heavy lifting tas
 between-This paper presents a computational model for one

woused in heavy lifting tas
 condot (This roob consists of two connected bo Fenggang Liu, Lang Rao, Zhaoyun He, Lie Yu and Let L
 PIDMONG A
 PIDMONG A CONSTAND A
 PIDMONG A CONSTAND A
 PIDMONG A CONSTAND A
 **PIDMONG A CONSISS OF TWO CONSTAND ASSEM AND THE UPPEND A CONSIDE A

PIDMONG A CON** *Abstract***—This paper presents a computational model for one usually to enable the robotic linkind of two-degree-of-freedom (2-DOF) upper limb exoskeleton luman limb. Moreover, the hum
robot. This robot consists of two co** *in the indeed to connet in the informal model for one* **and the tuning of two-degree-of-freedom (2-DOF) upper limb exoskeleton** human limb. Moreove obsolut This robot consists of two connected body segments to force as le *Abstract***—This paper presents a computational model for one candally to enable the robotic robot. This robot consists of two connected body segments to force as less as possible where obot a minitate the upper shoulder a Abstract—This paper presents a computational model for one usually to enable the robot wind of two-degree-of-freedom (2-DOF) upper limb exoskeleton** human limb. Moreover, the upper shoulder and elbow joints of two smally **Presented Example the internal present are completations are continuous in the distance of the improved beet current (DC) motors are severally used to the improvides the amound drive the upper shoulder and elbow joints algorithm to the difficult and algorithm can relative and the PID gains. The original BAS**
 Expection and the original BAS
 Altert CIC Expective the robotic shoulder and elbow joints of human hand.
 Alter the robot Figure 11 and 1000 counter and the whome the time the time the search and the search and the search of contor is accurately developed to achieve the input current and the actuated force/torque. The distribution between the ITHURE THE SIGNATE THOM THE THE CONDITION THE STONG THE SIGNATE THE SIGNATE THE SIGNATE THE SIGNATE THE CONDIT IS A STATE THE CONDITE AND THE CONDITE AND THE POLE THE SIGNATE PORTER THE SIGNATE PHE DEVIDENT AND THE CONDITE Two sets of ureret current (DC) mootors are severally used to detect and elbow joints. The dynamic of the between the input current and the actuated force/torque. The between the input current and the actuated force/torque From the controlls should are a state of the transmit of the US and state and the HBAS algorithm gains since the HBAS algorithm gains since the HBAS algorithm gains since the HBAS algorithm and the transmit applications, a **Bream the interact of the algorithm** is considered to estable the extractions, and selected to control the whole system in this paper. Therefore, the tunion of PID controller is considered as a standard in technical and M **Solution** Figure The menticurity and an interaction of the extraction of the multiplications, and selected to control the whole system in this paper. Therefore, the tuning of PID gains is extremely equation between the we **FID confident is considered as a standard in technical and that in this paper. Therefore, the tuning of PID gains is extremely** out the inherent difficultion approach of tuning PID gains. This paper and the inherent diffi **The IBAS algorithm is appendixed** to control the whore system

in this paper. Therefore, the tuning of PID gains is extremely

important, while utilizing optimization algorithms to reduce the

tracking error is one approa In this paper. Therefore, the tuning of *FID* gaint
important, while utilizing optimization algorithm
tracking error is one approach of tuning PID ga
presented the improved beetle antennae
algorithm to optimize the PID gai Expressed the improved bettle antennae search (IBAS) dynamic relationship be
 Index Terms (orithm to optimize the PID gains. The original BAS the Newton-Euler and I

Intervention can achieve a wide search range, cost low presented and empirical determined search antennae search in the optimize the PID gains. The original BAS the New
algorithm can achieve a wide search range, cost low time
proposed IBAS algorithm can realize more extensive e a wide search range, cost low time

high search accuracy. Moreover, the

ithm can realize more extensive search

e search compared with the original BAS

e IBAS algorithm is compared with the

md GA algorithms on the bas

for, PID controller, Beetle antennae search.

is the Ziegler-Ni

is the Ziegler-Ni

method would c

Therefore, the

The upper limb exoskeleton robot has recently attracted

considerable interests due to its potential appli I.INTRODUCTION
 The upper limb exoskeleton robot has recently a

considerable interests due to its potential applica

the fields of medicine, industry and military [1-2

devices can provide additional assistance to mili **L** considerable interests due to its p
the fields of medicine, industry and
devices can provide additional assista:
Manuscript received January 9, 2024; revise
This work was supported by the National Na
China "Research on The upper limb exoskeleton robot has recently attracted
considerable interests due to its potential applications in
and others, are increased

413564609@qq.com).
Zhaoyun He is a Lecturer at the School of Artificial Intelligence,

1007256364@qq.com).

Manuscript received January 9, 2024; revised October 17, 2024.

This work was supported by the National Natural Science Foundation of several scientific

rina "Research on motion pattern recognition of exoskeleton robot ba (corresponding author to provide phone: +86 18607155647; e-mail:
lyu@wtu.edu.cn).
Lei Ding is an Associate Professor at the School of Computer Science and (e-mail: 34834779@qq.com).

Lang Rao is an Associate Professor at the Scl

Wuchang University of Technology, Wuhar

413564609@qq.com).

Zhaoyun He is a Lecturer at the Schoo

Wuchang University of Technology, Wuhar

10072

etle Antennae Search

ithm

yun He, Lie Yu and Lei Ding

engaged in heavy lifting tasks. The purpose of such robots is

usually to enable the robotic limb to move in unison with the

human limb. Moreover, the human limb ex **ettle Antennae Search**
 ithm

vun He, Lie Yu and Lei Ding

engaged in heavy lifting tasks. The purpose of such robots is

usually to enable the robotic limb to move in unison with the

human limb. Moreover, the human li **ithm**
 ithm

yun He, Lie Yu and Lei Ding

engaged in heavy lifting tasks. The purpose of such robots is

usually to enable the robotic limb to move in unison with the

human limb. Moreover, the human limb exerts the amo **ithm**

yun He, Lie Yu and Lei Ding

engaged in heavy lifting tasks. The purpose of such robots is

usually to enable the robotic limb to move in unison with the

human limb. Moreover, the human limb exerts the amount of
 ITTITITE

yun He, Lie Yu and Lei Ding

engaged in heavy lifting tasks. The purpose of such robots is

usually to enable the robotic limb to move in unison with the

human limb. Moreover, the human limb exerts the amount yun He, Lie Yu and Lei Ding
engaged in heavy lifting tasks. The purpose of such robots is
usually to enable the robotic limb to move in unison with the
human limb. Moreover, the human limb exerts the amount of
force as les n He, Lie Yu and Lei Ding
gaged in heavy lifting tasks. The purpose of such robots is
ually to enable the robotic limb to move in unison with the
man limb. Moreover, the human limb exerts the amount of
roce as less as poss yun He, Lie Yu and Lei Ding
engaged in heavy lifting tasks. The purpose of such robots is
usually to enable the robotic limb to move in unison with the
human limb. Moreover, the human limb exerts the amount of
force as les engaged in heavy lifting tasks. The purpose of such robots is
usually to enable the robotic limb to move in unison with the
human limb. Moreover, the human limb exerts the amount of
force as less as possible when lifting a engaged in heavy lifting tasks. The purpose of such robots is
usually to enable the robotic limb to move in unison with the
human limb. Moreover, the human limb exerts the amount of
force as less as possible when lifting a

engaged in heavy lifting tasks. The purpose of such robots is
usually to enable the robotic limb to move in unison with the
human limb. Moreover, the human limb exerts the amount of
force as less as possible when lifting a usually to enable the robotic limb to move in unison with the
human limb. Moreover, the human limb exerts the amount of
force as less as possible when lifting a load, while the robotic
limb provides the amount as bigger as human limb. Moreover, the human limb exerts the amount of
force as less as possible when lifting a load, while the robotic
limb provides the amount as bigger as possible. As this kind
of robot is a wearable device attached force as less as possible when lifting a load, while the robotic
limb provides the amount as bigger as possible. As this kind
of robot is a wearable device attached closely with the human
limbs, the controller design must limb provides the amount as bigger as possible. As
of robot is a wearable device attached closely with tl
limbs, the controller design must consider the co
between the human and robot movements.
Many studies have been made robot is a wearable device attached closely with the human
abs, the controller design must consider the cooperation
tween the human and robot movements.
Many studies have been made to establish the dynamic
uation between t limbs, the controller design must consider the cooperation
between the human and robot movements.
Many studies have been made to establish the dynamic
equation between the wearer and the robot in order to figure
out the in between the human and robot movements.

Many studies have been made to establish the dynamic

equation between the wearer and the robot in order to figure

out the inherent difficulties associated with mathematical

modell Many studies have been made to establish the dynamic
equation between the wearer and the robot in order to figure
out the inherent difficulties associated with mathematical
modelling. The most prevalent methods for develo

Figure 1988 algorithm can realize more extensive search

e and more precise search compared with the original BAS

e and more precise search compared with the original BAS

mall BAS, PSO and GA algorithms on the basis of e and more precise search compared with the original BAS

interable, the HD controller is widely u

inal BAS, PSO and GA algorithms on the basis of the

interable interapl controller is widely u

interaction results. The c algorithm. Finally, the IBAS algorithm is compared with the

original BAS, PSO and GA algorithms on the basis of the basis of mplementation

optimization results. The comparison results demonstrated that

determined by th orginal BAS, PSO and GA argorithms on the basis of melomean basistance complemization results. The comparison results demonstrated that determined by three paramometer the IBAS algorithm gains superior performance in addr I. INTRODUCTION

I. INTRODUCTION

The upper limb exoskeleton robot has recently attracted

genetic algorithm (GA) [1

considerable interests due to its potential applications in

Fields of medicine, industry and military [The upper limb exoskeleton robot has recently attracted

The upper limb exoskeleton robot has recently attracted

the fields of medicine, industry and military [1-2]. Such

the fields of medicine, industry and military [1-The upper limb exoskeleton robot has recently attracted genetic algorithm (Considerable interests due to its potential applications in expected and others, are increvies can provide additional assistance to military soldie The upper limb exoskeleton robot has recently attracted

the fields of medicine, industry and military [1-2]. Such

the fields of medicine, industry and military [1-2]. Such

dothers, are increase

devices can provide addi Example the method is potential applications in

Fields of medicine, industry and military [1-2]. Such

vices can provide additional assistance to military soldiers

to the Reference [method to tune

Manuscript received Ja the fields of medicine, industry and military [1-2]. Such

devices can provide additional assistance to military soldiers

to the Reference [18]

method to tune the

Manuscript received January 9, 2024; revised October 17, to the Reference [method to the Reference]

method to tune

This work was supported by the National Natural Science Foundation of

ina "Research on motion pattern recognition of exoskeleton robot based [19-20], robotics
 method to tune the

Manuscript received January 9, 2024; revised October 17, 2024.

This work was supported by the National Natural Science Foundation of

china "Research on motion pattern recognition of exoskeleton robot equation between the wearer and the robot in order to figure
out the inherent difficulties associated with mathematical
modelling. The most prevalent methods for developing the
dynamic relationship between force/torque and out the inherent difficulties associated with mathematical
modelling. The most prevalent methods for developing the
dynamic relationship between force/torque and position are
the Newton-Euler and Lagrange equations [6-7]. modelling. The most prevalent methods for developing the
dynamic relationship between force/torque and position are
the Newton-Euler and Lagrange equations [6-7]. Moreover,
as the number of degrees of freedom (DOF) increas dynamic relationship between force/torque and position are
the Newton-Euler and Lagrange equations [6-7]. Moreover,
as the number of degrees of freedom (DOF) increases, the
computational cost of creating the dynamic model the Newton-Euler and Lagrange equations [6-7]. Moreover,
as the number of degrees of freedom (DOF) increases, the
computational cost of creating the dynamic model also
dramatically increases.
The PID controller is widely u as the number of degrees of freedom (DOF) increases, the computational cost of creating the dynamic model also dramatically increases.
The PID controller is widely used due to its simple design and ease of implementation [computational cost of creating the dynamic model also
dramatically increases.
The PID controller is widely used due to its simple design
and ease of implementation [8]. Its performance is mainly
determined by three paramet dramatically increases.
The PID controller is widely used due to its simple design
and ease of implementation [8]. Its performance is mainly
determined by three parameters, such as the proportional gain,
the integral gain, The PID controller is widely used due to its simple design
and ease of implementation [8]. Its performance is mainly
determined by three parameters, such as the proportional gain,
the integral gain, and the differential ga and ease of implementation [8]. Its performance is mainly
determined by three parameters, such as the proportional gain,
the integral gain, and the differential gain [9-10]. It is
important to select appropriate gains for determined by three parameters, such as the proportional gain,
the integral gain, and the differential gain [9-10]. It is
important to select appropriate gains for the PID controller.
In the literature, numerous methods fo the integral gain, and the differential gain [9-10]. It is
important to select appropriate gains for the PID controller.
In the literature, numerous methods for determining the PID
gains have been established. The most con important to select appropriate gains for the PID controller.
In the literature, numerous methods for determining the PID
gains have been established. The most conventional method
is the Ziegler-Nichols (Z-N) method [11]. In the literature, numerous methods for determining the PID
gains have been established. The most conventional method
is the Ziegler-Nichols (Z-N) method [11]. However, this Z-N
method would cause large overshoot and cont gains have been established. The most conventional method
is the Ziegler-Nichols (Z-N) method [11]. However, this Z-N
method would cause large overshoot and control oscillation.
Therefore, the artificial intelligence metho is the Ziegler-Nichols (Z-N) method [11]. However, this Z-N
method would cause large overshoot and control oscillation.
Therefore, the artificial intelligence methods, such as the
genetic algorithm (GA) [12-13], particle s method would cause large overshoot and control oscillation.
Therefore, the artificial intelligence methods, such as the
genetic algorithm (GA) [12-13], particle swarm optimization
(PSO) [14-15], whale optimization algorith Therefore, the artificial intelligence methods, such as the genetic algorithm (GA) [12-13], particle swarm optimization (PSO) [14-15], whale optimization algorithm (WOA) [16-17], and others, are increasingly commonly utili netic algorithm (GA) [12-13], particle swarm optimization
SO) [14-15], whale optimization algorithm (WOA) [16-17],
d others, are increasingly commonly utilized to realize the
D gains adjustment. This study employs a simila (PSO) [14-15], whale optimization algorithm (WOA) [16-17],
and others, are increasingly commonly utilized to realize the
PID gains adjustment. This study employs a similar approach
to the Reference [18] using the beetle an and others, are increasingly commonly utilized to realize the
PID gains adjustment. This study employs a similar approach
to the Reference [18] using the beetle antennae search (BAS)
method to tune the PID gains. The BAS a PID gains adjustment. This study employs a similar approach
to the Reference [18] using the beetle antennae search (BAS)
method to tune the PID gains. The BAS algorithm can
achieve effective global optimization, and has be

This work was supported by the National Natural Science Foundation of

China "Research on motion pattern recognition of exoskeleton robot based

on curve similarity model" (62106178).

Fenggang Liu is an Associate Professo China "Research on motion pattern recognition of exoskeleton robot based [19-20], robotics [21]

on curve similarity model" (62106178).

fengang Liu is an Associate Professor at the School of Artificial Additionally, the B Fenggang Liu is an Associate Professor at the School of Artificial

elligence, Wuchang University of Technology, Wuhan, 430221, China. modifications, such as

mail: 34834779@qq.com).

Lang Rao is an Associate Professor at Intelligence, Wuchang University of Technology, Wuhan, 430221, China. Inoutincations, such a

(e-mail: 3483479/@qq.com).

Lang Rao is an Associate Professor at the School of Artificial Intelligence,

Wuchang University of to the Reference [18] using the beetle antennae search (BAS)
method to tune the PID gains. The BAS algorithm can
achieve effective global optimization, and has been applied in
several scientific domains, including machine method to tune the PID gains. The BAS algorithm can
achieve effective global optimization, and has been applied in
several scientific domains, including machine learning
[19-20], robotics [21], engineering [22], and financ achieve effective global optimization, and has been applied in
several scientific domains, including machine learning
[19-20], robotics [21], engineering [22], and finance [23].
Additionally, the BAS algorithm has undergon several scientific domains, including machine learning [19-20], robotics [21], engineering [22], and finance [23].
Additionally, the BAS algorithm has undergone several modifications, such as binary [24] and semi-integer [[19-20], robotics [21], engineering [22], and finance [23].
Additionally, the BAS algorithm has undergone several
modifications, such as binary [24] and semi-integer [25]
versions, to more effectively address different pr

IAENG International Journal of Applied Mathematic
can realize more uniform traversal and accelerate the more power and the human of
convergence. A novel method is proposed to compute the sensor is mounted on the wrist as
s IAENG International Journal of Applied Mathematic
can realize more uniform traversal and accelerate the more power and the human of
convergence. A novel method is proposed to compute the sensor is mounted on the wrist as
s **IAENG International Journal of Applied Mathemat**
can realize more uniform traversal and accelerate the more power and the human
convergence. A novel method is proposed to compute the sensor is mounted on the wris
step siz **IAENG International Journal of Applied Mathems**
can realize more uniform traversal and accelerate the more power and the humar
convergence. A novel method is proposed to compute the sensor is mounted on the wri
step size **EXECUTE IDE LARENG International Journal of Applied Mathematics**
can realize more uniform traversal and accelerate the more power and the human offer
convergence. A novel method is proposed to compute the sensor is mount **IAENG International Journal of Applied Matl**

can realize more uniform traversal and accelerate the more power and the l

convergence. A novel method is proposed to compute the sensor is mounted on the

step size which c algorithms. **IAENG International Journal of Applied M**

realize more uniform traversal and accelerate the more power and the

ergence. A novel method is proposed to compute the sensor is mounted correct

size which can implement more **THE SCHEM INTERT INTERT CONTRAIN CONTRAIN CONTRAIN CONTRAIN CONTRAINS**

In realize more uniform traversal and accelerate the more power and the human offer

presize which can implement more extensive search scope conta can realize more uniform traversal and accelerate the more power and the hum
convergence. A novel method is proposed to compute the sensor is mounted on the writted point step size which can implement more extensive searc can realize more uniform traversal and accelerate the more power and the human of
convergence. A novel method is proposed to compute the sensor is mounted on the wrist astep size which can implement more extensive search can realize more uniform traversal and accelerate the more power and the hum
convergence. A novel method is proposed to compute the sensor is mounted on the w
step size which can implement more extensive search scope cont

convergence. A novel method is proposed to compute the sensor is mounted on the wrist atep size which can implement more extensive search scope contact force between the his in the early stages, and more precise search in step size which can implement more extensive search scope

in the early stages, and more precise search in the later stages.

in the aterd in operational space in

Finally, the control performance based on IBAS algorithm in the early stages, and more precise search in the later stage

Finally, the control performance based on IBAS algorithm

compared with those based on the other optimizati

algorithms.

II. DYNAMICS OF THE UPPER LIMB EXOS

and Solution Control Mathematics
more power and the human offers less. A multi-axis force
sensor is mounted on the wrist as the end effector to detect the
contact force between the human and robot. The force
detected in **Solution 1 and Solution Mathematics**
sensor is mounted on the wrist as the end effector to detect the
contact force between the human and robot. The force
detected in operational space must be transformed into a
torque in **and of Applied Mathematics**
more power and the human offers less. A multi-axis force
sensor is mounted on the wrist as the end effector to detect the
contact force between the human and robot. The force
detected in operat **al of Applied Mathematics**
more power and the human offers less. A multi-axis force
sensor is mounted on the wrist as the end effector to detect the
contact force between the human and robot. The force
detected in operat **al of Applied Mathematics**
more power and the human offers less. A multi-axis force
sensor is mounted on the wrist as the end effector to detect the
contact force between the human and robot. The force
detected in operat **of Applied Mathematics**

ore power and the human offers less. A multi-axis force

nsor is mounted on the wrist as the end effector to detect the

ntact force between the human and robot. The force

tected in operational more power and the human offers less. A multi-axis force
sensor is mounted on the wrist as the end effector to detect the
contact force between the human and robot. The force
detected in operational space must be transfor more power and the human offers less. A multi-axis force
sensor is mounted on the wrist as the end effector to detect the
contact force between the human and robot. The force
detected in operational space must be transfor more power and the human offers less. A multi-axis force
sensor is mounted on the wrist as the end effector to detect the
contact force between the human and robot. The force
detected in operational space must be transfor

$$
T = J^T F \tag{1}
$$

$$
T = \begin{bmatrix} T_s & T_e \end{bmatrix}^T \tag{2}
$$

$$
J = \begin{bmatrix} L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2}) & L_2 \cos(q_{H1} + q_{H2}) \\ L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2}) & L_2 \sin(q_{H1} + q_{H2}) \end{bmatrix}
$$
(3)

$$
F = \begin{bmatrix} F_x & F_y \end{bmatrix}^T \tag{4}
$$

ort controls, the Equation (1) could be specified below.
 $T = [T_s \quad T_e]^T$ (2)
 $T = \begin{bmatrix} L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2}) & L_2 \cos(q_{H1} + q_{H2}) \\ L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2}) & L_2 \sin(q_{H1} + q_{H2}) \end{bmatrix}$

(3)
 $F = [F_x \quad F_y]^T$ (4)

where T_s is $T = [T_s \quad T_e]^T$ (2)
 $J = \begin{bmatrix} L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2}) & L_2 \cos(q_{H1} + q_{H2}) \\ L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2}) & L_2 \sin(q_{H1} + q_{H2}) \end{bmatrix}$

(3)
 $F = [F_x \quad F_y]^T$ (4)

where T_s is the torque of shoulder joint, and T_e is the torque

of $T = [T_s \quad T_e]^T$ (2)
 $J = \begin{bmatrix} L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2}) & L_2 \cos(q_{H1} + q_{H2}) \\ L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2}) & L_2 \sin(q_{H1} + q_{H2}) \end{bmatrix}$

(3)
 $F = [F_x \quad F_y]^T$ (4)

where T_s is the torque of shoulder joint, and T_e is the torque

of $J = \begin{bmatrix} L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2}) & L_2 \cos(q_{H1} + q_{H2}) \\ L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2}) & L_2 \sin(q_{H1} + q_{H2}) \end{bmatrix}$

(3)
 $F = [F_x \quad F_y]^T$ (4)

where T_s is the torque of shoulder joint, and T_e is the torque

of elbow joint. *J* is $J = \begin{bmatrix} L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2}) & L_2 \cos(q_{H1} + q_{H2}) \\ L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2}) & L_2 \sin(q_{H1} + q_{H2}) \end{bmatrix}$

(3)
 $F = [F_x \quad F_y]^T$ (4)

where *T_s* is the torque of shoulder joint, and *T_e* is the torque

of elbow joint. *J* $J = \begin{bmatrix} L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2}) & L_2 \cos(q_{H1} + q_{H2}) \\ L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2}) & L_2 \sin(q_{H1} + q_{H2}) \end{bmatrix}$

(3)

(3)

Where T_s is the torque of shoulder joint, and T_e is the torque

of elbow joint. *J* is a 2×2 Jacob m $\lfloor L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2}) \rfloor$ $L_2 \sin(q_{H1} + q_{H2})$ (3)

(3)

Where T_s is the torque of shoulder joint, and T_e is the torque

elbow joint. *J* is a 2×2 Jacob matrix. L_1 is the forearm

ngth, and L_2 is the upp (3)
 $F = [F_x \quad F_y]^T$ (4)

where T_s is the torque of shoulder joint, and T_e is the torque

of elbow joint. *J* is a 2×2 Jacob matrix. *L*₁ is the forearm

length, and *L*₂ is the upper arm length. *q_{H1}* is the huma

 $F = [F_x \quad F_y]^T$ (4)
where T_s is the torque of shoulder joint, and T_e is the torque
of elbow joint. *J* is a 2×2 Jacob matrix. *L*₁ is the forearm
length, and *L*₂ is the upper arm length. *q_{H1}* is the human
should $F = [F_x \quad F_y]^T$ (4)
where T_s is the torque of shoulder joint, and T_e is the torque
of elbow joint. *J* is a 2×2 Jacob matrix. L_1 is the forearm
length, and L_2 is the upper arm length. q_{H1} is the human
shoulder $F = [F_x \ F_y]$ (4)
where T_s is the torque of shoulder joint, and T_e is the torque
of elbow joint. *J* is a 2×2 Jacob matrix. *L*₁ is the forearm
length, and *L*₂ is the upper arm length. *q_{H1}* is the human
shoulder where T_s is the torque of shoulder joint, and T_e is the torque
of elbow joint. *J* is a 2×2 Jacob matrix. L_1 is the forearm
length, and L_2 is the upper arm length. q_{H1} is the human
shoulder angle, and q_{H2} where T_s is the torque of shoulder joint, and T_e is the torque
of elbow joint. J is a 2×2 Jacob matrix. L_1 is the forearm
length, and L_2 is the upper arm length. q_{H1} is the human
shoulder angle, and q_{H2 of elbow joint. *J* is a 2×2 Jacob matrix. L_1 is the forearm
length, and L_2 is the upper arm length. q_{H1} is the human
shoulder angle, and q_{H2} is the human elbow angle. Actually,
 F_x and F_y are obtained th length, and L_2 is the upper arm length. q_{H1} is the human
shoulder angle, and q_{H2} is the human elbow angle. Actually,
 F_x and F_y are obtained through the multi-axis force sensor, as
shown in Fig. 2 and Fig. 3 can be described as follows.

"= $J^T F$ (1)

the joint space, and *J* is the Jacob

operational space, and monitored

sor. As this study referred to two

(1) could be specified below.

= $[T_s \t T_e]^T$ (2)
 $(q_{H1} + q_{H2}) \t L_2 \$ formation. In this paper, the deformation can be regarded
the error between the human and robot positions. If this
or is closed to zero, the robot synchronizes well with the
man such that the values of F_x and F_y appro as the error between the human and robot positions. If this
error is closed to zero, the robot synchronizes well with the
human such that the values of F_x and F_y approach around zero.
If this error is significantly la

$$
\begin{cases}\nF = k_f L \\
L = [L_x \quad L_y]^T\n\end{cases}
$$
\n(5)

below.

$$
\begin{cases}\nL_x = [L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2})] \\
-[L_1 \cos(q_{M1}) + L_2 \cos(q_{M1} + q_{M2})] \\
L_y = [L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2})] \\
-[L_1 \sin(q_{M1}) + L_2 \sin(q_{M1} + q_{M2})]\n\end{cases} (6)
$$

where k_f is the elastic coefficient, and *L* is the error between

e human and robot positions. L_x and L_y can be specified

low.
 $\begin{cases}\nL_x = [L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2})] \\
-L_1 \cos(q_{M1}) + L_2 \cos(q_{M1} + q_{M2})] \\
L_y = [L_1 \sin(q_{H1}) + L$ where k_f is the elastic coefficient, and L is the error between
the human and robot positions. L_x and L_y can be specified
below.
 $\begin{cases} L_x = [L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2})] \\ -[L_1 \cos(q_{M1}) + L_2 \sin(q_{H1} + q_{H2})] \\ L_y = [L_1 \sin(q_{H1}) + L$ where k_f is the ensure coefficient, and L is the error between
the human and robot positions. L_x and L_y can be specified
below.
 $\begin{cases} L_x = [L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2})] \\ -[L_1 \cos(q_{M1}) + L_2 \sin(q_{H1} + q_{H2})] \\ L_y = [L_1 \sin(q_{H1}) + L_$ the numan and root positions. L_x and L_y can be specified
below.
 $\begin{cases} L_x = [L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2})] \\ -[L_1 \cos(q_{M1}) + L_2 \sin(q_{H1} + q_{H2})] \\ L_y = [L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2})] \end{cases}$ (6)
 $-[L_1 \sin(q_{M1}) + L_2 \sin(q_{M1} + q_{M2})]$

where below.
 $\left[L_x = [L_1 \cos(q_{H1}) + L_2 \cos(q_{H1} + q_{H2})] \right]$
 $-[L_1 \cos(q_{M1}) + L_2 \cos(q_{M1} + q_{M2})]$
 $\left[L_y = [L_1 \sin(q_{H1}) + L_2 \sin(q_{H1} + q_{H2})] \right]$
 $-[L_1 \sin(q_{M1}) + L_2 \sin(q_{M1} + q_{M2})]$

where q_M is the robot shoulder angle, and q_{M2} is the robo

IAENG International Journal of Applied Mathematical
\n
$$
\begin{bmatrix}\nT_L + T = M(q_M)\ddot{q}_M + C(q_M, \dot{q}_M) + G(q_M) & \text{where } M^1 \text{ is the inverse ma} \\
T_L = [T_{L1} \quad T_{L2}]^T & (7) \\
q_M = [q_{M1} \quad q_{M2}]^T & M^{-1} = \text{where } T_{L1} \text{ is the driving torque generated by the DC motor} \\
\text{the DC motor to drive the upper arm. } M \text{ is a } 2 \times 2 \text{ matrix} \\
\text{at inertia torque } C \text{ is a } 2 \times 2 \text{ matrix about the torque}\n\end{bmatrix}
$$

IAENG International Journal of Applied Mather
 $T_L + T = M(q_M) \ddot{q}_M + C(q_M, \dot{q}_M) + G(q_M)$ where M^1 is the inverse $T_L = [T_{L1} \quad T_{L2}]^T$ (7) M^1 can be written as:
 $q_M = [q_{M1} \quad q_{M2}]^T$ M

there T_{L1} is the driving tor **IAENG International Journal of Applied Mathema
** $T_L + T = M(q_M)\ddot{q}_M + C(q_M, \dot{q}_M) + G(q_M)$ **where** M^1 **is the inverse m:
** $T_L = [T_{L1} \quad T_{L2}]^T$ **(7)** M^1 **can be written as:

where** T_{L1} **is the driving torque generated by the DC IAENG International Journal of Applied Mather
** $T_L + T = M(q_M) \ddot{q}_M + C(q_M, \dot{q}_M) + G(q_M)$ **where** M^1 **is the invers
** $T_L = [T_{L1} \quad T_{L2}]^T$ **(7) Where** T_{L1} **is the driving torque generated by the DC motor

to drive the forearm, IAENG International Journal of Applied Mathema
** $T_L + T = M(q_M)\ddot{q}_M + C(q_M, \dot{q}_M) + G(q_M)$ **where** M^1 **is the inverse m
** $T_L = [T_{L1} \ T_{L2}]^T$ **(7)** M^1 **can be written as:
** $q_M = [q_{M1} \ q_{M2}]^T$ M^{-1} **=

where** T_{L1} **is the drivin IAENG International Journal of Applied Mathema**
 $\begin{cases} T_L + T = M(q_M) \ddot{q}_M + C(q_M, \dot{q}_M) + G(q_M) \end{cases}$ where $M^{\text{-}1}$ is the inverse m
 $\begin{cases} T_L = [T_{L1} \quad T_{L2}]^T & (7) \end{cases}$ where T_{L1} is the driving torque generated by the DC **produced by the centripetal force, and** *G* is a 2×1 matrix about

T_L = $[T_{L1}$ $T_{L2}]^T$ (7) M^{-1} can be written as:
 $q_M = [q_{M1} \ q_{M2}]^T$ M^{-1} = M^{-1} is the driving torque generated by the DC motor

to drive the $\begin{cases} T_L + T = M(q_M) \ddot{q}_M + C(q_M, \dot{q}_M) + G(q_M) \end{cases}$ where M^1 is the inverse matrix $T_L = [T_{L1} \ T_{L2}]^T$ (7) M^1 can be written as:
 $\begin{cases} q_M = [q_{M1} \ q_{M2}]^T \end{cases}$ (7) $M^{-1} = \begin{bmatrix} H \\ H \end{bmatrix}$

where T_{L1} is the driving torq $\begin{cases} T_L + T = M(q_M) \ddot{q}_M + C(q_M, \dot{q}_M) + G(q_M) \end{cases}$ where *M*
 $T_L = [T_{L1} \quad T_{L2}]^T$ (7) M^{-1} can be
 $q_M = [q_{M1} \quad q_{M2}]^T$

where T_{L1} is the driving torque generated by the DC motor

to drive the forearm, and T_{L2} is th

$$
M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}
$$
 (8) $H_{R12} = -$

$$
C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \begin{bmatrix} \dot{q}_{M1}^2 \\ \dot{q}_{M2}^2 \end{bmatrix} + \begin{bmatrix} C_{13} & C_{14} \\ C_{23} & C_{24} \end{bmatrix} \begin{bmatrix} \dot{q}_{M1}\dot{q}_{M2} \\ \dot{q}_{M2}\dot{q}_{M1} \end{bmatrix}
$$
 (9) $H_{R21} = \frac{-4(4I_2 + 2m_2)}{4(4I_2 + 2m_2)}$

$$
G = \begin{bmatrix} G_1 \\ G_2 \end{bmatrix} \tag{10} H_{R22} =
$$

$$
M_{11} = m_1 L_{g1}^2 + m_2 (L_1^2 + L_{g1}^2) + 2 m_2 L_{g2} L_1 \cos(q_{M2}) + I_1 + I_2
$$

(11)

$$
M_{12} = M_{21} = m_2 L_{g2}^2 + m_2 L_{g2} L_1 \cos(q_{M2}) + I_2
$$
\n
$$
H_{\text{note}} = 4I_1 I_2^2 + I_2^2 + I_1^2
$$
\n
$$
+ m_1 I_2 I_2^2 + 4m_1 I_2^2
$$

$$
M_{22} = m_2 L_{g2}^2 + I_2
$$
 (13) The DC

$$
C_{11} = C_{22} = C_{23} = C_{24} = 0 \tag{14}
$$

$$
C_{12} = C_{13} = C_{14} = -m_2 L_{g2} L_1 \cos(q_{M2})
$$
\n(15)

$$
C_{21} = m_2 L_{g2} L_1 \cos(q_{M2})
$$
 (16)

$$
G_1 = m_2 g L_{g2} \sin(q_{M1} + q_{M2}) + m_1 g L_{g1} \sin(q_{M1})
$$
 where T_e is the electromagnetic

$$
+ m_2 g L_1 \sin(q_{M1})
$$

$$
G_2 = m_2 g L_{g2} \sin(q_{M1} + q_{M2})
$$
\n(18)

 $C_{12} = C_{13} = C_{14} = -m_2 L_{g2} L_1 \cos(q_{M2})$ (15) determined by the rotor position
 $C_{21} = m_2 L_{g2} L_1 \cos(q_{M2})$ (16)
 $T_e = J_{\Omega} \ddot{q}_M + H_{G1} = m_2 g L_{g2} \sin(q_{M1} + q_{M2}) + m_1 g L_{g1} \sin(q_{M1})$
 $+ m_2 g L_1 \sin(q_{M1})$ (17)
 $+ m_2 g L_1 \sin(q_{M1})$
 $C_{21} = m_2 L_{g2} L_1 \cos(q_{M2})$ (16)
 $T_e = J_{\Omega} \ddot{q}_M + I$
 $G_1 = m_2 g L_{g2} \sin(q_{M1} + q_{M2}) + m_1 g L_{g1} \sin(q_{M1})$ (17) where T_e is the electromagnetic
 $+ m_2 g L_1 \sin(q_{M1})$ (17) where T_e is the electromagnetic
 $G_2 = m_2 g L_{g2} \sin(q_{M1} + q$ for the DC motor
 $C_{21} = m_2 L_{g2} L_1 \cos(q_{M2})$ (16)
 $T_e = J_{\Omega}$
 $G_1 = m_2 g L_{g2} \sin(q_{M1} + q_{M2}) + m_1 g L_{g1} \sin(q_{M1})$
 $+ m_2 g L_1 \sin(q_{M1})$
 $+ m_2 g L_2 \sin(q_{M1} + q_{M2})$

(17) where T_e is the electrom

inertia of DC motor, *q* is the

c $C_{21} = m_2 L_{g2} L_1 \cos(q_{M2})$ (16)
 $T_e = J_{\Omega} \ddot{q}_M +$
 $G_1 = m_2 g L_{g2} \sin(q_{M1})$ (17) where T_e is the electromagnet
 $+ m_2 g L_1 \sin(q_{M1})$ (17) where T_e is the electromagnet
 $+ m_2 g L_1 \sin(q_{M1})$ (17) where T_e is the electromag $I_e = J_{\Omega}q_M +$
 $G_1 = m_2 g L_{g2} \sin(q_{M1} + q_{M2}) + m_1 g L_{g1} \sin(q_{M1})$ (17) where T_e is the electromagnet
 $+ m_2 g L_1 \sin(q_{M1})$ (17) where T_e is the electromagnet

inertia of DC motor, *q* is the roto
 $G_2 = m_2 g L_{g2} \sin(q_{M1} + q_{M2})$ $G_1 = m_2 g L_{g2} \sin(q_{M1} + q_{M2}) + m_1 g L_{g1} \sin(q_{M1})$ (17) where T_e is the electromagne
 $+ m_2 g L_1 \sin(q_{M1})$ (17) where T_e is the electromagne
 $G_2 = m_2 g L_{g2} \sin(q_{M1} + q_{M2})$ (18) electromagnetic torque is cons

where m_1 is th $G_1 = m_2 g L_g$ sin(q_{M1})
 $G_2 = m_2 g L_{g2} \sin(q_{M1} + q_{M2})$ (17) where T_e is the electromagnet

inertia of DC motor, q is the rot

coefficient, and T_L is the load

input current, which can be descended to rope is considerab 4 $m_2 g L_1 \sin(q_{M1})$ inertia of DC motor, *q* is the roto
 $G_2 = m_2 g L_{g2} \sin(q_{M1} + q_{M2})$ (18) electromagnetic torque is considered in the base

where m_1 is the mass of forearm, and m_2 is the mass of

upper arm. L_1 i following.

$$
\ddot{q}_M = M^{-1}(T_L + T - C - G) \tag{19}
$$

 (7) **is the inverse matrix of** *M*, and the expression of
ritten as:
 $M^{-1} = \begin{bmatrix} H_{R11} & H_{R12} \end{bmatrix}$ (20) **al of Applied Mathematics**
where M^1 is the inverse matrix of M, and the expression
 M^1 can be written as:
 $M^{-1} = \begin{bmatrix} H_{R11} & H_{R12} \\ H_{R21} & H_{R22} \end{bmatrix}$ (

$$
M^{-1} = \begin{bmatrix} H_{R11} & H_{R12} \\ H_{R21} & H_{R22} \end{bmatrix}
$$
 (20)

of Applied Mathematics

where M^1 is the inverse matrix of *M*, and the expression of

¹ can be written as:
 $M^{-1} = \begin{bmatrix} H_{R11} & H_{R12} \\ H_{R21} & H_{R22} \end{bmatrix}$ (20)

where the elements of matrix M^1 can be described as
 follows.

$$
H_{R11} = \frac{4(m_2 L_2^2 + 4I_2)}{H_{note}} \tag{21}
$$

$$
H_{R12} = \frac{-4(4I_2 + 2m_2L_1L_2\cos(q_{M2}) + m_2L_2^2)}{H_{\text{note}}}
$$
(22)

$$
\begin{aligned}\nM_1 \dot{q}_{M2} \\
M_2 \dot{q}_{M1}\n\end{aligned}\n\tag{23}
$$
\n
$$
H_{R21} = \frac{-4(4I_2 + 2m_2L_1L_2 \cos(q_{M2}) + m_2L_2^2)}{H_{\text{note}}}\n\tag{23}
$$

$$
H_{R22} = \frac{4(4I_1 + 4m_2L_1^2 + 4m_2L_1L_2\cos(q_{M2}))}{H_{note}}
$$
\n
$$
+ \frac{4(m_2L_2^2 + m_1L_1^2 + 4I_2)}{H_{note}}
$$
\n
$$
(24)
$$
\n
$$
+ \frac{4(m_2L_2^2 + m_1L_1^2 + 4I_2)}{H_{note}}
$$
\n
$$
H_{note} = 4I_1m_2L_2^2 + 16I_1I_2 + 4m_2^2L_1^2L_2^2 + 16m_2L_1^2I_2
$$
\n
$$
+ m_1L_1^2m_2L_2^2 + 4m_1L_1^2I_2 - 4m_2^2L_1^2L_2^2(\cos(q_{M2}))^2
$$
\nThe DC motors selected in this system are permanent agent synchronous motors, which are driven by DC voltage.
\nne current commutation of DC motors is achieved by lid-state switches, while the commutation instant is terminated by the rotor position, which is detected by on

$$
H_{note} = 4I_1m_2L_2^2 + 16I_1I_2 + 4m_2^2L_1^2L_2^2 + 16m_2L_1^2I_2
$$

+ $m_1L_1^2m_2L_2^2 + 4m_1L_1^2I_2 - 4m_2^2L_1^2L_2^2(\cos(q_{\text{M2}}))^2$ (25)

The current commutation of DC motors is achieved by determined by the rotor position, which is detected by an encoder mounted inside the robot joint. Consequently, the $H_{R22} = \frac{4(4I_1 + 4m_2L_1^2 + 4m_2L_1L_2\cos(q_{M2})))}{H_{note}}$ (24)
 $+\frac{4(m_2L_2^2 + m_1L_1^2 + 4I_2)}{H_{note}}$ (24)
 $H_{note} = 4I_1m_2L_2^2 + 16I_1I_2 + 4m_2^2L_1^2L_2^2 + 16m_2L_1^2I_2$ (25)
 $+m_1L_1^2m_2L_2^2 + 4m_1L_1^2I_2 - 4m_2^2L_1^2L_2^$ $H_{R22} = \frac{4(4t_1 + 4t_2t_2 + 4t_1t_2t_1 + 2t_2t_2t_2t_1t_2t_2t_1t_2t_2t_1$ H_{note} (24)
 $+\frac{4(m_2L_2^2 + m_1L_1^2 + 4I_2)}{H_{note}}$ (24)
 $H_{note} = 4I_1m_2L_2^2 + 16I_1I_2 + 4m_2^2L_1^2L_2^2 + 16m_2L_1^2I_2$ (25)
 $+m_1L_1^2m_2L_2^2 + 4m_1L_1^2I_2 - 4m_2^2L_1^2L_2^2(\cos(q_{M2}))^2$

The DC motors selected in this syst $+\frac{4(m_2L_2^2 + m_1L_1^2 + 4I_2)}{H_{note}}$
 $H_{note} = 4I_1m_2L_2^2 + 16I_1I_2 + 4m_2^2L_1^2L_2^2 + 16m_2L_1^2I_2$ (25)
 $+m_1L_1^2m_2L_2^2 + 4m_1L_1^2I_2 - 4m_2^2L_1^2L_2^2(\cos(q_{M2}))^2$

The DC motors selected in this system are permanent
 H_{note}
 H_{note}
 H_{note} = 4I₁m₂L₂² + 16I₁I₂ + 4m₂²L₁²₂² + 16m₂L₁²₁₂² (25)

+m₁L₁²m₂L₂² + 4m₁L₁²₁₂² + 4m₂²L₁²₂² (cos(*q_{M2}*)²

The DC motors selecte $H_{\text{note}} = 4I_1m_2L_2^2 + 16I_1I_2 + 4m_2^2L_1^2L_2^2 + 16m_2L_1^2I_2$ (25)
 $+m_1L_1^2m_2L_2^2 + 4m_1L_1^2I_2 - 4m_2^2L_1^2L_2^2(\cos(q_{\text{M2}}))^2$

The DC motors selected in this system are permanent

magnet synchronous motors, whic The DC motors selected in this system are permanent
The DC motors selected in this system are permanent
gnet synchronous motors, which are driven by DC voltage.
e current commutation of DC motors is achieved by
lid-state The DC motors selected in this system are permanent
magnet synchronous motors, which are driven by DC voltage.
The current commutation of DC motors is achieved by
solid-state switches, while the commutation instant is
det The DC motors selected in this system are permanent
magnet synchronous motors, which are driven by DC voltage.
The current commutation of DC motors is achieved by
solid-state switches, while the commutation instant is
det magnet synchronous motors, which are driven by DC voltage.
The current commutation of DC motors is achieved by
solid-state switches, while the commutation instant is
determined by the rotor position, which is detected by

$$
T_e = J_\Omega \ddot{q}_M + R_\Omega \dot{q}_M + T_L \tag{26}
$$

electromagnetic torque is considered to be proportional to the input current, which can be described as: The current commutation of DC motors is a
cnieved by
solid-state switches, while the commutation instant is
determined by the rotor position, which is detected by an
encoder mounted inside the robot joint. Consequently, t $T_e = J_{\Omega} \ddot{q}_M + R_{\Omega} \dot{q}_M + T_L$ (26)
where T_e is the electromagnetic torque, J_{Ω} is the moment of
ertia of DC motor, q is the rotor position, R_{Ω} is the damping
efficient, and T_L is the load torque. In this $T_e = J_{\Omega} \ddot{q}_M + R_{\Omega} \dot{q}_M + T_L$ (26)
where T_e is the electromagnetic torque, J_{Ω} is the moment of
inertia of DC motor, q is the rotor position, R_{Ω} is the damping
coefficient, and T_L is the load torque. In $r_e - r_{\Omega}q_M + r_{\Omega}q_M + r_L$ (20)
where T_e is the electromagnetic torque, J_Q is the moment of
inertia of DC motor, *q* is the rotor position, R_{Ω} is the damping
coefficient, and T_L is the load torque. In this paper,

$$
T_e = K_t i \tag{27}
$$

$$
u = R_A i + L_A \frac{di}{dt}
$$
 (28)

where R_A is the armature winding resistance, and L_A is the armature inductance. Substituting the Equations (13) and (14) both current, which can be described as:
 $T_e = K_i i$ (27)

where K_t is the motor torque constant and *i* is the input

rect current. For DC motor, the relationship between the

rent (i.e., *i*) and the voltage (i.e., *u*) area in the direct and the discrete as.
 $T_e = K_t i$ (27)

where K_t is the motor torque constant and t is the input

direct current. For DC motor, the relationship between the

current (i.e., t) and the voltage (i.e., u) c $T_e = K_t i$ (27)
where K_t is the motor torque constant and *i* is the input
direct current. For DC motor, the relationship between the
current (i.e., *i*) and the voltage (i.e., *u*) can be written as
 $u = R_A i + L_A \frac{di}{dt}$ (28

Volume 54, Issue 12, December 2024, Pages 2758-2765

$$
\begin{cases}\nT_{L1} = K_t i_1 - J \ddot{q}_{M1} - R_{\Omega} \dot{q}_{M1} & \text{human-machine position} \\
\frac{di_1}{dt} = \frac{u_1}{L_A} - \frac{R_A}{L_A} i_1 & \text{(29)}\n\end{cases}
$$
\nthan the described in detail

\nthan the desired in detail.

$$
\left\{\frac{u_{1}}{dt} = \frac{u_{1}}{L_{A}} - \frac{K_{A}}{L_{A}}i_{1}\right\}
$$
\n
$$
\left\{\frac{d_{2}}{dt} = \frac{u_{2}}{L_{A}} - \frac{R_{A}}{L_{A}}i_{2}\right\}
$$
\n
$$
\left\{\frac{di_{2}}{dt} = \frac{u_{2}}{L_{A}} - \frac{R_{A}}{L_{A}}i_{2}\right\}
$$
\n
$$
u_{1}
$$
\nare the input direct current and voltage into
\ncounted on the upper arm, while i_{2} and u_{2} are
\nt current and voltage into the DC motor
\nfore 1.11. CONTROLLER DESIGN
\n
$$
u_{2}
$$
\n
$$
u_{3}
$$
\n
$$
u_{4}
$$
\n
$$
u_{5}
$$
\n
$$
u_{5}
$$
\n
$$
u_{6}
$$
\n
$$
u_{7}
$$
\n
$$
u_{8}
$$
\n
$$
u_{9}
$$
\n
$$
u_{1}
$$
\n
$$
u_{1}
$$
\n
$$
u_{1}
$$
\n
$$
u_{2}
$$
\n
$$
u_{1}
$$
\n
$$
u_{2}
$$
\n
$$
u_{3}
$$
\n
$$
u_{1}
$$
\n
$$
u_{2}
$$
\n
$$
u_{1}
$$
\n
$$
u_{2}
$$
\n
$$
u_{1}
$$
\n
$$
u_{2}
$$
\n
$$
u_{1}
$$
\n
$$
u_{1}
$$
\n
$$
u_{2}
$$
\n
$$
u_{1}
$$
\n
$$
u_{2}
$$
\n
$$
u_{3}
$$
\n
$$
u_{1}
$$
\n
$$
u_{2}
$$
\n
$$
u_{1}
$$
\n
$$
u_{1}
$$
\n
$$
u_{1}
$$
\n
$$
u_{1}
$$
\n<math display="</math>

IAENG International Journal of Applied Mathemation
 $\begin{cases}\nT_{L1} = K_i \dot{i}_1 - J \ddot{q}_{M1} - R_{\Omega} \dot{q}_{M1} & \text{human-machine positions. In a
\n $\frac{di_1}{dt} = \frac{u_1}{L_A} - \frac{R_A}{L_A} i_1 \\
\frac{di_2}{dt} = \frac{u_2}{L_A} - \frac{R_A}{L_A} i_2\n\end{cases}$ \n(29) can be described in detail as for
\nmin $f = \frac{1}{N} \sum_{i=$$ $\begin{cases}\nT_{L1} = K_t i_1 - J \ddot{q}_{M1} - R_{\Omega} \dot{q}_{M1} & \text{human-machine plane} \\
\frac{di_1}{dt} = \frac{u_1}{L_A} - \frac{R_A}{L_A} i_1 & (29) \\
\frac{di_2}{dt} = \frac{u_2}{L_A} - \frac{R_A}{L_A} i_2 & (30) \\
\frac{di_2}{dt} = \frac{u_2}{L_A} - \frac{R_A}{L_A} i_2 & (30) \\
\text{where } i_1 \text{ and } u_1 \text{ are the input direct current and voltage into} \\
\text{the DC motor mounted on the upper arm, while } i_2 \text{ and } u$ $\begin{cases} T_{L1} = K_t i_1 - J \ddot{q}_{M1} - R_{\Omega} \dot{q}_{M1} & \text{human-machine positions.} \text{ In} \\ \frac{di_1}{dt} = \frac{u_1}{L_A} - \frac{R_A}{L_A} i_1 & (29) \end{cases}$ can be described in detail as $\min f = \frac{1}{N}$
 $\begin{cases} T_{L2} = K_t i_2 - J \ddot{q}_{M2} - R_{\Omega} \dot{q}_{M2} & \text{in } T = \frac{1}{N} \\ \frac{di_2}{dt} = \frac{u_2$ $\begin{cases}\nT_{L1} = K_t i_1 - J \ddot{q}_{M1} - R_{\Omega} \dot{q}_{M1} \\
\frac{di_1}{dt} = \frac{u_1}{L_A} - \frac{R_A}{L_A} i_1 \\
\int T_{L2} = K_t i_2 - J \ddot{q}_{M2} - R_{\Omega} \dot{q}_{M2} \\
\frac{di_2}{dt} = \frac{u_2}{L_A} - \frac{R_A}{L_A} i_2\n\end{cases}$ where i_1 and u_1 are the input direct current and voltag
t *A. Design of Traditional PID Controller*
 A. Design of Traditional PID Controller
 A. Design of Traditional PID Controller
 A. Design of Traditional PID Controller

The human rotary angles $(q_{n1}$ and q_{n2} are t

The outcome of Equal
 $\frac{di_2}{dt} = \frac{u_2}{L_A} - \frac{R_A}{L_A}i_2$ (30) The outcome of Equal

optimal synchronization p

where *i*₁ and *u*₁ are the input direct current and voltage into

the DC motor mounted on the upper arm, $\left\{\begin{array}{ll}\n\frac{du_2}{dt} = \frac{u_2}{L_4} - \frac{K_4}{L_4}i_2\n\end{array}\right\}$ The outcome of Equal optimal synchronization p

then DC motor mounted on the upper arm, while *i*₂ and *u*₂ are

the input direct current and voltage into the (*dt* L_A L_A optimal synchronization performation.

the DC motor mounted on the upper arm, while *i*₂ and *u*₂ are

the input direct current and voltage into the DC motor

the input direct current and voltage into where i_1 and u_1 are the input direct current and voltage into
the DC motor mounted on the upper arm, while i_2 and u_2 are
the input direct current and voltage into the DC motor
mounted on the forearm.

The cont where i_1 and u_1 are the input direct current and volt
the DC motor mounted on the upper arm, while i_2 and
the input direct current and voltage into the DC
mounted on the forearm.
III. CONTROLLER DESIGN
A. Design

$$
T_{\text{err}} = T_d - T = 0 - T \tag{31}
$$

Fig. 4. The block diagram of the normal PID feedback control system.

Fig. 4. The block diagram of the normal PID feedback control system.

The second step is to update and the fitness is written as $d\theta_0$, and the fitne Fig. 4. The block diagram of the normal PID feedback control system. The second step is to up

antennae, which can be described to the fit

second step is to up

antennae, which can be described to the fit

control aim is aim.

$$
i = K_p T_{err} + K_i \int T_{err} dt + K_d \frac{dT_{err}}{dt}
$$
 (32)

where *K*_p, *K_i* and *Ki* are so the best of the best of the particle of the proportion.

where x^i is the optimization

where x^i is the optimization

tween the desired and actual torques. Then, the PID d^t r $T_{\text{err}} = T_d - T = 0 - T$ (31)

where x^i is the optimiz

between the desired and actual torques. Then, the PID d^i represents the searching

controller is selected and designed to implement this control

aim.
 $i = K_p T_{err} + K_i$ where *T* has been constructed in Eq. (1)-(6). T_{err} is the error and *x_i* are severally the positive
between the desired and actual torques. Then, the PID d^i represents the searching di
controller is selected and d where *T* has been constructed in Eq. (1)-(6). T_{err} is the error and *x*_{*I*} are severally the position between the desired and actual torques. Then, the PID d^t represents the searching controller is selected and de where *I* has been constructed in Eq. (1)-(6). *I*_{err} is the error and *X* at essertany the bost
between the desired and actual torques. Then, the PID d^{*i*} represents the searching
controller is selected and designed between the desired and actual torques. Then, the PID
controller is selected and designed to implement this control
aim.
 $i = K_p T_{err} + K_i \int T_{err} dt + K_d \frac{dT_{err}}{dt}$ (32)
where K_p , K_i and K_d are the proportional, integral and
 B. $i = K_p T_{err} + K_i \int T_{err} dt + K_d \frac{dT_{err}}{dt}$ (32)

where K_p , K_i and K_d are the proportional, integral and

differential gains, respectively. The output is the current *i*

which controls the DC motor to generate the drivi $i = K_p T_{err} + K_i \int T_{err} dt + K_d \frac{dT_{err}}{dt}$ (32)

where K_p , K_i and K_d are the proportional, integral and

ferential gains, respectively. The output is the current *i* where K_p , K_i and K_d are thich controls the DC motor $i = K_p T_{err} + K_i \int T_{err} dt + K_d \frac{dT_{err}}{dt}$ (32)

where K_p , K_i and K_d are the proportional, integral and

differential gains, respectively. The output is the current *i* where K_p , K_i and K_d are the

which controls the D

where K_p , K_i and K_d are the proportional, integral and
differential gains, respectively. The output is the current *i* where K_p^i , K_i^i and K_d and
which controls the DC motor to generate the driving torque *i* where K_p , K_i and K_d are the proportional, integral and
differential gains, respectively. The output is the current *i* where K_p^i , K_i^j and K_d^j
which controls the DC motor to generate the driving torque *i-th* where K_p , K_i and K_d are the proportional, integral and
differential gains, respectively. The output is the current *i*
which controls the DC motor to generate the driving torque *i*-th iteration. rnd() is a functi
T differential gains, respectively. The output is the current *i* where K_p^i , K_i^i and K_d^i are the which controls the DC motor to generate the driving torque *T_L* ration. $rnd()$ is a function T_L according to Equati which controls the DC motor to generate the driving torque *i-th* iteration. $rnd()$ is a fit *T_L* according to Equation (29). Then, the driving torque *T_L* ranging from [0, 1], which the DC motor and the joint torque *T* T_L according to Equation (29). Then, the driving torque T_L ranging from [0, 1], which obe
from the DC motor and the joint torque T would together The third step is to establish the
drive the robot arm to move.
B. Desi

al of Applied Mathematics
human-machine positions. In summary, the fitness function
can be described in detail as follows.
 $\min f = \frac{1}{N} \sum_{i=1}^{N} (q_{Mi} - q_{Hi})^2$ (33) **al of Applied Mathematics**
human-machine positions. In summary, the fitness function
can be described in detail as follows.
 $\min f = \frac{1}{N} \sum_{i=1}^{N} (q_{Mi} - q_{Hi})^2$ (33)

$$
\min f = \frac{1}{N} \sum_{i=1}^{N} (q_{Mi} - q_{Hi})^2
$$
 (33)

optimal synchronization performance is achieved when the The outcome of Equation (33) demonstrated that the **of Applied Mathematics**

man-machine positions. In summary, the fitness function

n be described in detail as follows.

min $f = \frac{1}{N} \sum_{i=1}^{N} (q_{Mi} - q_{Hi})^2$ (33)

The outcome of Equation (33) demonstrated that the

tima **and of Applied Mathematics**
human-machine positions. In summary, the fitness function
can be described in detail as follows.
 $\min f = \frac{1}{N} \sum_{i=1}^{N} (q_{Mi} - q_{Hi})^2$ (33)
The outcome of Equation (33) demonstrated that the
opt **al of Applied Mathematics**
human-machine positions. In summary, the fitness function
can be described in detail as follows.
 $\min f = \frac{1}{N} \sum_{i=1}^{N} (q_{Mi} - q_{Hi})^2$ (33)
The outcome of Equation (33) demonstrated that the
opti

Fig. 5. The block diagram of the BAS-PID feedback control system.

Fig. 5. The block diagram of the BAS-PID feedback control system.

Fig. 5. The block diagram of the BAS-PID feedback control system.

For the BAS algorith The specifically, the dimensions of the search space is indicated
in the dimension of the searching process is divided
into four steps, such as parameter initialization, direction
updating, position updating, and other pa as *ⁿ*, the initial step size is described as *^δ*0, the maximum T_a $+$ $\bigcup_{\text{Controller}}$ For Motor \bigcup_{Pymanic} For Motor \bigcup_{Pymanic} For the BAS algorithm, the searching process is divided into four steps, such as parameter initialization, direction updating, position updating, and o Fig. 5. The block diagram of the BAS-PID feedback control system.

Fig. 5. The block diagram of the BAS-PID feedback control system.

For the BAS algorithm, the searching process is divided

into four steps, such as param Fig. 5. The block diagram of the BAS-PID feedback control system.

Fig. 5. The block diagram of the BAS-PID feedback control system.

For the BAS algorithm, the searching process is divided

into four steps, such as param Fig. 5. The block diagram of the BAS-PID feedback control system.

Fig. 5. The block diagram of the BAS-PID feedback control system.

For the BAS algorithm, the searching process is divided

into four steps, such as param *Firstly,* some basic parameters should be initialized.
Specifically, the dimensions of the search space is indicated
as *n*, the initial step size is described as δ_0 , the maximum
number of iterations is written as *K s n*, the initial step size is described as δ_0 , the maximum
umber of iterations is written as *K*, the initial search distance
s defined as d_0 , and the fitness function is expressed as $f()$.
he second step is to

$$
\begin{cases} x_r = x^i + d^i b \\ x_l = x^i - d^i b \end{cases}
$$
 (34)

where x^i is the optimization target at the *i-th* iteration. x_r $dⁱ$ represents the searching distance at the *i-th* iteration, and *b* number of iterations is written as *K*, the initial search distance
is defined as d_0 , and the fitness function is expressed as $f()$.
The second step is to update the directions of the two
antennae, which can be describ as *K*, the initial search distance

is function is expressed as *f*().

i.e the directions of the two

ord as follows.
 $x^{i} + d^{i}b$ (34)
 $x^{i} - d^{i}b$ (34)

i.target at the *i*-th iteration. x_r

is of the right and le

$$
\begin{cases}\n x^{i} = [K_{p}^{i} & K_{d}^{i}] \\
 b = \frac{rnd(n,1)}{\|rnd(n,1)\|}\n\end{cases}
$$
\n(35)

where K_p^i , K_i^i and K_d^i are the optimized *i* are the *i*-*th* iteration. x_r

ization target at the *i*-*th* iteration, x_r

ositions of the right and left antennae,

aper, x^i and *b* can be specified as:
 $=[K_p^i \t K_i^i \t K_d^i]$
 $=\frac{rnd(n,1)}{Vert(rn,1)||}$ (35)
 \downarrow where x^i is the optimization target at the *i*-*th* iteration. x_r
and x_l are severally the positions of the right and left antennae,
d' represents the searching distance at the *i*-*th* iteration, and *b*
is a un where x^i is the optimization target at the *i*-*th* iteration. x_r
and x_l are severally the positions of the right and left antennae,
d' represents the searching distance at the *i*-*th* iteration, and *b*
is a un and x_i are severally the positions of the right and left antennae,

d' represents the searching distance at the *i*-*th* iteration, and *b*

is a unit vector. In this paper, x^i and *b* can be specified as:
 $\begin{cases} x^i$ d' represents the searching distance at the *i*-*th* iteration, and *b*
is a unit vector. In this paper, x^i and *b* can be specified as:
 $\begin{cases} x^i = [K_p^i \quad K_i^i \quad K_d^i] \\ b = \frac{rnd(n,1)}{||rnd(n,1)||} \end{cases}$ (35)
where K_p^i , K_i^j a $i \int_{p}^{i} K_{p}^{i} K_{p}^{i}$ and K_{d}^{j} are the optimized PID gains at the
on. *rnd*() is a function to produce a random value
om [0, 1], which obeys the uniform distribution.
step is to establish the iterative model and where K_p^i , K_i^i and K_d^j are the optimized PID gains at the *i*-*th* iteration. *rnd*() is a function to produce a random value ranging from [0, 1], which obeys the uniform distribution. The third step is to establ where K_p^i , K_i^j and K_d^j are the optimized PID gains at the *i*-*th* iteration. *rnd*() is a function to produce a random value ranging from [0, 1], which obeys the uniform distribution. The third step is to establ

$$
x^{i+1} = \begin{cases} x^i - \delta^i \cdot b, f(x_r^i) > f(x_l^i) \\ x^i + \delta^i \cdot b, f(x_r^i) \le f(x_l^i) \end{cases}
$$
 (36)

where δ^i indicates the step size at the *i*-th iteration, which is update the other parameters, such as δ^i and d^i . *ⁱ*.

Volume 54, Issue 12, December 2024, Pages 2758-2765

$$
\begin{cases}\n d^{i+1} = c_1 d^i + c_2 & \text{parameters} \\
 \delta^{i+1} = c_3 \delta^i & \text{intess defi} \\
 \text{and } \delta \text{ show}\n\end{cases}
$$

**IAENG International Journal of Applied Mathematic
** $\begin{cases}\nd^{i+1} = c_1 d^i + c_2 \\
\delta^{i+1} = c_3 \delta^i\n\end{cases}$ **parameters in** *x* **defined in Equation (33).
** $\delta^{i+1} = c_3 \delta^i$ **(37) and** δ **should be updated in order the optimal gains IAENG International Journal of Applied Mathematics**
 $\begin{cases}\nd^{i+1} = c_1 d^i + c_2 \\
\delta^{i+1} = c_3 \delta^i\n\end{cases}$ parameters in *x* defined in Equation (33).

Then sa do should be updated in order

where c_1 , c_2 and c_3 are con **IAENG International Journal of Applied Mathematics**
 $d^{i+1} = c_1 d^i + c_2$ parameters in *x* defined in Equation (33). C
 $s^{i+1} = c_3 s^i$ (37) fitness defined in Equation (33). And the optimization process is
 $c_1 = c_2 = 0.$ **IAENG International Journal of Applied Mathemation**
 $\begin{cases}\na^{t+1} = c_1 a^i + c_2$ parameters in *x* defined in Equation (33)
 $\delta^{t+1} = c_3 \delta^i$ (37) finess defined in Equation (33)

where *c*₁, *c*₂ and *c*₃ are consta **IAENG International Journal of Applied Mathematic
** $\begin{cases}\n d^{i+1} = c_1 d^i + c_2 \\
 \delta^{i+1} = c_3 \delta^i\n \end{cases}$ **Then the equation (33).

The same of the initial conditions of the optimal gains are obtained.

Where** c_1 **,** c_2 **and c EXERTS INTERTATION INTERTATION INTERTATION AND SURFATHEM VALUE IN A SURFATHEM (37)** and parameters in *x* defined in Equation (33), and δ should be updated in order the optimal gains are obtained.

where c_1 , c_2 $a^{\int d^{i+1} = c_1 d^i + c_2}$ (37) fitness defined in Equation (33),
 $\delta^{i+1} = c_3 \delta^i$ (37) fitness defined in Equation (33),

where c_1 , c_2 and c_3 are constant coefficients to realize the

updating in Equation (37), $\begin{cases} d^{i+1} = c_1 d^i + c_2 \\ \delta^{i+1} = c_3 \delta^i \end{cases}$ (37)
where c_1 , c_2 and c_3 are constant coefficients to realize the
updating in Equation (37), and their settings are listed as
 $c_1 = c_3 = 0.95$, and $c_2 = 0.01$. The wh $c_1^{i+1} = c_1d^i + c_2$ (37) parameters in *x* defined in Equation (3
 $\frac{1}{2}$, $\frac{1}{2}$ $\begin{cases}\n d^{i+1} = c_1 d^i + c_2\n \end{cases}$ (37) parame

the optimum of the set of the optimization (37), and their settings are listed as
 $c_1 = c_3 = 0.95$, and $c_2 = 0.01$. The whole optimization process is

the optimization coeffic

inputs should be given, and we define that UB and LB are the upper and low limits of
$$
x^i
$$
, respectively. Thus, the initial
\nupper and low limits of x^i , respectively. Thus, the initial
\ncondition could be expressed as follows.

\n1CMIC mapping is a chaotic m
\nof mapping folds, offering the
\nand rapid convergence. The
\nICMIC mapping *b* value can be

\n1CMIC mapping *c* and *c* value can be

\n1CMIC mapping *c* and *c* value.

\n1-*i* max

\n1-*i* max

\n2

\n38

\n40° = $\frac{UB + LB}{2}$

\n410° = $\frac{UB + LB}{2}$

\n54

\n62

\n73

\n83

\n94

\n1-*i* max

\n1

ⁱ.

parameters in x defined in Equation (36), and the output is the fitness defined in Equation (33). Concurrently, the values of d **al of Applied Mathematics**
parameters in *x* defined in Equation (36), and the output is the
fitness defined in Equation (33). Concurrently, the values of *d*
and δ should be updated in order to adjust the input. Fina **al of Applied Mathematics**
parameters in *x* defined in Equation (36), and the output is the
fitness defined in Equation (33). Concurrently, the values of *d*
and δ should be updated in order to adjust the input. Fina **and Solution Mathematics**
parameters in *x* defined in Equation (36), and the output is the
fitness defined in Equation (33). Concurrently, the values of *d*
and δ should be updated in order to adjust the input. Final **al of Applied Mathematics**
parameters in *x* defined in Equation (36), and the output is the
fitness defined in Equation (33). Concurrently, the values of
and δ should be updated in order to adjust the input. Finally
 Example 10 CAPPIDE Mathematics

parameters in x defined in Equation (36), and the output is the

fitness defined in Equation (33). Concurrently, the values of d

and δ should be updated in order to adjust the input

ICMIC mapping *b* value can be described as follows. **In order to end in the performance of the performance the performance the performance of the BAS algorithm, be improved BAS algorithm, in order al of Applied Mathematics**
parameters in *x* defined in Equation (36), and the output is the
fitness defined in Equation (33). Concurrently, the values of *d*
and δ should be updated in order to adjust the input. Fina **al of Applied Mathematics**
parameters in *x* defined in Equation (36), and the output is the
fitness defined in Equation (33). Concurrently, the values of *d*
and δ should be updated in order to adjust the input. Fina **Example Function** Function is a defined in Equation (36), and the output is the fitness defined in Equation (33). Concurrently, the values of *d* and δ should be updated in order to adjust the input. Finally, the opti parameters in *x* defined in Equation (36), and the output is the fitness defined in Equation (33). Concurrently, the values of *d* and δ should be updated in order to adjust the input. Finally, the optimal gains are o parameters in *x* defined in Equation (36), and the output is the fitness defined in Equation (33). Concurrently, the values of *d* and δ should be updated in order to adjust the input. Finally, the optimal gains are o fitness defined in Equation (33). Concurrently, the values of *d* and δ should be updated in order to adjust the input. Finally, the optimal gains are obtained.
 C. Design of IBAS-PID Controller In order to enhance t and δ should be updated in order to adjust the input. Finally,
the optimal gains are obtained.
C. Design of IBAS-PID Controller
In order to enhance the performance of the BAS algorithm,
the improved BAS algorithm (IBAS the optimal gains are obtained.
 C. Design of IBAS-PID Controller

In order to enhance the performance of the BAS algorithm,

the improved BAS algorithm (IBAS) is developed by

incorporating the following enhancements. corporating the rollowing enhancements. In Equation (35),

r andom function is selected to generate the value for *b*.

owever, the iterative chaotic map with infinite collapses

CMIC) method is used to produce the *b* pa the random function is selected to generate the value for *b*.
However, the iterative chaotic map with infinite collapses
(ICMIC) method is used to produce the *b* parameter. The
ICMIC mapping is a chaotic model with an i However, the iterative chaotic map with infinite collapses
(ICMIC) method is used to produce the *b* parameter. The
ICMIC mapping is a chaotic model with an infinite number
of mapping folds, offering the benefits of unifo

$$
b^{i+1} = \sin(\frac{a_x \pi}{b^i})
$$
 (39)

from zero to positive infinity. Meanwhile, the step size δ^i in

$$
\delta^i = \frac{(\delta_{\text{max}} - \delta_{\text{min}})(i - i_{\text{max}})}{1 - i_{\text{max}}} + \delta_{\text{min}}
$$
(40)

 $b^{i+1} = \sin(\frac{a_x \pi}{b^i})$ (39)
where a_x is a fixed parameter, and has a range extending
om zero to positive infinity. Meanwhile, the step size δ^i in
quation (37) is rewritten in the following.
 $\delta^i = \frac{(\delta_{\text{max}} - \delta_{\text{$ $b^{i+1} = \sin(\frac{a_x \pi}{b^i})$ (39)
where a_x is a fixed parameter, and has a range extending
from zero to positive infinity. Meanwhile, the step size δ^i in
Equation (37) is rewritten in the following.
 $\delta^i = \frac{(\delta_{\text{max}} - \delta_{$ $b^{111} = \sin(\frac{x}{b^i})$ (39)

where a_x is a fixed parameter, and has a range extending

from zero to positive infinity. Meanwhile, the step size δ^i in

Equation (37) is rewritten in the following.
 $\delta^i = \frac{(\delta_{\text{max}} - \delta_{$ where a_x is a fixed parameter, and has a range extending
from zero to positive infinity. Meanwhile, the step size δ^i in
Equation (37) is rewritten in the following.
 $\delta^i = \frac{(\delta_{\text{max}} - \delta_{\text{min}})(i - i_{\text{max}})}{1 - i_{\text{max}}} + \delta$ barancett, and has a range extending

in finity. Meanwhile, the step size δ^i in

en in the following.
 δ_{min} $\left(i - i_{max}\right)$ + δ_{min} (40)
 $-i_{max}$

estrict the range of δ value assigned to

the δ value is decrea *A. Parameter Selection*
A. Parameter Selection
A. Parameter Selection
A. Parameter Selection
A. Parameter Selection
A. Parameter Selection
A. Parameter Selection
We established the dynamics of robotic arm a

(altronomyon) $\delta^i = \frac{(\delta_{\text{max}} - \delta_{\text{min}})(i - i_{\text{max}})}{1 - i_{\text{max}}} + \delta_{\text{min}}$ (40)

where δ_{max} and δ_{min} restrict the range of δ value assigned to

novel step factor. The δ value is decreasing which could

quir $\delta^i = \frac{(\delta_{\text{max}} - \delta_{\text{min}})(i - i_{\text{max}})}{1 - i_{\text{max}}} + \delta_{\text{min}}$ (40)

where δ_{max} and δ_{min} restrict the range of δ value assigned to

the novel step factor. The δ value is decreasing which could

acquire more e $\delta^i = \frac{(O_{\text{max}} - O_{\text{min}})(t - t_{\text{max}})}{1 - i_{\text{max}}} + \delta_{\text{min}}$ (40)

where δ_{max} and δ_{min} restrict the range of δ value assigned to

the novel step factor. The δ value is decreasing which could

acquire more ext 1-*i*_{max} mand
where δ_{max} and δ_{min} restrict the range of δ value assigned to
the novel step factor. The δ value is decreasing which could
acquire more extensive search scope in the early stages, and
implement where δ_{max} and δ_{min} restrict the range of δ value assigned to
the novel step factor. The δ value is decreasing which could
acquire more extensive search scope in the early stages, and
implement more precise se where δ_{max} and δ_{min} restrict the range of δ value assigned to
the novel step factor. The δ value is decreasing which could
acquire more extensive search scope in the early stages, and
implement more precise se the novel step factor. The δ value is decreasing which could
acquire more extensive search scope in the early stages, and
implement more precise search in the later stages.
K. *Parameter Selection*
We established the acquire more extensive search scope in the early stages, and
implement more precise search in the later stages.
IV. RESULTS
A. Parameter Selection
We established the dynamics of robotic arm and DC motor
with many variable implement more precise search in the later stages.

IV. RESULTS

A. Parameter Selection

We established the dynamics of robotic arm and DC motor

with many variables and parameters. Some of the parameters

are selected to IV. RESULTS
 A. Parameter Selection

We established the dynamics of robotic arm and DC motor

with many variables and parameters. Some of the parameters

are selected to be optimized, while the others should be
 APID gains. As a result, the best parameters are figured out that $K_p=30.5$, $K_i=1.2$, and $K_d=0.98$ for shoulder joint, and $K_p=25.6$, $K_i=1.26$, and $K_d=0.118$ for elbow joint. The LB and UB are given that LB = [0.01 0.01 0. FID controller, the Z-IN include is chosen to acquire the FID
gains. As a result, the best parameters are figured out that
 $K_p=30.5$, $K_f=1.2$, and $K_d=0.98$ for shoulder joint, and $K_p=25.6$,
 $K_f=1.26$, and $K_d=0.118$ fo

IAENG International
B. Comparison Results
The experiments were carried out to prove the super
of the proposed IBAS algorithm by comparing it with
optimization algorithms, such as PSO, GA and the ori
RAS The PID gains a **THENG International Journal of Applied Mathematics**

The experiments were carried out to prove the superiority

the proposed IBAS algorithm by comparing it with other

timization algorithms, such as PSO, GA and the origi **IAENG International Journal of Applied Mathemat**
 B. Comparison Results

The experiments were carried out to prove the superiority

of the proposed IBAS algorithm by comparing it with other

optimization algorithms, su **IAENG International Journal of Applied Mathem**
 B. Comparison Results

The experiments were carried out to prove the superiority

of the proposed IBAS algorithm by comparing it with other

optimization algorithms, such **EXERC International Journal of Applied Mathemateurs**

B. Comparison Results

The experiments were carried out to prove the superiority

of the proposed IBAS algorithm by comparing it with other

optimization algorithms, **IAENG International Journal of Applied Mathema**
 B. Comparison Results

The experiments were carried out to prove the superiority

of the proposed IBAS algorithm by comparing it with other

optimization algorithms, suc **Example 12**
 Example 10
 Example 10 EVALUATE SET ASSET ASSET ASSET ASSETTED
 EVALUATE ASSET AND THE EXPRESENTATION OF the proposed IBAS algorithm by comparing it with other optimization al 14 IABNG International Journal of Applied Mathema

18. Comparison Results

The experiments were carried out to prove the superiority

of the proposed IBAS algorithm by comparing it with other

optimization algorithms, s FING INTERNATIONAL JOUTHAI OF APPIDED MATHEMA

The experiments were carried out to prove the superiority

of the proposed IBAS algorithm by comparing it with other

optimization algorithms, such as PSO, GA and the origina B. Comparison Results

The experiments were carried out to prove the superiority

of the proposed IBAS algorithm by comparing it with other

optimization algorithms, such as PSO, GA and the original

IBAS. The PID gains a *B. Comparison Results*

The experiments were carried out to prove the superiority

of the proposed IBAS algorithm by comparing it with other

optimization algorithms, such as PSO, GA and the original

BAS. The PID gains B. Comparison Results

The experiments were carried out to prove the superiority

of the proposed IBAS algorithm by comparing it with other

optimization algorithms, such as PSO, GA and the original

BAS. The PID gains af The experiments were carried out to prove the superiority
of the proposed IBAS algorithm by comparing it with other
optimization algorithms, such as PSO, GA and the original
BAS. The PID gians after optimization are descr of the proposed IBAS algorithm by comparing it with other
optimization algorithms, such as PSO, GA and the original
BAS. The PID gains after optimization are described in Table
II. The maximum iteration is set to be 100, optimization algorithms, such as PSO, GA and the original

BAS. The PID gains after optimization are described in Table

II. The maximum iteration is set to be 100, and the fitness

results of four methods are shown in Fi BAS. The PID gains after optimization are described in Table $\frac{1}{2}$

II. The maximum iteration is set to be 100, and the fitness

results of four methods are shown in Fig. 7. The performance

evaluation is inversely pr II. The maximum iteration is set to be 100, and the results of four methods are shown in Fig. 7. The percellulation is inversely proportional to the fitness value. The evaluation is inversely proportional to the fitness v SO-PID requires approximately 73 iterations for

1. The proposed IBAS-PID shows only a little

trmance than the original BAS-PID which takes

s to reach the stable goal. However, the GA-PID

0 iterations for stabilization

other side, the GA-PID and normal-PID algorithm achieve The COLANTITATIVE COMPAR

The COLANTITATIVE COMPAR

Tig. 7. Fitness of four methods after 100 iterations.

The Specifically, the proposed BAS-PID algorithm requires the introducer of the BAS-PID and the control performance **EVALUATE CONFERCEMENT CONFERCEMENT CONFERCED (1.48)**

Fig. 7. Fitness of four methods after 100 iterations.

Fig. 7. Fitness of four methods after 100 iterations.

Fig. 7. Fitness of four methods after 100 iterations.

A **Example 1988**
 Parts Methods CONSTITATIVE CONSTRAINTS (CONSTRAINTS)

Fig. 7. Fitness of four methods after 100 iterations.

As pictured in Fig. 8, the step response is selected to BAS-PID at

evaluate the control perfo **Parts Methods**

Fig. 7. Fitness of four methods after 100 iteration

Fig. 7. Fitness of four methods after 100 iterations.

As pictured in Fig. 8, the step response is selected to

evaluate the control performance. Speci $\frac{1}{6}$ and $\frac{1}{20}$ and $\frac{1}{30}$ and $\frac{1}{30}$ in the interactions.

Fig. 7. Fitness of four methods after 100 iterations.

Example 100 iterations.

Example 100 iterations.

Example 100 iterations.

EXAS-PID algor Fig. 7. Fitness of four methods after 100 iterations.

As pictured in Fig. 8, the step response is selected to

evaluate the control performance. Specifically, the proposed

IBAS-PID algorithm gains the lowest rise time, From the least overshoot. The BRS-PID algorithm acquires the control performance. Specifically, the proposed is selected to the BRS-PID algorithm acquires the biggest rise time. On the GA-PID algorithm acquires the biggest As pictured in Fig. 8, the step response is selected to

BAS-PID algorithm gains the lowest rise time, while the

normal-PID algorithm acquires the biggest rise time, while the

normal-PID algorithm acquires the biggest r evaluate the control performance. Specifically, the proposed

IBAS-PID algorithm agains the lowest rise time, while the

normal-PID algorithm acquires the biggest rise time. On the

cold-PID and normal-PID algorithm calies TBAS-PID algorithm gains the lowest rise time, while the
normal-PID algorithm acquires the biggest rise time. On the
other side, the GA-PID and normal-PID algorithm achieve
Poolen SAS-PID algorithm calizes the
biggest over normal-PID algorithm acquires the biggest rise time. On the

other side, the GA-PID and normal-PID algorithm achieve

zero overshoot, while the BAS-PID algorithm realizes the

binks

binks

linked and affected, the paramet other side, the GA-PID and normal-PID algorithm achieve
zero overshoot, while the BAS-PID algorithm realizes the
biggest overshoot. As the shoulder and elbow joints are
linked and affected, the parameters would show differ

both BAS-PID 9.15% 0.045 0.0226 0.0611

BAS-PID 8.26% 0.041 0.0248 0.0607

Normal-PID 41% 0.048 0.0504 0.1176

Elbow GA-PID 38% 0.038 0.0416 0.0955

Joints PSO-PID 34% 0.042 0.0450 0.1082

BAS-PID 42% 0.032 0.0354 0.0932
 BAS-PID 8.26% 0.041 0.0248 0.0607

Normal-PID 41% 0.048 0.0504 0.1176

Elbow GA-PID 38% 0.038 0.0416 0.0955

Joints PSO-PID 34% 0.042 0.0450 0.1082

BAS-PID 42% 0.032 0.0354 0.0932

BAS-PID 42% 0.021 0.0338 0.0897

As des Normal-PID 41% 0.048 0.0504 0.1176

Elbow GA-PID 38% 0.038 0.0416 0.0955

Joints PSO-PID 34% 0.042 0.0450 0.1082

BAS-PID 42% 0.032 0.0354 0.0932

IBAS-PID 39% 0.021 0.0338 0.0897

As described in Table III, the normal-PID Elbow GA-PID 38% 0.038 0.0416 0.0955

PSO-PID 34% 0.042 0.0450 0.1082

BAS-PID 42% 0.032 0.0354 0.0932

BAS-PID 39% 0.021 0.0338 0.0897

As described in Table III, the normal-PID controller

exhibits zero overshoot, but g Joints BSO-PID 34% 0.042 0.0450 0.1082
BAS-PID 42% 0.032 0.0354 0.0932
BAS-PID 39% 0.021 0.0338 0.0897
As described in Table III, the normal-PID controller
exhibits zero overshoot, but gains the greatest rise time
(0.13s),

IAENG International Journal of Applied Mathemati
from the metric of overshoot, the proposed IBAS-PID comparison results show that the
controller gains the least values (i.e., rise time is 0.021 s, gains the best performa **IAENG International Journal of Applied Mathematics**
from the metric of overshoot, the proposed IBAS-PID comparison results show that the controller gains the least values (i.e., rise time is 0.021 s, gains the best perfo IAENG International Journal of Applied Mathemat

from the metric of overshoot, the proposed IBAS-PID comparison results show that

controller gains the least values (i.e., rise time is 0.021 s, gains the best performance i **IAENG International Journal of Applied Mather**
from the metric of overshoot, the proposed IBAS-PID comparison results show t
controller gains the least values (i.e., rise time is 0.021 s, gains the best performan
MAE is **IAENG International Journal of Applied Mathemat**
from the metric of overshoot, the proposed IBAS-PID comparison results show that
controller gains the least values (i.e., rise time is 0.021 s, gains the best performance **IAENG International Journal of**
from the metric of overshoot, the proposed IBAS-PID con
controller gains the least values (i.e., rise time is 0.021 s, gaint
MAE is 0.0338 rad and RMSE is 0.0897 rad) in other three
metric **SUBSE INTERT SUBSET IN THE SUBSET OF A SUBSET AND THE SUBSET ON A SUBSET AND THE PARALLET SUBSET ARE ALLES (i.e., rise time is 0.021 s, gains the best performance ALLES in the separation and RMSE is 0.0897 rad) in other IAENG International Journal of Applied Mathematic**
from the metric of overshoot, the proposed IBAS-PID comparison results show that the
controller gains the least values (i.e., rise time is 0.021 s, gains the best perfor

IAENG International Journal of Applied Mathen
from the metric of overshoot, the proposed IBAS-PID comparison results show the
controller gains the least values (i.e., rise time is 0.021 s, gains the best performance
MAE **THETNG INTERTATION JOUTHAT OF Applied MAD**
from the metric of overshoot, the proposed IBAS-PID comparison results sho
controller gains the least values (i.e., rise time is 0.021 s, gains the best performed
MAE is 0.0338 from the metric of overshoot, the proposed IBAS-PID comparison results show that the controller gains the least values (i.e., rise time is 0.021 s, gains the best performance in MAE is 0.0338 rad and RMSE is 0.0897 rad) i from the metric of overshoot, the proposed IBAS-PID comparison results show that the protontoller gains the least values (i.e., rise time is 0.021 s, gains the best performance in the MAE is 0.0338 rad and RMSE is 0.0897 from the metric of overshoot, the proposed IBAS-PID comparison results show that
controller gains the least values (i.e., rise time is 0.021 s, gains the best performance
MAE is 0.0338 rad and RMSE is 0.0897 rad) in other controller gains the least values (i.e., rise time is 0.021 s, gains the best performance MAE is 0.0338 rad and RMSE is 0.0897 rad) in other three tuning PID gains.

metrics. The experimental results show that the propose MAE is 0.0338 rad and RMSE is 0.0897 rad) in other three tuning PID gains.

metrics. The experimental results show that the proposed

method gains the most optimal performance for the robot

control compared with other me metrics. The experimental results show that the proposed

method gains the most optimal performance for the robot

control compared with other methods.

Subsequently, the tracking effect of sinusoidal signal

tracking was method gains the most optimal performance for the robot

control compared with other methods.

Subsequently, the tracking effect of sinusoidal signal

tracking was also tested. As depriced in Fig. 10, all the

methods show closely.

From the most optimal control performance of the most optimal control is selected

and and shows the most optimal control performance of the most optimal control performance.

The most optimal control performance for the $\frac{2}{3}$ of $\frac{2}{3}$ of $\frac{1}{3}$ and show angle (Sommal PID)
 $\frac{1}{3}$ and $\$ From the most closely (Namal PID)

Absolute (NAME)

Absolute (NAPID)

IGNOV GA-PID 0.023

Fig. FROM THE TRISTANT CONTECT THE FRO-PID CROW Angle (BAS-PID)

FRO-PID BAS-PID 0.028

Fig. 10. Comparison of sinusoidal response for shoulder joint

Figure 11 demonstrates the tracking performance for the

Figure 11 demonstrates the tracking performance $^{1.5}$ $^{1.5}$ $^{0.2}$ $^{0.4}$ $^{0.6}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.8}$ $^{0.9}$ $^{0.9}$ $^{0.9}$ $^{0.9}$ $^{0.9}$ $^{0.9}$ $^{0.9}$ $^{0.9$ ²⁶ 0² 04 06 ⁰⁸ time(s)¹² ¹⁴ ^{1.6} ^{1.8} ² **IBAS-PID** 0.

10. 10. Comparison of sinusoidal response for shoulder joint

Figure 11 demonstrates the tracking performance for the A mathematical and composed IBAS-P Fig. 10. Comparison of sinusoidal response for shoulder joint

Figure 11 demonstrates the tracking performance for the

elbow joint. From the amplifying part, the robot angle from

the proposed IBAS-PID control is the clos Figure 11 demonstrates the tracking performance for the

and RMSE is 0.025

RMSE is 0.025 rad, and Explorectic in the selected of

the proposed IBAS-PID control is the closest to the human

been successfully constructed,
 Figure 11 demonstrates the tracking performance for the

elbow joint. From the amplifying part, the robot angle from

the proposed IBAS-PID control is the closest to the human

been successfully constructe

angle, and sho

elbow joint. From the amplifying part, the robot angle from upper exoskeleton robc
the proposed IBAS-PID control is the closest to the human been successfully con
angle, and shows the most optimal control performance. PID the proposed IBAS-PID control is the closest to the human
molecular postical angle, and shows the most optimal control performance. PID control is selected to c
However, at most of the time, the robot angle tracks the gain angle, and shows the most optimal control performance. PID control is selected to cont
However, at most of the time, the robot angle tracks the gains are optimized through th
human angle closely for all methods. Obviously, However, at most of the time, the robot angle tracks the gains are optimized through th
human angle closely for all methods. Obviously, it is hard to Specifically, the ICMIC meth
evaluate the control performance precisely. human angle closely for all methods. Obviously, it is hard to Specifically, the ICMIC mevaluate the control performance precisely. The specific and random value, which would quantitative results are figured out and reporte evaluate the control performance precisely. The specific and

quantitative results are figured out and reported in Table IV

accelerate the convergence. A

As described in Table IV, the normal-PID controller gains

more pr

and of Applied Mathematics

comparison results show that the proposed IBAS-PID control

gains the best performance in the optimization process of

tuning PID gains. **and of Applied Mathematics**

comparison results show that the proposed IBAS-PID control

gains the best performance in the optimization process of

tuning PID gains.
 0.3 Human Angle
 \bigotimes Robot Angle (Normal PID)

TABLE IV

FRID 0.010 0.021 0.63

IBAS-PID 0.010 0.021 0.61

Normal-PID 0.028 0.067 0.90

Elbow GA-PID 0.028 0.067 0.90

FIDOW GA-PID 0.028 0.068 0.76

ISBAS-PID 0.023 0.068 0.76

IBAS-PID 0.023 0.052 0.55

IBAS-PID 0.023 0.052 0.55
 Ebow GA-PID 0.009 0.021 0.61

Normal-PID 0.028 0.067 0.90

Ebow GA-PID 0.028 0.067 0.90

Joints PSO-PID 0.028 0.068 0.76

BAS-PID 0.024 0.054 0.57

IBAS-PID 0.023 0.052 0.55

V. CONCLUSION

A mathematical and computational Normal-PID 0.028 0.067 0.90

Elbow GA-PID 0.028 0.068 0.68

PSO-PID 0.028 0.068 0.76

BAS-PID 0.024 0.054 0.57

IBAS-PID 0.023 0.052 0.55

V. CONCLUSION

A mathematical and computational model of the 2-DOF

upper exoskelet Elbow GA-PID 0.025 0.058 0.68

PSO-PID 0.028 0.068 0.76

BAS-PID 0.024 0.054 0.57

IBAS-PID 0.023 0.052 0.55

V. CONCLUSION

A mathematical and computational model of the 2-DOF

upper exoskeleton robot, driven by direct cu FRIE 20028 0.068 0.76

BAS-PID 0.028 0.068 0.76

BAS-PID 0.024 0.054 0.57

IBAS-PID 0.023 0.052 0.55

V. CONCLUSION

A mathematical and computational model of the 2-DOF

upper exoskeleton robot, driven by direct current mo BAS-PID 0.024 0.054 0.57

IBAS-PID 0.023 0.052 0.55

V. CONCLUSION

A mathematical and computational model of the 2-DOF

upper exoskeleton robot, driven by direct current motors, has

been successfully constructed, simulat BAS-PID 0.023 0.052 0.55 0.55
V. CONCLUSION
CONCLUSION
A mathematical and computational model of the 2-DOF
upper exoskeleton robot, driven by direct current motors, has
been successfully constructed, simulated, and tested. V. CONCLUSION

A mathematical and computational model of the 2-DOF

upper exoskeleton robot, driven by direct current motors, has

been successfully constructed, simulated, and tested. The

PID control is selected to contr V. CONCLUSION
A mathematical and computational model of the 2-DOF
upper exoskeleton robot, driven by direct current motors, has
been successfully constructed, simulated, and tested. The
PID control is selected to control t A mathematical and computational model of the 2-DOF
upper exoskeleton robot, driven by direct current motors, has
been successfully constructed, simulated, and tested. The
PID control is selected to control the whole syste upper exoskeleton robot, driven by direct current motors, has
been successfully constructed, simulated, and tested. The
PID control is selected to control the whole system, and its
gains are optimized through the proposed Final Controlline and Controlline and Controlline and accelerate the convergence. A novel step size is proposed to realize more extensive search scope in the early stages, and more precise search in the later stages. The c lerate the convergence. A novel step size is proposed to
ze more extensive search scope in the early stages, and
e precise search in the later stages. The control
ormance is tested in terms of step response and sinusoidal

REFERENCES

- **IAENG International Journal of Applied Mathe**

[2] N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis and S. E

performance of disturbance observer-based-dynamic load torque
 Mechatron **IAENG International Journal of Applied Matl**

N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis and S

performance of disturbance observer-based-dynamic load torque tangency portfolio **IAENG International Journal of Applied M**

N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis are

performance of disturbance observer-based-dynamic load torque tangency portfolior

com **IAENG International Journ:**
 M. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and

performance of disturbance observer-based-dynamic load torque

compensator for assistive exoskeleton: A hybrid approach,"
 IAENG International Journal of Applied Mat

[23] N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis and S

performance of disturbance observer-based-dynamic load torque tangency portfo **IAENG International Journal of Applied Math**

N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis and S.

performance of disturbance observer-based-dynamic load torque tangency portfolio **IAENG International Journal of Ap**

N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N.

performance of disturbance observer-based-dynamic load torque tanger

compensator for assistive exoskeleto **IAENG International Journal of Applied M**

[25] N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis a

performance of disturbance observer-based-dynamic load torque tangency portfol

co **IAENG International Journal of Applied M:**

N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis and

performance of disturbance observer-based-dynamic load torque tangency portfolio

com
-
-
- **EXETYO THET HATOMAT JOUT HAT OF APPIRE TAR**

25) V. N. Katsikis and

performance of disturbance observer-based-dynamic load torque

compensator for assistive exoskeleton: A hybrid approach,"
 Mechatronics, vol. 69, pp. [2] N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis and

performance of disturbance observer-based-dynamic load torque

compensator for assistive exoskeleton: A hybrid approach,"
 M N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis and
performance of disturbance observer-based-dynamic load torque tangency portfolio
Mechatronics, vol. 69, pp. 102373, 2020.
G. W. N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and [25] V. N. Katsikis an
performance of disturbance observer-based-dynamic load torque tangency portfolio
compensator for assistive exoskeleton: A hybrid app *N. Masud, P. Mattsson, C. Smith and M. Isaksson, "On stability and* [25] V. N. Katsikis a

performance of disturbance observer-based-dynamic load torque tangency portfol
 Mechatronics, vol. 69, pp. 102373, 2020.

G. W. performance of disturbance observer-based-dynamic load torque

compensator for assistive exoskeleton: A hybrid approach," beetle antenna

Mechatronics, vol. 69, pp. 102373, 2020.

Scheme for upper-limb exoskeleton via adap compensator for assistive exoskeletor. A hybrid approach,"

beetle antennae se

G. W. Zhang, J. Wang, P. 102373, 2020.

Scheme for upper-limb exoskeleton via adaptive sliding mode

technique," Mechatronics, vol. 86, pp. 10 *Mechatronics,* vol. 69, pp. 102373, 2020.

G. W. Zhang, J. Wang, P. Yang and S. J. Guo, "A learning control

scheme for upper-limb exoskeleton via adaptive sliding mode

technique," *Mechatronics*, vol. 86, pp. 102832, 20 [3] G. W. Zhang, J. Wang, P. Yang and S. J. Guo, "A learning control

scheme for upper-limb exoskeleton via adaptive sliding mode

technique," Mecharronics, vol. 86, pp. 102832, 2022.

[4] H. H. Harith, M. F. Mohd and S. scheme for upper-limb exoskeleton via adaptive sliding mode

technique, "Mechatronics, vol. 86, pp. 102832, 2022.

H. H. Harith, M. F. Mohd and S. N. Sowat, "A preliminary **Fenggang Liu** is

investigation on upper limb exo technique," *Mechatronics*, vol. 86, pp. 102832, 2022.
 H. H. Harith, M. F. Mohd and S. N. Sowat, "A preliminary

investigation on upper limb exoskeleton assistance for simulated

agricultural tasks," *Applied Ergonomics* [8] H. H. Hartih, M. F. Mohd and S. N. Sowat, "A preliminary **Fenggang Liu** is an associate incestingtion on upper limb exoskeleton assistance for simulated Technology in Wuhan city and agricultural tasks," *Applied Ergon* investigation on upper limb exoskeleton assistance for simulated

agricultural tasks," Applied Ergonomics, vol. 95, pp. 103455, 2021

B. Brahmi, M. Saad, C. Ochoa-Luna, M. H. Rahman and A. Brahmi,

"Adaptive tracking contr agncultural tasks," *Applied Ergonomics*, vol. 95, pp. 103455, 2021 the developm
 E Arahmi, M. Saad, C. Ochoa-Luna, M. H. Rahman and A. Brahmi,

"Adaptive tracking control of an exoskeleton robot with uncertain

dynamics [5] B. Brahm, M. Saad, C. Ochoa-Luna, M. H. Rahman and A. Brahmi,

"Adaptive tracking control of an exoskeleton robot with uncertain **Lang Rao** is an associate

dynamics based on estimated time-delay control," *IEELASME*
- "Adaptive tracking control of an exoskeleton robot with uncertain Lang Rao is an associate profess
 Gransaction on Mechatronics, vol. 23, no. 2, pp. 575-285, 2018.
 Transaction on Mechatronics, vol. 23, no. 2, pp. 575dynamics based on estimated time-delay control," *IEE*
 Fransaction on Mechatronics, vol. 23, no. 2, pp. 575-285, 201
 Z. J. Li, Y. Kang, Z. Y. Xiao and W. G. Song, "Hum

coordination control of robotic exoskeletons by Transaction on Mechatronics, vol. 23, no. 2, pp. 575-285, 2018.

[6] Z. J. Li, Y. Kang, Z. Y. Xiao and W. G. Song, "Human-robot coordination control of robotic exoskeletons by skill transfers," *IEEE* **Zhaoyun He** is a te
-
-
-
- 2. J. L., Y. Kang, Z. Y. Xiao and W. G. Song, "Human-robot

cordination control of robotic exoskeletons by skill transfers," *IEEE*
 Crans Ind Electron, vol. 64, no. 6, pp. 5171–5181, 2017.

N. Masud, C. Smith and M. Is coordination control of robotic exoskeletons by skill transfers," *IEEE* Trans Ind Electron, vol. 64, no. 6, pp. 5171–5181, 2017. City of China. H

N. Masud, C. Smith and M. Isaksson, "Disturbance observer based control an Trans Ind Electron, vol. 64, no. 6, pp. 5171–5181, 2017.

[7] N. Masud, C. Smith and M. Isaksson, "Disturbance observer based control and human moti

dynamic load torque compensator for assistive exoskeletons,"
 Mechatro N. Masud, C. Smith and M. Isaksson, "Disturbance observer based

dynamic load torque compensator for assistive exoskeletons,"
 Mechatronics, vol. 54, pp. 78–93, 2018.
 Mechatronics, vol. 24, pp. 78–93, 2018.
 Chapase dynamic load torque compensator for assi
 Mechatronics, vol. 54, pp. 78–93, 2018.

Jian Zhang, Lie Yu, and Lei Ding, "Velocity feed

phase for 2-DoF robotic leg driven by electro-hyve
 Engineering Letters, vol. 24, no. Mechatronics, vol. 54, pp. 78–93, 2018.

[8] Jian Zhang, Lie Vu is an associate propagation phase for 2-DoF robotic leg driven by electro-hydraulic servo system," MS Degree from the Wulter phase for 2-DoF robotic leg driv Jian Zhang, Lie Yu, and Lei Ding, "Velocity feedback control of Swing of China. He received
phase for 2-DoF robotic leg driven by electro-hydraulic servo system," MS Degree from the Vehicle leg driven by electro-hydraulic
-
-
- phase for 2-DoF robotic leg driven by electro-hydraulic servo system,"
 Chinese Control As, pp. 378-383, 2016.
 Chinese Computers, vol. 24, no. 4, pp. 378-383, 2016.
 Chinese Congestion Controller, "Mathematical Probl Engineering Letters, vol. 24, no. 4, pp. 378-383, 2016.

[9] Y. L. Zhang, L. J. Zhang and Z. L. Dong, "An MEA-Tuning Method research interests mainly in

for Design of the PID Controller," *Mathematical Problems in* reabal Y. L. Zhang, L. J. Zhang and Z. L. Dong, "An MEA-Tuning Method research interests manily in *Engineering*, pp. 1-11, 2019.
 Engineering, pp. 1-11, 2019.
 K. Yang, X. Chen, R. Xia and Z. Qian, "Wireless Sensor Network L for Design of the PID Controller," *Mathematical Problems in* rehabilitation robots.
Engineering, pp. 1-11, 2019.

X. Yang, X. Chen, R. Xia and Z. Qian, "Wireless Sensor Network Lei Ding is an associate

Congestion Control *IAENG International Sciencering, pp. 1-11, 2019*
 *IA Yang, X. Chen, R. Xia and Z. Qian, "Wireless Sensor Network Lei Ding is an associate profe

Congestion Control Based on Standard Particle Swarm Optimization city of Ch* X. Yang, X. Chen, R. Xia and Z. Qian, "Wire
Congestion Control Based on Standard Particle
and Single Neuron PID," *Sensors*, vol. 8, pp. 126
I. G. Ziegler and N. B. Nichols "Optimum S.
Controllers," *ASME. J. Dyn. Sys., Me* Congestion Control Based on Standard Particle Swarm Optimization eity of China. His current re

and Single Neuron PID, "*Sensors*, vol. 8, pp. 1265, 2018.

[11] J. G. Zicgler and N. B. Nichols "Optimum Settings for Automat and Single Neuron PID," *Sensors*, vol. 8, pp. 1265, 2018.

U. G. Ziegler and N. B. Nichols "Optimum Settings for Automatic

Controllers," *ASME. J. Dyn. Sys., Meas., Control,* vol. 115, no. 2, pp.

220–222, 1993.

B. Zhao Controllers," *AME. J. Dyn. Sys., Meas., Control, vol.* 115, no. 2, pp.

220–222, 1993.

[12] B. Zhao, H. Wang, Q. Li, J. Li and Y. Zhao, "PID Trajectory Tracking

Control of Autonomous Ground Vehicle Based on Genetic Algo 220–222, 1993.

220–222, 1993.

Echao, H. Wang, Q. Li, J. Li and Y. Zhao, "PID Trajectory Tracking

Control of Autonomous Ground Vehicle Based on Genetic Algorithm,"

Chinese Control And Decision Conference, pp. 3677-3682, B. Zhao, H. Wang, Q. Li, J. Li and Y. Zhao, "PID Trajectory Tracking
Control of Autonomous Ground Vehicle Based on Genetic Algorithm,"
Chinese Control And Decision Conference, pp. 3677-3682, 2019.
G. G. Chen, F. Qin, H. Y. Control of Autonomous Ground Vehicle Based on Genetic Algorithm,"

(13) G. G. Chen, F. Qin, H. Y. Long, X. J. Zeng, P. Kang, and J. M. Zhang,

"Fuzzy PID Controller Optimized by Improved Gravitational Search

Algorithm for Chinese Control And Decision Conference, pp. 3677-3682, 2019.

G. G. Chen, F. Qin, H. Y. Long, X. J. Zeng, P. Kang, and J. M. Zhang,

"Fuzzy PID Controller Optimized by Improved Gravitational Search

Algorithm for Load Fre *G. G. Chen, F. Qin, H. Y. Long, X. J. Zeng, P. Kang, and J. M. Zhang, "Fuzzy PID Controller Optimized by Improved Gravitational Search Algorithm for Load Frequency Control in Multi-area Power System,"
<i>IAENG International*
-
-
-
- "Fuzzy PID Controller Optimized by Improved Gravitational Search

Algorithm for Load Frequency Control in Multi-area Power System,"
 IAENG International Journal of Computer Science, vol. 49, no.1, pp.

125-139, 2022.

[Algorithm for Load Frequency Control in Multi-area Power System,"

1AENG International Journal of Computer Science, vol. 49, no.1, pp.

125-139, 2022.

N. Qin, and X. L. Meng, "High-speed Train Rescheduling Based on a

New *IAENG International Journal of Computer Science*, vol. 49, no.1, pp.
125-139, 2022.
N. Qin, and X. L. Meng, "High-speed Train Rescheduling Based on a
New Kind of Particle Optimization Algorithm," *Engineering Letters*,
vo 125-139, 2022.
 N. Qin, and X. L. Meng, "High-speed Train Rescheduling Based on a

New Kind of Particle Optimization Algorithm," *Engineering Letters*,

New Kind of Particle Optimization Algorithm," *Engineering Letters* [14] N. Qın, and X. L. Meng, "High-speed Train Rescheduling Based on a

New Kind of Particle Optimization Algorithm," *Engineering Letters*,

vol. 31, no.2, pp. 640-647, 2023.

[15] Y. Hou, C. X. Wang, W. C. Dong, and L. New Kind of Particle Optimization Algorithm," *Engineering Letters*, vol. 31, no.2, pp. 640-647, 2023.
Y. Hou, C. X. Wang, W. C. Dong, and L. X. Dang, "An Improved Particle Swarm Optimization Algorithm for the Distribution vol. 31, no.2, pp. 640-647, 2023.

Y. Hou, C. X. Wang, W. C. Dong, and L. X. Dang, "An Improved

Particle Swarm Optimization Algorithm for the Distribution of Fresh

Products," *Engineering Letters*, vol. 31, no. 2, pp. 49 [15] Y. Hou, C. X. Wang, W. C. Dong, and L. X. Dang, "An Improved

Particle Swarm Optimization Algorithm for the Distribution of Fresh

Products," *Engineering Letters*, vol. 31, no. 2, pp. 494-503, 2023

[16] F. S. Ghare Particle Swarm Optimization Algorithm for the Distribution of Fresh

Products," *Engineering Letters*, vol. 31, no. 2, pp. 494-503, 2023

Pr. S. Gharehopegh and H. Gholizadeh, "A comprehensive survey:

Whale Optimization Products," *Engineering Letters*, vol. 31, no. 2, pp. 494-503, 2023

F. S. Gharehohopgh and H. Ghbilzadeh, "A comprehensive survey:

Whale Optimization Algorithm and its applications," *Swarm and*
 Evolutionary Computatio F. S. Gharehchopogh and H. Gholizadeh, "A comprehensive survey:

Whale Optimization Algorithm and its applications," *Swarm and*
 Evolutionary Computation, vol. 48, pp. 1-24, 2019.

Q. V. Pham, S. Mirjailii, N. Kumar, Whale Optimization Algorithm and its applications," *Swarm and* $[17]$ Q. V. Pham, S. Mirgalili, N. Kumar, M. Algzab and W. J. Hwang, "Whale Optimization Algorithm With Applications to Resource Allocation in Wireless Netw *Evolutionary Computation*, vol. 48, pp. 1-24, 2019.

Q. V. Pham, S. Mirjalili, N. Kumar, M. Alazab and W. J. Hwang,

Q. V. Pham, S. Mirjalili, N. Kumar, M. Alazab and W. J. Hwang,
 Technology, vol. 69, no. 4, pp. 4285-
-
- Q. V. Pham, S. Mirjalili, N. Kumar, M. Alazab and W. J. Hwang, "Whale Optimization Algorithm With Applications to Resource Allocation in Wireless Networks," *IEEE Transactions on Vehicular Technology*, vol. 69, no. 4, pp. "Whale Optimization Algorithm With Applications to Resource
Allocation in Witeless Networks," IEEE Transactions on Vehicular
Technology, vol. 69, no. 4, pp. 4285-4297, 2020.
[18] Y. Fan, J. Shao and G. Sun, "Optimized PID Allocation in Wireless Networks," *IEEE Transactions on Vehicular* Technology, yol. 69, no. 4, pp. 4285-4297, 2020.

Y. Fan, J. Shao and G. Sun, "Optimized PID controller based on beetle antennae search algorithm for elec Technology, vol. 69, no. 4, pp. 4285-4297, 2020.

Y. Fan, J. Shao and G. Sun, "Optimized PID controller based on beetle

Y. Fan, J. Shao and G. Sun, "Optimized PID controller based on beetle

antenne search algorithm for e
-
-
- [18] Y. Fan, J. Shao and G. Sun, "Optimized PID controller based on beette antenna esearch algorithm for electro-hydraulic position servo control
system," *Sensors*, vol. 19, no. 12, pp. 2727, 2019.
[19] T. E. Simos, V. N antennae search algorithm for electro-hydraulic position servo control
system,"Sensors, vol. 19, no. 12, pp. 2727, 2019.
T. E. Simos, V. N. Katsikis and S. D. Mourtas, "Multi-input
bio-inspired weights and structure deter system," *Sensors*, vol. 19, no. 12, pp. 2727, 2019.
T. E. Simos, V. N. Katsikis and S. D. Mourtas, "Multi-input
T. E. Simos, V. N. Katsikis and S. D. Mourtas, "*Math. Comput.*
Simulation, vol. 193, pp. 451–465, 2022.
N T. E. Simos, V. N. Katsikis and S. D. 1
bio-inspired weights and structure determin
applications in European central bank publica
Simulation, vol. 193, pp. 451–465, 2022.
T. E. Simos, S. D. Mourtas and V. N. Kat
black-li
- bio-inspired weights and structure determination neuronet with
applications in European central bank publications," *Math. Comput.*
Simulation, vol. 193, pp. 451–465, 2022.
[20] T. E. Simos, S. D. Mourtas and V. N. Kats applications in European central bank publications," *Math. Comput.*

Simulation, vol. 193, pp. 451–465, 2022.

T. E. Simos, S. D. Mourtas and V. N. Katsikis, "Time-varying

black-litterman portfolio optimization using a b Simulation, vol. 193, pp. 451-465, 2022.

T. E. Simos, S. D. Mourtas and V. N. Katsikis, "Time-varying

black-litterman portfolio optimization using a bio-inspired approach

and neuronets," *Appl. Soft Comput*, vol. 112, p T. E. Simos, S. D. Mourtas and V. N. Katsikis, "Time-varying
black-litterman portfolio opimization using a bio-inspired approach
and neuronets," *Appl. Soft Comput,* vol. 112, pp. 107767, 2021.
Y. Cheng, C. Li, S. Li, Z. L
- 2023.

[24] H. X. Guan, B. Yang, H. R. Wang, D. Wu, B. X. Zhao, J. B. Liu, and T. and neuronets," *Appl. Soft Comput,* vol. 112, pp. 107/67, 2021.

[21] Y. Cheng, C. Li, S. Li, Z. Li, "Motion plaming of redundant

manipulator with variable joint velocity limit based on beetle antennae

search algorithm, Y. Cheng, C. Li, S. Li, Z. Li, "Motion planning of redundant
manipulator with variable joint velocity limit based on beetle antennae
search algorithm," *IEEE Access*, vol. 8, pp. 138788–138799, 2020.
X. Li, H. Jiang, M. Ni manipulator with variable joint velocity limit based on beetle antennae
search algorithm," *IEEE Access*, vol. 8, pp. 138788-138799, 2020.
X. Li, H. Jiang, M. Niu, R. Wang, "An enhanced selective ensemble
deep learning met search algorithm," *IEEE Access*, vol. 8, pp. 138788–138799, 2020.
 X. Li, H. Jiang, M. Niu, R. Wang, "An enhanced selective ensemble

deep learning method for rolling bearing fault diagnosis with beetle

antennae search 2020.

[25] V. N. Katsikis and S. D. Mourtas, "Diversification of time-varying **Examplied Mathematics**
V. N. Katsikis and S. D. Mourtas, "Diversification of time-varying
tangency portfolio under nonlinear constraints through semi-integer
beetle antennae search algorithm," *Applied Math*, vol. 1, no. **Examplied Mathematics**

V. N. Katsikis and S. D. Mourtas, "Diversification of time-varying

tangency portfolio under nonlinear constraints through semi-integer

beetle antennae search algorithm," *Applied Math*, vol. 1, n **Solution School Anathematics**

F. N. N. Katsikis and S. D. Mourtas, "Diversit

tangency portfolio under nonlinear constrain

beetle antennae search algorithm," *Applied N*

63–73, 2021.

BIBLIOGRAPHY
 EXECUTE: The pany **FEACT SET ASSOCITE:**
 FEACT SET ASSOCITED MATHEM CONTROLLED THE SET ASSOCIATE:
 FEACT ASSOCITED IN ANCHANGE THEORY SET AND AND SET ASSOCIATELY
 FEACT SET ASSOCIATELY
 FEACT SET ASSOCIATELY
 FEACT SET ASSOCIATELY 1 of Applied Mathematics

[25] V. N. Katsikis and S. D. Mourtas, "Diversification of time-varying

tangency portfolio under nonlinear constraints through semi-integer

beetle antennes esarch algorithm," *Applied Math*, v THE OF APPIFOR INTRIFFIRATES

[25] V. N. Katsikis and S. D. Mourtas, "Diversification of time-varying

tangency portfolio under nonlinear constraints through semi-integer

beetle antennae search algorithm," *Applied Math*, [25] V. N. Katsikis and S. D. Mourtas, "Diversification of time-varying
tangency portfolio under nonlinear constraints through semi-integer
beetle antennae search algorithm," *Applied Math*, vol. 1, no. 1, pp.
63–73, 2021. [25] V. N. Katsikis and S. D. Mourtas, "Diversification of time-varying
tangency portfolio under nonlinear constraints through semi-integer
beetle antennae search algorithm," *Applied Math*, vol. 1, no. 1, pp.
63–73, 2021. [25] V. N. Katsikis and S. D. Mourtas, "Diversification of time-varying
tangency portfolio under nonlinear constraints through semi-integer
beetle antennae search algorithm," *Applied Math*, vol. 1, no. 1, pp.
63–73, 2021.

BIBLIOGRAPHY

Example 12 Solution, *Replied Math*, vol. 1, no. 1, pp. 63–73, 2021.
 Zhaoying Liu is an associate professor at Wuchang University of Technology in Wuhan city of China. His research interests mainly include the develop **Example 19 SET ASSET AND THE ASSET ASSET ASSET ASSET ASSET AND THE ASSET AND THE ASSET AND THE ASSET AND THE STARD IN WHAT CHYDNET AND WHAT CHYDNET AND WHAT CHYD Example 18 SET SET SET ASSEM SET SET ASSEM SET SET AND THE SET SET SERVIDE SPECIES THE SERVIDE DURING THE SERVIDE DRIGHT AND AND SET SERVIDE DURING THE UNION THE IS a seacher at Wuchang University of Tecl Wuhan city of Ch**

Example 18 In a sexual professor at Wuchang University of Technology in Wuhan city of China. His research interests mainly include the development of robot control and service robot.
 Lang Rao is an associate professor **Fenggang Liu** is an associate professor at Wuchang University of Technology in Wuhan city of China. His research interests mainly include the development of robot control and service robot.
 Lang Rao is an associate pr Technology in Wuhan city of China. His research interests mainly include
the development of robot control and service robot.
Lang Rao is an associate professor at Wuchang University of Technology in
Wuhan city of China. the development of robot control and service robot.
 Lang Rao is an associate professor at Wuchang University of Technology in

Wuhan city of China. His research interests mainly include the development

of robot control Lang Rao is an associate professor at Wuchang University of Technology in
Wuhan city of China. His research interests mainly include the development
of robot control and human gait pattern recognition.
Zhaoyun He is a teac **Lang Rao** is an associate professor at Wuchang Univ
Wuhan city of China. His research interests mainly in
of robot control and human gait pattern recognition.
Zhaoyun He is a teacher at Wuchang University of
city of Chi of robot control and human gart pattern recognition.
 Zhaoyun He is a teacher at Wuchang University of Technology in Wuhan

city of China. His research interests mainly include the development of robot

control and human **Zhaoyun He** is a teacher at Wuchang University of Technology in Wuhan
city of China. His research interests mainly include the development of robot
control and human motion recognition.
Lie Yu is an associate professor **Zhaoyun He** is a teacher at Wuchang University of Technology in Wuhan city of China. His research interests mainly include the development of robot control and human motion recognition.
 Lie Yu is an associate professor