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Abstract—This paper focuses on robust control for uncertain
discrete-time linear systems. We transform the robust control
issure into an optimal control issure for an auxiliary system.
The desired control gains are obtained by solving coupled
algebraic Riccati equations. We propose a model-free off-policy
reinforcement learning algorithm that incorporates a discount
factor to get an approximate solution to the equation, using only
measured data and eliminating the need for information about
system dynamics. This algorithm requires adding probing noise
to control inputs to maintain persistent excitation condition.
We show that the probing noise does not introduce bias in
the solution of the Bellman equation. The effectiveness of the
proposed algorithm is verified through a simulation example,
which analyzes the impact of the discount factor and the
probing noise.

Index Terms—Reinforcement learning, discount factor, model
free control, off-policy algorithm, parameter uncertainty.

I. INTRODUCTION

D ISCRETE-TIME linear systems (DLSs) are typical
control systems that process signals sampled at dis-

crete intervals, as opposed to continuously evolving signals.
These systems often use difference equations and state space
equations to describe their mathematical models. They are
widely used in digital signal processing, control theory,
communication systems, and computer science [1]–[4].

Uncertainty exists widely in actual control systems, which
can result in system performance degradation and, in extreme
cases, system instability [5]–[10]. Over the past few decades,
many robust control methods have been proposed to guaran-
tee the performance of uncertain DLSs. For example, De
Souza and Coutinho [11] examined periodic DLSs subject
to delay state and polyhedral parameter uncertainty and
proposed a criterion for robust stability. Morais et al. [12]
focuses on Markov jump DLSs with uncertain transition
probabilities and develops a reduced-order dynamic compen-
sation control scheme. Marcela et al. [13] dealt with guaran-
teed cost control of DLSs with uncorrelated block diagonal
structural parameter uncertainty and developed conditions for
state feedback and output feedback, respectively. Recently,
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Jiang et al. [14] studied the consensus of uncertain DLS
modelling multi-agent systems and proposed two distributed
adaptive control algorithms.

The methods presented in [11]–[14] rely on accurate
system models. However, accurate mathematical models are
difficult to obtain in practical situations, limiting the use
of these methods. Thanks to the advantages of machine
learning, model-free reinforcement learning (RL) methods
for solving robust control problems of uncertain DLSs have
become a widely discussed topic in the control community.
Typical model-free RL methods are divided into on-policy
RL and off-policy RL methods. Unlike on-policy RL meth-
ods, off-policy RL methods can learn from a wider data dis-
tribution and generally exhibit higher sample efficiency [15].
Taking this into consideration, Yang et al. [16] explored the
robust stabilization of DLSs with bounded and mismatched
uncertainty, proposing a model-free off-policy RL method
that does not require knowledge of system dynamics.

In this paper, we investigate the issue of RL-based robust
control for DLSs with mismatching uncertainty. Unlike the
work of [16], we introduce a discount factor into the cost
function to speed up learning and reduce control costs.
We transform the robust control problem into an optimal
control problem by constructing an auxiliary system. Then,
we propose a model-free off-policy RL algorithm to solve
the optimal control problem, incorporating probing noise and
the least-squares method. It is theoretically proven that the
probing noise does not bias the solution after introducing the
discount factor. Finally, we validate the proposed theoretical
results through several simulation examples.

The rest of this paper is organized as follows: In Section
II, the relevant description of the uncertain DLSs is given,
and the robust control problem is transformed into an optimal
control problem by constructing auxiliary systems. In Section
III, the model-free off-policy RL method for solving the
optimal control problem of auxiliary system is introduced,
and the effect of probing noise on this method is investigated.
In Section IV, simulation results under different discount
factors and different probing noise are given to verify the
impact of the discount factor and the probing noise.

II. PRELIMINARIES

A. Uncertain System

In this paper, a class of uncertain DLSs is expressed by
the following equation as [17]:

xk+1 = [A+∆A(p)]xk +Buk (1)
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with the nominal system

xk+1 = Axk +Buk (2)

where xk ∈ Rn is the state, uk ∈ Rm is the control input.
A ∈ Rn×n and B ∈ Rn×m are system parameters and are
constant matrices. ∆A(p) ∈ Rn×n is an unknown matrix,
which represents the uncertainty of the system through
bounded variation of p. The parameter p belongs to a preset
bounded set Ω.

System uncertainty can be classified into two types,
matching uncertainty and mismatching uncertainty [17]. The
uncertainty in the system is matching uncertainty when the
uncertainty matrix ∆A(p) can be expressed as

∆A(p) = BϕA(p), ∀p ∈ Ω (3)

where ϕA(p) is an uncertain perturbation related to parameter
p. For mismatching uncertainty, ∆A(p) cannot be repre-
sented in the form of (3). Moreover, mismatching uncertainty
can be decomposed into two parts, such as

∆A(p) = SϕA(p)

= BB+SϕA(p) + (I −BB+)SϕA(p), ∀p ∈ Ω
(4)

where BB+SϕA(p) is matched and (I − BB+)SϕA(p)
is mismatched. In equation (4), B+ = (B⊤B)−1B⊤ is the
pseudo-inverse of the matrix B [18], S ̸= B, S is the known
matrix, ∆A(p) is the uncertain perturbation. The perturbation
ϕA(p) is upper bounded by positive semide-finite matrix F
and defined as

ε−1ϕTA(p)ϕA(p) ≤ F, ∀p ∈ Ω (5)

where ε is a positive constant. To effectively control system
(1), it is necessary to pose the following robust control issure.

B. Robust Control Issure

The robust control issure can be formulated as finding a
suitable control law uk = Kxk in terms of state feedback
[19]–[24] so that the uncertain system

xk+1 = (A+BK)xk +∆A(p)xk (6)

can be asymptotically stable for ∀p ∈ Ω.
To design a robust control law uk = Kxk that can

make system (1) asymptotically stable, we can construct an
auxiliary system by introducing additional term Dvk, thereby
converting the robust control issure into an optimal control
issure. We can then use optimal control methods to solve for
the feedback gain K. The auxiliary system can be obtained
[16] as

xk+1 = Axk +Buk +Dvk (7)

where D = α(I − BB+)S ∈ Rn×r and α is a positive
constant.

Remark 1. Based on the discussion above, robust control
issure for uncertain system (1) can be transformed as an
optimal control issure for an auxiliary system (7). The control
input uk in auxiliary system (7) directly affects uncertain
system (1). It is important to note that the control input vk
only appears in auxiliary system (7) and does not directly
influence uncertain system (1). In fact, vk can be regarded
as a virtual input.

C. Optimal Control Approach

In this subsection, we apply the optimal control method
to address the robust control issure for uncertain system (1).
To aid in the discussion the following definition is provided.

Definition 1. (Admissible Control) [25]: For auxiliary
system (7), the feedback control laws u(xk) and v(xk) are
admissible if the following conditions are satisfied:

1) u(xk) and v(xk) are continuous;
2) u(0) = v(0) = 0;
3) u(xk) and v(xk) can stabilize system (7).
The discount factor is crucial for balancing the weight

of current and future rewards. Existing research shows that
The more minor the discount factor, the faster the algorithm
converges and the lower the control cost [26], [27]. Motivated
by this conclusion, we introduce the discount factor into the
robust optimal control of uncertain DLSs. For system (7),
the value function can be defined as

V (xk)

=
∞∑
j=k

{x⊤j (β2I +Q+ F )xj + u⊤j R1uj + v⊤j R2vj} (8)

where Q ≥ 0, R1 > 0, R2 > 0 and β is a positive constant.
After introducing the discount factor, the discounted value
function is defined as

Vγ(xk)

=
∞∑
j=k

γj−k{x⊤j (β2I +Q+ F )xj + u⊤j R1uj + v⊤j R2vj}

(9)

where γ is the discount factor ∈ (0, 1]. When γ = 1, value
function (8) is equivalent to discount value function (9).

To simplify the equation, let Q̄ = β2I + F + Q. By (9),
under the admissible control laws uk = Kxk = and vk =
Lxk, the discounted value function is defined as

Vγ(xk) =
∞∑
j=k

γj−k
{
x⊤j Q̄xj + u⊤j R1uj + v⊤j R2vj

}
.

(10)

The goal of optimal control is to find optimal feedback
control laws

u∗k = K∗xk, v∗k = L∗xk (11)

which minimize discounted value function (10), such as

V ∗
γ (xk)

= min
uk,vk

∞∑
j=k

γj−k
{
x⊤j Q̄xj + u⊤j R1uj + v⊤j R2vj

}
. (12)

Transform the expression of discounted value function (10)
into

Vγ(xk) =
∞∑

j=k+1

γj−k{x⊤j Q̄xj + u⊤j R1uj + v⊤j R2vj}

+ x⊤k Q̄xk + u⊤k R1uk + v⊤k R2vk. (13)

Using discounted value function (13), the following Bellman
equation (BE) can be obtained

Vγ(xk) = x⊤k Q̄xk + u⊤k R1uk + v⊤k R2vk + γVγ(xk+1)
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= x⊤k Pxk. (14)

Then, BE (14) is equivalent to

Vγ(xk) = x⊤k Q̄xk + u⊤k R1uk + v⊤k R2vk

+ γx⊤k+1Pxk+1. (15)

Therefore, the Hamiltonian function of system (7) is defined
as

H(xk, uk, vk) = x⊤k Q̄xk + u⊤k R1uk + v⊤k R2vk

+ γx⊤k+1Pxk+1 − x⊤k Pxk (16)

Based on [25], optimal control laws u∗k and v∗k satisfies the
following conditions

H(xk, uk, vk)

∂uk
= 0,

H(xk, uk, vk)

∂vk
= 0 (17)

which are equivalent to[
R1 + γB⊤PD γB⊤PD
γD⊤PB R2 + γD⊤PD

][
u∗k
v∗k

]
=−γ

[
B⊤PA
D⊤PA

]
xk.

(18)

Define the following variables:

ξ = B⊤PA

ϱ = D⊤PA

S =

[
S11 S12

S21 S22

]
=

[
R1 +B⊤PB γB⊤PD
γD⊤PB R2 + γD⊤PD

]
.

Then, u∗k and v∗k can be expressed as[
u∗k
v∗k

]
= −S−1

[
ξ
ϱ

]
xk. (19)

Let

Z = S−1 =

[
Z11 Z12

Z21 Z22

]
. (20)

Then, according to the matrix inversion lemma [18], each
component of the matrix can be expressed as

Z11 =
(
S11 − S12S

−1
22 S21

)−1

Z12 = −
(
S11 − S12S

−1
22 S21

)−1
S12S

−1
22

Z21 = −
(
S22 − S21S

−1
11 S12

)−1
S21S

−1
11

Z22 =
(
S22 − S21S

−1
11 S12

)−1
.

The optimal control laws can be expressed as (11), where
K∗ and L∗ satisfy

K∗ = − (Z11ξ + Z12ϱ) , (21)
L∗ = − (Z21ξ + Z22ϱ) , (22)

which are equivalent to

K∗ = − [R1 + γB⊤PB − γ2B⊤PDθ−1
2 D⊤PB]−1

× [γB⊤PA− γ2B⊤PDθ−1
2 D⊤PA] (23)

L∗ = − [R2 + γD⊤PD − γ2D⊤PBθ−1
1 B⊤PD]−1

× [γD⊤PA− γ2D⊤PBθ−1
1 B⊤PA] (24)

respectively, and θ1 = R1+ γB
⊤PB, θ2 = R2+ γD

⊤PD.
According to equation (17), control laws u∗k and v∗k satisfy

0 = min
uk,vk

H (xk, uk, vk) = H(xk, u
∗
k, v

∗
k)

which can be written as

0 =

[
u∗k
v∗k

]⊤ [
R1 + γB⊤PB γB⊤PD
γD⊤PB R2 + γD⊤PD

] [
u∗k
v∗k

]
+

[
u∗k
v∗k

]⊤ [
γB⊤PA
γD⊤PA

]
xk + x⊤k

[
γB⊤PA
γD⊤PA

]⊤ [
u∗k
v∗k

]
+ x⊤k (γA

⊤PA− P )xk + x⊤k Q̄xk. (25)

Substituting (19) into (25) yields

0 =

[
ξ
ϱ

]⊤
Z⊤

[
R1 + γB⊤PB γB⊤PD
γD⊤PB R2 + γD⊤PD

]
Z

[
ξ
ϱ

]
−

[
ξ
ϱ

]⊤
Z⊤

[
γB⊤PA
γD⊤PA

]
−

[
γB⊤PA
γD⊤PA

]⊤
Z

[
ξ
ϱ

]
+ γA⊤PA− P + Q̄. (26)

Substituting (21) and (22) into (26) yields

0 =

[
K∗

L∗

]⊤ [
R1 + γB⊤PB γB⊤PD
γD⊤PB R2 + γD⊤PD

] [
K∗

L∗

]
+

[
K∗

L∗

]⊤ [
γB⊤PA
γD⊤PA

]
+

[
γB⊤PA
γD⊤PA

]⊤ [
K∗

L∗

]
+ γA⊤PA− P + Q̄ (27)

with K∗ defined as in (23) and L∗ defined as in (24).
Equation (27) represents the coupled algebraic Riccati

equations (CARE). In this section, by constructing auxiliary
system (7), the robust control issure of finding appropriate
feedback gain K is transformed into an optimal control issure
of finding optimal feedback gains K∗ and L∗, which can be
obtained by solving CARE.

III. OFF-POLICY REINFORCEMENT LEARNING

Since CARE (27) is a nonlinear equation of P , it isn’t
easy to solve it directly. Therefore, this section proposes
a model-free off-policy RL algorithm to obtain an approx-
imate solution to P in CARE (27). This algorithm does
not require system dynamics information. Furthermore, it is
demonstrated that when probing noise is added to the control
inputs, this algorithm obtains unbiased results.

A. Model-Free Off-policy RL Algorithm

By using the off-policy RL method, system (7) is written
as

xk+1 = Akxk +B(uk −Kjxk) +D(vk − Ljxk) (28)

where Ak = A+BKj+DLj . In equation (28), ujk = Kjxk
and vjk = Ljxk are iterative control policies, and uk and vk
are behavior policies.
During the iterative process, BE (14) can be expressed as

x⊤k+1P
j+1xk+1 =x⊤k Q̄xk + (uj+1

k )⊤R1u
j+1
k

+ (vj+1
k )⊤R2v

j+1
k + γx⊤k+1P

j+1xk+1

(29)

and the discounted value function can be expressed as

V j+1
γ (xk+1) = x⊤k P

j+1xk. (30)
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Using (28), (29) and (30), BE (14) can be expressed as

V j+1
γ (xk)− γV j+1

γ (xk+1)

= −γx⊤k A⊤
k P

j+1Akxk + x⊤k P
j+1xk

− γ(uk −Kjxk)
⊤B⊤P j+1xk+1

− γ(uk −Kjxk)
⊤B⊤P j+1Akxk

− γ(vk − Ljxk)
⊤D⊤P j+1xk+1

− γ(vk − Ljxk)
⊤D⊤P j+1Akxk. (31)

Using (30) and (31), one can obtain the off-policy BE

x⊤k P
j+1xk − γx⊤k+1P

j+1xk+1

= x⊤k Q̄xk + x⊤k (K
j)⊤P j+1Kjxk

+ x⊤k (L
j)⊤P j+1Ljxk

− γ(uk −Kjxk)
⊤B⊤P j+1xk+1

− γ(uk −Kjxk)
⊤B⊤P j+1Akxk

− γ(vk − Ljxk)
⊤D⊤P j+1xk+1

− γ(vk − Ljxk)
⊤D⊤P j+1Akxk. (32)

The value of P j+1 is solved by off-policy BE (32), and then
the iterative control policies are updated as

uj+1
k = Kj+1xk

= (R1 + γB⊤P j+1B

− γ2B⊤P j+1Dθ−1
2 D⊤P j+1B)−1

× (γB⊤P j+1A

− γ2B⊤P j+1Dθ−1
2 D⊤P j+1A)xk (33)

vj+1
k = Lj+1xk

= (R2 + γD⊤P j+1D

− γ2D⊤P j+1Bθ−1
2 B⊤P j+1D)−1

× (γD⊤P j+1A

− γ2D⊤P j+1Bθ−1
2 B⊤P j+1A)xk. (34)

Based on the Kronecker product, off-policy BE (32) can
be written as

(x⊤k ⊗ x⊤k )vec(P
j+1)− γ(x⊤k+1 ⊗ x⊤k+1)vec(P

j+1)

+ 2γ[(uk −Kjxk)
⊤ ⊗ x⊤k ]vec(B

⊤P j+1A)

+ γ[(uk −Kjxk)
⊤ ⊗ (uk +Kjxk)

⊤]vec(B⊤P j+1B)

+ γ[(uk −Kjxk)
⊤ ⊗ (vk + Ljxk)

⊤]vec(B⊤P j+1D)

+ 2γ[(vk − Ljxk)
⊤ ⊗ x⊤k ]vec(D

⊤P j+1A)

+ γ[(vk − Ljxk)
⊤ ⊗ (uk +Kjxk)

⊤]vec(D⊤P j+1B)

+ γ[(vk − Ljxk)
⊤ ⊗ (vk + Ljxk)

⊤]vec(D⊤P j+1D)

= x⊤k Q̄xk + x⊤k (K
j)⊤R1K

jxk + x⊤k (L
j)⊤R2L

jxk (35)

which is a scalar equation with n2+m2+r2+2mr+n(m+r)
unknown parameters. This means that at least n2+m2+r2+
2mr+ n(m+ r) data are required to solve iteratively using
least squares (LS). Given s(s > n2+m2+r2+2mr+n(m+
r)) independent system states xk,(1), xk,(2), . . . , xk,(s), one
defines

ϕj =


r(xk,(1),K

j , Lj)
r(xk,(2),K

j , Lj)
...

r(xk,(s),K
j , Lj)

 (36)

with

r(xk,(j),K
j , Lj)

= x⊤k,(j)Q̄xk,(j) + x⊤k,(j)(K
j)⊤R1K

jxk,(j)

+ x⊤k,(j)(L
j)⊤R2L

jjxk,(j)

and

ψj =


h(xx)1 h(xu)1 h(uu)1 h(xv)1 h(uv)1 h(vv)1
h(xx)2 h(xu)2 h(uu)2 h(xv)2 h(uv)2 h(vv)2

...
...

...
...

...
...

h(xx)s h(xu)s h(uu)s h(xv)s h(uv)s h(vv)s


(37)

with

h(xx)j = x⊤k,(j) ⊗ xk,(j) − γ[x⊤k,(j+1) ⊗ xk,(j+1)]

h(xu)j = 2γ[(vk − Ljxk,(j))
⊤ ⊗ x⊤k,(j)]

h(uu)j = γ[(uk −Kjxk,(j))
⊤ ⊗ (uk +Kjxk,(j))

⊤]

h(xv)j = 2γ[(vk −Kjxk,(j))
⊤ ⊗ x⊤k,(j)]

h(uv)j = γ[(vk − Ljxk,(j))
⊤ ⊗ (uk +Kjxk,(j))

⊤

+ (uk −Kjxk,(j))
⊤ ⊗ (vk + Ljxk,(j)

⊤]

h(vv)j = γ[(vk − Ljxk,(j))
⊤ ⊗ (vk + Ljxk,(j))

⊤].

Then the unknown variables are defined in the form of a
vector as

Xj+1 =
[
vec(Xj+1

1 ), vec(Xj+1
2 ), . . . , vec(Xj+1

6 )
]

(38)

with

Xj+1
1 = P j+1, Xj+1

2 = D⊤P j+1A

Xj+1
3 = D⊤P j+1B, Xj+1

4 = D⊤P j+1D

Xj+1
5 = B⊤P j+1A, Xj+1

6 = B⊤P j+1B.

Finally, off-policy BE (32) can be formulated by Kronecker
product as

ψjXj+1 = ϕj+1. (39)

Thus, the LS solution is given by

Xj+1 = ((ψj)⊤ψ)−1(ψj)⊤ϕj . (40)

Based on the LS solution Xj+1 in (40), the iterative control
policies Kj+1 and Lj+1 can be obtained as

Kj+1 = − [R1 +Xj+1
6 +Xj+1

3 (R2 +Xj+1
4 )−1Xj+1

3 ]−1

× [Xj+1
5 −Xj+1

3 (R2 +Xj+1
4 )−1Xj+1

2 ] (41)

Lj+1 = − [R2 +Xj+1
4 +Xj+1

3 (R1 +Xj+1
6 )−1Xj+1

3 ]−1

× [Xj+1
2 −Xj+1

3 (R2 +Xj+1
6 )−1Xj+1

5 ]. (42)

From (39), it is evident that to guarantee the uniqueness of
the solution Xj+1, the matrix ψj+1 must be full rank, which
is equivalent to satisfying the persistent excitation condition.

Definition 2. (Persistent Excitation): [28] A vector se-
quence η = [η1, η2, . . . , ηq]

⊤, where q is termed as persis-
tently exciting if there exists a constant β > 0 such that

k+l∑
i=k+1

ηiη
⊤
i ≥ βI (43)

and if q < l, condition (43) does not hold.
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Algorithm 1: Model-Free Off-Policy RL Algorithm

1 Set admissible behavior policies ûk and v̂k.
2 Initialize the iteration number j to 0.
3 Initialize the iteration policies u0k = uk and v0k = vk.
4 Initialize the predetermined error bounds δ1 and δ2.

for j do
5 Solve Xj+1 by LS equation (40).
6 Update iteration feedback gain Kj+1 using (41).
7 Update iteration feedback gain Lj+1 using (42).
8 if

∥∥Kj+1 −Kj
∥∥ < δ1 and

∥∥Lj+1 − Lj
∥∥ < δ2

then
9 Stop.

10 else
11 j = j + 1.
12 end
13 end

To satisfy the persistent excitation condition, probing noise
must be added into the control inputs [29]. In this case, the
behavior policies uk and vk become

ûk = uk + ek1 (44)
v̂k = vk + ek2 (45)

where ek1 and ek2 are probing noise. Based on the above
discussion, at the end of this subsection, the model-free off-
policy RL algorithm is shown in Algorithm 1.

B. Effect of Probing Noise

This subsection will show that the addition of probing
noise does not bias the solution when solving off-policy BE
(32).

Theorem 1. Set P j+1 is the solution of off-policy BE (32)
without adding probing noise, and P̂ j+1 is the solution of
off-policy BE (32) with probing noise. Then P j+1 = P̂ j+1.

Proof: Off-policy BE (32) for control inputs ûk and v̂k
is

x⊤k P̂
j+1xk − γ(Akxk +B(ûk −Kjxk)

+D(v̂k − Ljxk))
⊤

× P̂ j+1(Akxk +B(ûk −Kjxk) +D(v̂k − Ljxk))

= x⊤k Q̄xk + x⊤k (K
j)⊤P̂ j+1Kjxk + x⊤k (L

j)⊤P̂ j+1Ljxk

− γ(ûk −Kjxk)
⊤B⊤P̂ j+1

× (Akxk +B(ûk −Kjxk) +D(v̂k − Ljxk))

− γ(ûk −Kjxk)
⊤B⊤P̂ j+1Akxk

− γ(v̂k − Ljxk)
⊤D⊤P̂ j+1

× (Akxk +B(uk −Kjxk) +D(v̂k − Ljxk))

− γ(v̂k − Ljxk)
⊤D⊤P̂ j+1Akxk. (46)

Substituting (44) and (45) into (46) yields

x⊤k P̂
j+1xk − γ(Akxk +B(uk + ek1 −Kjxk)

+D(vk + ek2 − Ljxk))
⊤P̂ j+1

× (Akxk +B(uk + ek1 −Kjxk)

+D(vk + ek2 − Ljxk))

= x⊤k Q̄xk + x⊤k (K
j)⊤P̂ j+1Kjxk

+ x⊤k (L
j)⊤P̂ j+1Ljxk

− γ(uk + ek1 −Kjxk)
⊤B⊤P̂ j+1

× (Akxk +B(uk + ek1 −Kjxk)

+D(vk + ek2 − Ljxk))

− γ(uk + ek1 −Kjxk)
⊤B⊤P̂ j+1Akxk

− γ(vk + ek2 − Ljxk)
⊤D⊤P̂ j+1

× (Akxk +B(uk + ek1 −Kjxk)

+D(vk + ek2 − Ljxk))

− γ(vk + ek2 − Ljxk)
⊤D⊤P̂ j+1Akxk. (47)

Substituting (28) into (47) yields

x⊤k P̂
j+1xk − γ(xk+1 +Bek1 +Dek2)

⊤

× P̂ j+1(xk+1 +Bek1 +Dek2)

= x⊤k Q̄xk + x⊤k (K
j)⊤P̂ j+1Kjxk

+ v⊤k (L
j)⊤P̂ j+1Ljvk

− γ(uk + ek1 −Kjxk)
⊤B⊤P̂ j+1

× (xk+1 +Bek1 +Dek2)

− γ(uk + ek1 −Kjxk)
⊤B⊤P̂ j+1Akxk

− γ(vk + ek2 − Ljxk)
⊤D⊤P̂ j+1

× (xk+1 +Bek1 +Dek2)

− γ(vk + ek2 − Ljxk)
⊤D⊤P̂ j+1Akxk. (48)

Expanding the terms on both sides of (48) yields

x⊤k P̂
j+1xk − γx⊤k+1P̂

j+1xk+1

− 2γxk+1P̂
j+1(Bek1 +Dek2)

− γ(Bek1 +Dek2)
⊤P̂ j+1(Bek1 +Dek2)

= x⊤k Q̄xk + x⊤k (K
j)⊤P̂ j+1Kjxk

+ x⊤k (L
j)⊤P̂ j+1Ljxk

− γ(uk −Kjxk)
⊤B⊤P̂ j+1xk+1

− γ(uk −Kjxk)
⊤B⊤P̂ j+1(Bek1 +Dek2)

− γe⊤k1B
⊤P̂ j+1xk+1

− γe⊤k1B
⊤P̂ j+1(Bek1 +Dek2)

− γ(uk −Kjxk)
⊤B⊤P̂ j+1Akxk

− γe⊤k1B
⊤P̂ j+1Akxk

− γ(vk − Ljxk)
⊤D⊤P̂ j+1xk+1

− γ(vk − Ljxk)
⊤B⊤P̂ j+1(Bek1 +Dek2)

− γe⊤k2D
⊤P̂ j+1xk+1

− γe⊤k2D
⊤P̂ j+1(Bek1 +Dek2)

− γ(vk − Ljxk)
⊤D⊤P̂ j+1Akxk

− γe⊤k2D
⊤P̂ j+1Akxk. (49)

Substituting (32) into (49) and then eliminating the common
terms yields

x⊤k+1P̂
j+1(Bek1 +Dek2)

= (uk −Kjxk)
⊤B⊤P̂ j+1(Bek1 +Dek2)

+ x⊤k A
⊤
k P̂

j+1(Bek1 +Dek2)

+ (vk − Ljxk)
⊤D⊤P̂ j+1(Bek1 +Dek2). (50)
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Substituting (50) into (49) yields

x⊤k P̂
j+1xk − γx⊤k+1P̂

j+1xk+1

= x⊤k Q̄xk + x⊤k (K
j)⊤P̂ j+1Kjxk

+ x⊤k (L
j)⊤P̂ j+1Ljxk

− γ(uk −Kjxk)
⊤B⊤P̂ j+1xk+1

− γ(uk −Kjxk)
⊤B⊤P̂ j+1Akxk

− γ(vk − Ljxk)
⊤D⊤P̂ j+1xk+1

− γ(vk − Ljxk)
⊤D⊤P̂ j+1Akxk. (51)

Comparing (32) with (51) shows that P̂ j+1 is equal to P j+1.
This completes the proof.

Remark 2. Theorem 1 indicates that the addition of the
probing noise ek1 and ek2 did not bias the solution of P j+1

in off-policy BE (32). Through (33) and (34), it can be
concluded that the iterative control policies uj+1

k and vj+1
k

are only affected by P j+1. Therefore, the solutions of the
iterative control policies uj+1

k and vj+1
k are also unbiased.

Consequently, this off-policy RL method avoids the bias in
the solution caused by the addition of probing noise.

Remark 3. The solution of LS equation (40) is equivalent
to the solution of off-policy BE (32). Likewise, the solutions
of the iterative control policies in (41) and (42) are equivalent
to the solutions of the iterative control policies in (33) and
(34). Therefore, according to the proof of theorem 1, the
optimal control policies solved by Algorithm 1 are unbiased.

IV. SIMULATION

In this section, the proposed model-free off-policy RL
algorithm 1 is used to control the rotating inverted pendulum
model mentioned in [30]. Three cases demonstrate the impact
of the discount factor and probing noise. In Cases 1 and 2,
the magnitudes of the probing noise are varied while the
frequencies are held constant. In Case 3, the frequencies
of the probing noise are varied. Consider the discrete-time
rotating inverted pendulum model used in [30]:

xk+1 = [A+∆A(p)]xk +Buk (52)

where system matrices

A =


1.0008 0.005 0 0
0.3164 1.008 0 0
−0.0004 0 1 0.005
−0.1666 −0.0004 0 1


B =

[
−0.0065 −2.6043 0.0101 4.0210

]⊤
.

The uncertainty in the system is defined as

∆A(p) = SϕA(p) (53)

where

S =
[
0.0064 −2.5648 0.0101 4.0210

]⊤
ϕA (p) = p× sin(0.6k)

[
0.21 0.1 0.04 0.03

]
.

and p ∈ ±1.1. For the purpose of simulation, the value of
p is set to -0.7, satisfying condition (5). The parameter F
associated with uncertainty in (5) is selected as

F =


48.4 24.2 9.68 7.26
24.2 12.1 4.84 3.63
9.68 4.84 1.93 1.45
7.26 3.63 1.45 1.08


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Fig. 1. Case 1: Convergence of K and L in off-policy RL .
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Fig. 2. Case 1: Auxiliary system state in off-policy RL.

and ε = 0.001. The parameters α in auxiliary system (7)
is designed as α = 0.02. The weighting matrices in cost
function (8) are designed as Q = I4, R1 = 3, R2 = 4 and
β = 1. The predetermined error bounds are set as δ1 =
δ2 = 0.0001. The initial state of the system is set to x0 =[
2 −10 8 10

]⊤
. The exact solution of P ∗ with γ = 1

is

P ∗ = 104 ×


1.6980 0.2437 0.1305 0.1532
0.2437 0.0445 0.0266 0.0277
0.1305 0.0266 0.0577 0.0169
0.1532 0.0277 0.0169 0.0176


and the optimal feedback gains with γ = 1 are

K∗ =
[
3.7579 0.7596 0.2207 0.2437

]
L∗ = −

[
1.2667 0.1885 0.1223 0.1193

]
.

First, the off-policy RL algorithm will be used to solve the
optimal feedback gains. The admissible behavior policies of
this algorithm are designed as

K =
[
4.1705 0.7643 0.1679 0.2305

]
L =

[
15.6834 2.4478 1.5514 1.5536

]
.

200 data samples will be collected at each iteration to solve
LS equation (40). The following simulation examples will be
provided. During the learning process from Case 1 to Case
3, probing noise persists until the 3000th step.
Case 1 : The probing noise is considered as

ek1 = cos(0.5k) + cos(2k) + cos(10k)

ek2 = sin(1.7k) + sin(k).
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Fig. 3. Case 2: Convergence of K and L in off-policy RL.
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Fig. 4. Case 2: Auxiliary system state in off-policy RL.

Fig. 1 shows the norms of the learning error of iterative
feedback gains (Kj and Lj) and optimal feedback gains
(K∗ and L∗) with different discount factors during the
learning process when the probing noise is Case 1. When
the discount factors are 0.98, 0.99, and 1, respectively, the
number of iterations in the learning process is 5, 6, and
9, respectively. Fig. 2 shows the state of auxiliary system
(7) with the admissible control policies applied during the
learning process. It can be seen that the iterative control
policies make all system states go to 0.
Case 2 : The probing noise is considered as

ek1 = 2cos(0.5k) + 2cos(2k) + 2cos(10k)

ek2 = 2sin(1.7k) + 2sin(k).

Fig. 3 shows the norms of the learning error of iterative
feedback gains (Kj and Lj) and optimal feedback gains
(K∗ and L∗) with different discount factors during the
learning process when the probing noise is Case 2. When
the discount factors are 0.98, 0.99, and 1, respectively, the
number of iterations in the learning process is 5, 9, and
13, respectively. Fig. 4 shows the state of auxiliary system
(7) with the admissible control policies applied during the
learning process. It can be seen that the iterative control
policies make all system states go to 0.
Case 3 : The probing noise is considered as

ek1 = cos(1.5k) + cos(k) + cos(2k)

ek2 = sin(3k) + sin(2k).
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Fig. 5. Case 3: Convergence of K and L in off-policy RL .
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Fig. 6. Case 3: Auxiliary system state in off-policy RL.
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Fig. 7. The value function with different discount factors.

Fig. 5 shows the norms of the learning error of iterative
feedback gains (Kj and Lj) and optimal feedback gains
(K∗ and L∗) with different discount factors during the
learning process when the probing noise is Case 3. When
the discount factors are 0.98, 0.99, and 1, respectively, the
number of iterations in the learning process is 5, 7, and
16, respectively. Fig. 6 shows the state of auxiliary system
(7) with the admissible control policies applied during the
learning process. It can be seen that the iterative control
policies make all system states go to 0.

In the next, the approximate optimal feedback control gain
K∗ obtained using the model-free off-policy algorithm 1
with different discount factors is used to solve the robust
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Fig. 8. Uncertian system state with γ = 0.98.
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Fig. 9. Uncertian system state with γ = 0.99.

0 200 400 600 800 1000

Time Step

-15

-10

-5

0

5

10

15

20

=
1
.0

0

Fig. 10. Uncertian system state with γ = 1.

control problem of uncertain system (52). Fig. 7 shows the
convergence process of value functions during the learning
process with different discount factors. Figs. 8–10 show the
system state trajectories with different discount factors.

V. CONCLUSION

This paper proposed a model-free off-policy RL algorithm
incorporating a discount factor to solve robust control issure
of uncertain DLSs using only measured data. By building an
auxiliary system, the robust control issure was transformed
into an optimal control issure and then solved using the
proposed algorithm. Theoretically, it was proved that this
algorithm did not produce biased results after adding prob-
ing noise. Additionally, this algorithm converged faster and

incurred lower control costs. Finally, a simulation example
verified the effectiveness of the proposed algorithm.
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