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Abstract—The first and second general multiplicative Zagreb
indices are modified versions of the well-known Zagreb indices.
In this paper, we determine the extremal values of the first
and second general multiplicative Zagreb indices among all n-
vertex (chemical) trees, (chemical) unicyclic graphs, (chemical)
bicyclic graphs, (chemical) tricyclic graphs, (chemical) tetra-
cyclic graphs and (chemical) pentacyclic graphs.

Index Terms—General multiplicative Zagreb indices, Ex-
tremal graph, Chemical graph.

I. INTRODUCTION

IN this paper, just simple connected graphs are considered.
For such a graph G, we represent the sets of vertices and

edges by V (G) and E(G), respectively. Let us use dG(x)
(or simply d(x) ) to denote the degree of vertex x in G. The
notation nk(G) (nk for short) denotes the number of vertices
with degree k in G. Let G− xy and G+ xy be the graphs
obtained from G by deleting the edge xy ∈ E(G) and by
adding the edge xy /∈ E(G) (x, y ∈ V (G)), respectively. A
graph G of order n is called a tree, unicyclic graph, bicyclic
graph, tricyclic graph, tetracyclic graph, pentacyclic graph, if
it has n−1+r edges such that r = 0, 1, 2, 3, 4, 5, respectively.
For other terminologies and notations not defined here,
readers can refer to [8].

In mathematical chemistry and chemical graph theory, the
topological indices are one of the useful tools to characterize
the physical or chemical properties of molecules, and they
play a significant role in pharmacology, chemistry, etc. (see
[14], [15], [24]). The famous Zagreb indices, first introduced
by Gutman and Trinajstić [17], are used to examine the
structure dependence of total π-electron energy on molecular
orbital. The first and second Zagreb indices (denoted by M1

and M2) of a graph G are defined as

M1(G) =
∑

x∈V (G)

d(x)2, M2(G) =
∑

xy∈E(G)

d(x)d(y).

Todeschini et al. [25] proposed two versions of Zagreb
indices which are now called the first and second multiplica-
tive Zagreb indices (denoted by Π1 and Π2), and they are
expressed as below:

Π1(G) =
∏

x∈V (G)

d(x)2,

Π2(G) =
∏

xy∈E(G)

d(x)d(y) =
∏

x∈V (G)

d(x)d(x).

Manuscript received June 25, 2024; revised September 10, 2024.
Sun is supported by the Natural Science Foundation of Shanxi Province

of China (202303021211154).
Xiaoling Sun is an associate professor of the School of Mathematics,

North University of China, Taiyuan 030051, China (e-mail: sunxiaol-
ing@nuc.edu.cn).

Jianwei Du is an associate professor of the School of Mathematics, North
University of China, Taiyuan 030051, China (Corresponding author, e-mail:
jianweidu@nuc.edu.cn).

Recently, Vetrı́k et al [22] introduced a generalized form of
the multiplicative Zagreb indices, which are named the first
and second general multiplicative Zagreb indices (denoted
by Pα1 and Pα2 ). And they are defined by

Pα1 (G) =
∏

x∈V (G)

d(x)α,

Pα2 (G) =
∏

xy∈E(G)

(d(x)d(y))α =
∏

x∈V (G)

d(x)αd(x), (1)

where α 6= 0 is a real number. In [22], the maximum and
minimum general multiplicative Zagreb indices of trees with
fixed number of vertices or branching vertices or segments
or pendant vertices were determined by Vetrı́k et al, and
the corresponding extremal trees were identified. In [9] and
[10], the extremal trees, quasi-tree graphs and quasi-unicyclic
graphs with a perfect matching, as well as the extremal
quasi-tree graphs and quasi-unicyclic graphs with given order
and number of pendant vertices with respect to general
multiplicative Zagreb indices were obtained by the authors
of this paper. For other recent mathematical investigations on
general multiplicative Zagreb indices, we refer the readers to
[1]–[3], [7], [21], [23].

A chemical (or molecular) graph is a graph G with
d(x) ≤ 4 for all x ∈ V (G). In recent years, studying
the extremal values of topological indices on chemical (or
molecular) graphs has become an important research subject
[4]–[6], [11]–[13], [18]–[20], [26]. Therefore, in this work,
we provide the first seven maximum (resp. minimum) Pα1
and the first seven minimum (resp. maximum) Pα2 of trees
or chemical trees for α > 0 (resp. for α < 0 ); the
first three maximum (resp. minimum) Pα1 and the first
three minimum (resp. maximum) Pα2 of unicyclic graphs or
chemical unicyclic graphs for α > 0 (resp. for α < 0 );
the first three maximum (resp. minimum) Pα1 and the first
three minimum (resp. maximum) Pα2 of bicyclic graphs or
chemical bicyclic graphs for α > 0 (resp. for α < 0 );
the first eight maximum (resp. minimum) Pα1 and the first
seven minimum (resp. maximum) Pα2 of tricyclic graphs for
α > 0 (resp. for α < 0 ); the first seven maximum (resp.
minimum) Pα1 and the first six minimum (resp. maximum)
Pα2 of chemical tricyclic graphs for α > 0 (resp. for α < 0
); the first four maximum (resp. minimum) Pα1 and the first
three minimum (resp. maximum) Pα2 of tetracyclic graphs
or chemical tetracyclic graphs for α > 0 (resp. for α < 0
); the first four maximum (resp. minimum) Pα1 and the first
three minimum (resp. maximum) Pα2 of pentacyclic graphs
or chemical pentacyclic graphs for α > 0 (resp. for α < 0 ).

II. PRELIMINARIES

Lemma 2.1: [10] Let l1(x) = x+c
x . Then l1(x) is strictly

decreasing in x ≥ 1, where c ≥ 1 is an integer.
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TABLE I
DEGREE DISTRIBUTIONS (DD) OF TREES WITH 2 ≤ n1 ≤ 6 AND THEIR Pα1 , Pα2

No. n6 n5 n4 n3 n2 n1 ni(i ≥ 7) Pα1 Pα2
A1 0 0 0 0 n− 2 2 0 (2n · 0.2500)α (4n · 0.0625)α

A2 0 0 0 1 n− 4 3 0 (2n · 0.1875)α (4n · 0.1055)α

A3 0 0 1 0 n− 5 4 0 (2n · 0.1250)α (4n · 0.2500)α

A4 0 0 0 2 n− 6 4 0 (2n · 0.1406)α (4n · 0.1780)α

A5 0 1 0 0 n− 6 5 0 (2n · 0.0781)α (4n · 0.7629)α

A6 0 0 1 1 n− 7 5 0 (2n · 0.0938)α (4n · 0.4219)α

A7 0 0 0 3 n− 8 5 0 (2n · 0.1055)α (4n · 0.3003)α

A8 1 0 0 0 n− 7 6 0 (2n · 0.0469)α (4n · 2.8477)α

A9 0 1 0 1 n− 8 6 0 (2n · 0.0586)α (4n · 1.2875)α

A10 0 0 2 0 n− 8 6 0 (2n · 0.0625)α (4n · 1.0000)α

A11 0 0 1 2 n− 9 6 0 (2n · 0.0703)α (4n · 0.7119)α

A12 0 0 0 4 n− 10 6 0 (2n · 0.0791)α (4n · 0.5068)α

TABLE II
DD OF UNICYCLIC GRAPHS WITH n1 ≤ 2 AND THEIR Pα1 , Pα2

No. n4 n3 n2 n1 ni(i ≥ 5) Pα1 Pα2
U1 0 0 n 0 0 (2n · 1.0000)α (4n · 1.0000)α

U2 0 1 n− 2 1 0 (2n · 0.7500)α (4n · 1.6875)α

U3 1 0 n− 3 2 0 (2n · 0.5000)α (4n · 4.0000)α

U4 0 2 n− 4 2 0 (2n · 0.5625)α (4n · 2.8477)α

TABLE III
DD OF BICYCLIC GRAPHS WITH n1 ≤ 1 AND THEIR Pα1 , Pα2

No. n5 n4 n3 n2 n1 ni(i ≥ 6) Pα1 Pα2
B1 0 1 0 n− 1 0 0 (2n · 2.0000)α (4n · 64.0000)α

B2 0 0 2 n− 2 0 0 (2n · 2.2500)α (4n · 45.5625)α

B3 1 0 0 n− 2 1 0 (2n · 1.2500)α (4n · 195.3125)α

B4 0 1 1 n− 3 1 0 (2n · 1.5000)α (4n · 108.0000)α

B5 0 0 3 n− 4 1 0 (2n · 1.6875)α (4n · 76.8867)α

TABLE IV
DD OF TRICYCLIC GRAPHS WITH n1 = 0 AND THEIR Pα1 , Pα2

No. n6 n5 n4 n3 n2 n1 ni(i ≥ 7) Pα1 Pα2
D1 1 0 0 0 n− 1 0 0 (2n · 3.0000)α (4n · 1.1664×104)α

D2 0 1 0 1 n− 2 0 0 (2n · 3.7500)α (4n · 0.5273×104)α

D3 0 0 2 0 n− 2 0 0 (2n · 4.0000)α (4n · 0.4096×104)α

D4 0 0 1 2 n− 3 0 0 (2n · 4.5000)α (4n · 0.2916×104)α

D5 0 0 0 4 n− 4 0 0 (2n · 5.0625)α (4n · 0.2076×104)α

TABLE V
DD OF TRICYCLIC GRAPHS WITH n1 = 1 AND THEIR Pα1 , Pα2

No. n7 n6 n5 n4 n3 n2 n1 ni(i ≥ 8) Pα1 Pα2
D6 1 0 0 0 0 n− 2 1 0 (2n · 1.7500)α (4n · 5.1471×104)α

D7 0 1 0 0 1 n− 3 1 0 (2n · 2.2500)α (4n · 1.9683×104)α

D8 0 0 1 1 0 n− 3 1 0 (2n · 2.5000)α (4n · 1.2500×104)α

D9 0 0 1 0 2 n− 4 1 0 (2n · 2.8125)α (4n · 0.8899×104)α

D10 0 0 0 2 1 n− 4 1 0 (2n · 3.0000)α (4n · 0.6912×104)α

D11 0 0 0 1 3 n− 5 1 0 (2n · 3.3750)α (4n · 0.4921×104)α

D12 0 0 0 0 5 n− 6 1 0 (2n · 3.7969)α (4n · 0.3503×104)α

TABLE VI
DD OF TRICYCLIC GRAPHS WITH n1 = 2 AND THEIR Pα1 , Pα2

No. n8 n7 n6 n5 n4 n3 n2 n1 ni(i ≥ 9) Pα1 Pα2
D13 1 0 0 0 0 0 n− 3 2 0 (2n · 1.0000)α (4n · 26.2144×104)α

D14 0 1 0 0 0 1 n− 4 2 0 (2n · 1.3125)α (4n · 8.6858×104)α

D15 0 0 1 0 1 0 n− 4 2 0 (2n · 1.5000)α (4n · 4.6656×104)α

D16 0 0 1 0 0 2 n− 5 2 0 (2n · 1.6875)α (4n · 3.3215×104)α

D17 0 0 0 2 0 0 n− 4 2 0 (2n · 1.5625)α (4n · 3.8147×104)α

D18 0 0 0 1 1 1 n− 5 2 0 (2n · 1.8750)α (4n · 2.1094×104)α

D19 0 0 0 1 0 3 n− 6 2 0 (2n · 2.1094)α (4n · 1.5017×104)α

D20 0 0 0 0 3 0 n− 5 2 0 (2n · 2.0000)α (4n · 1.6384×104)α

D21 0 0 0 0 2 2 n− 6 2 0 (2n · 2.2500)α (4n · 1.1664×104)α

D22 0 0 0 0 1 4 n− 7 2 0 (2n · 2.5313)α (4n · 0.8304×104)α

D23 0 0 0 0 0 6 n− 8 2 0 (2n · 2.8477)α (4n · 0.5912×104)α
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TABLE VII
DD OF TETRACYCLIC GRAPHS WITH n1 = 0 AND THEIR Pα1 , Pα2

No. n8 n7 n6 n5 n4 n3 n2 n1 ni(i ≥ 9) Pα1 Pα2
E1 1 0 0 0 0 0 n− 1 0 0 (2n ·4.0000)α (4n ·4.1943×106)α

E2 0 1 0 0 0 1 n− 2 0 0 (2n ·5.2500)α (4n ·1.3897×106)α

E3 0 0 1 0 1 0 n− 2 0 0 (2n ·6.0000)α (4n ·0.7465×106)α

E4 0 0 1 0 0 2 n− 3 0 0 (2n ·6.7500)α (4n ·0.5314×106)α

E5 0 0 0 2 0 0 n− 2 0 0 (2n ·6.2500)α (4n ·0.6104×106)α

E6 0 0 0 1 1 1 n− 3 0 0 (2n ·7.5000)α (4n ·0.3375×106)α

E7 0 0 0 1 0 3 n− 4 0 0 (2n ·8.4375)α (4n ·0.2403×106)α

E8 0 0 0 0 3 0 n− 3 0 0 (2n ·8.0000)α (4n ·0.2621×106)α

E9 0 0 0 0 2 2 n− 4 0 0 (2n ·9.0000)α (4n ·0.1866×106)α

E10 0 0 0 0 1 4 n− 5 0 0 (2n ·10.1250)α (4n · 0.1329×106)α

E11 0 0 0 0 0 6 n− 6 0 0 (2n ·11.3906)α (4n ·0.0946×106)α

TABLE VIII
DD OF TETRACYCLIC GRAPHS WITH n1 = 1 AND THEIR Pα1 , Pα2

No. n9 n8 n7 n6 n5 n4 n3 n2 n1 ni(i ≥ 10) Pα1 Pα2
E12 1 0 0 0 0 0 0 n− 2 1 0 (2n ·2.2500)α (4n ·24.2138×106)α

E13 0 1 0 0 0 0 1 n− 3 1 0 (2n ·3.0000)α (4n ·7.0779×106)α

E14 0 0 1 0 0 1 0 n− 3 1 0 (2n ·3.5000)α (4n ·3.2942×106)α

E15 0 0 1 0 0 0 2 n− 4 1 0 (2n ·3.9375)α (4n ·2.3452×106)α

E16 0 0 0 1 1 0 0 n− 3 1 0 (2n ·3.7500)α (4n ·2.2781×106)α

E17 0 0 0 1 0 1 1 n− 4 1 0 (2n ·4.5000)α (4n ·1.2597×106)α

E18 0 0 0 1 0 0 3 n− 5 1 0 (2n ·5.0625)α (4n ·0.8968×106)α

E19 0 0 0 0 2 0 1 n− 4 1 0 (2n ·4.6875)α (4n ·1.0300×106)α

E20 0 0 0 0 1 2 0 n− 4 1 0 (2n ·5.0000)α (4n ·0.8000×106)α

E21 0 0 0 0 1 1 2 n− 5 1 0 (2n ·5.6250)α (4n ·0.5695×106)α

E22 0 0 0 0 1 0 4 n− 6 1 0 (2n ·6.3281)α (4n ·0.4055×106)α

E23 0 0 0 0 0 3 1 n− 5 1 0 (2n ·6.0000)α (4n ·0.4424×106)α

E24 0 0 0 0 0 2 3 n− 6 1 0 (2n ·6.7500)α (4n ·0.3149×106)α

E25 0 0 0 0 0 1 5 n− 7 1 0 (2n ·7.5938)α (4n ·0.2242×106)α

E26 0 0 0 0 0 0 7 n− 8 1 0 (2n ·8.5430)α (4n ·0.1596×106)α

TABLE IX
DD OF PENTACYCLIC GRAPHS WITH n1 = 0 AND THEIR Pα1 , Pα2

No. n10 n9 n8 n7 n6 n5 n4 n3 n2 n1 ni(i≥ 11) Pα1 Pα2
F1 1 0 0 0 0 0 0 0 n− 1 0 0 (2n ·5.0000)α (4n ·25.0000×108)α

F2 0 1 0 0 0 0 0 1 n− 2 0 0 (2n ·6.7500)α (4n ·6.5377×108)α

F3 0 0 1 0 0 0 1 0 n− 2 0 0 (2n ·8.0000)α (4n ·2.6844×108)α

F4 0 0 1 0 0 0 0 2 n− 3 0 0 (2n ·9.0000)α (4n ·1.9110×108)α

F5 0 0 0 1 0 1 0 0 n− 2 0 0 (2n ·8.7500)α (4n ·1.6085×108)α

F6 0 0 0 1 0 0 1 1 n− 3 0 0 (2n ·10.5000)α (4n ·0.8894×108)α

F7 0 0 0 1 0 0 0 3 n− 4 0 0 (2n ·11.8125)α (4n ·0.6332×108)α

F8 0 0 0 0 2 0 0 0 n− 2 0 0 (2n ·9.0000)α (4n ·1.3605×108)α

F9 0 0 0 0 1 1 0 1 n− 3 0 0 (2n ·11.2500)α (4n ·0.6151×108)α

F10 0 0 0 0 1 0 2 0 n− 3 0 0 (2n ·12.0000)α (4n ·0.4778×108)α

F11 0 0 0 0 1 0 1 2 n− 4 0 0 (2n ·13.5000)α (4n ·0.3401×108)α

F12 0 0 0 0 1 0 0 4 n− 5 0 0 (2n ·15.1875)α (4n ·0.2421×108)α

F13 0 0 0 0 0 2 1 0 n− 3 0 0 (2n ·12.5000)α (4n ·0.3906×108)α

F14 0 0 0 0 0 2 0 2 n− 4 0 0 (2n ·14.0625)α (4n ·0.2781×108)α

F15 0 0 0 0 0 1 2 1 n− 4 0 0 (2n ·15.0000)α (4n ·0.2160×108)α

F16 0 0 0 0 0 1 1 3 n− 5 0 0 (2n ·16.8750)α (4n ·0.1538×108)α

F17 0 0 0 0 0 1 0 5 n− 6 0 0 (2n ·18.9844)α (4n ·0.1095×108)α

F18 0 0 0 0 0 0 4 0 n− 4 0 0 (2n ·16.0000)α (4n ·0.1678×108)α

F19 0 0 0 0 0 0 3 2 n− 5 0 0 (2n ·18.0000)α (4n ·0.1194×108)α

F20 0 0 0 0 0 0 2 4 n− 6 0 0 (2n ·20.2500)α (4n ·0.0850×108)α

F21 0 0 0 0 0 0 1 6 n− 7 0 0 (2n ·22.7813)α (4n ·0.0605×108)α

F22 0 0 0 0 0 0 0 8 n− 8 0 0 (2n ·25.6289)α (4n ·0.0431×108)α
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TABLE X
DD OF PENTACYCLIC GRAPHS WITH n1 = 1 AND THEIR Pα1 , Pα2

No. n11 n10 n9 n8 n7 n6 n5 n4 n3 n2 n1 ni(i≥12) Pα1 Pα2
F23 1 0 0 0 0 0 0 0 0 n− 2 1 0 (2n ·2.7500)α (4n ·17.8320×109)α

F24 0 1 0 0 0 0 0 0 1 n− 3 1 0 (2n ·3.7500)α (4n ·42.1875×108)α

F25 0 0 1 0 0 0 0 1 0 n− 3 1 0 (2n ·4.5000)α (4n ·15.4968×108)α

F26 0 0 1 0 0 0 0 0 2 n− 4 1 0 (2n ·5.0625)α (4n ·11.0324×108)α

F27 0 0 0 1 0 0 1 0 0 n− 3 1 0 (2n ·5.0000)α (4n ·8.1920×108)α

F28 0 0 0 1 0 0 0 1 1 n− 4 1 0 (2n ·6.0000)α (4n ·4.5298×108)α

F29 0 0 0 1 0 0 0 0 3 n− 5 1 0 (2n ·6.7500)α (4n ·3.2249×108)α

F30 0 0 0 0 1 1 0 0 0 n− 3 1 0 (2n ·5.2500)α (4n ·6.0036×108)α

F31 0 0 0 0 1 0 1 0 1 n− 4 1 0 (2n ·6.5625)α (4n ·2.7143×108)α

F32 0 0 0 0 1 0 0 2 0 n− 4 1 0 (2n ·7.0000)α (4n ·2.1083×108)α

F33 0 0 0 0 1 0 0 1 2 n− 5 1 0 (2n ·7.8750)α (4n ·1.5009×108)α

F34 0 0 0 0 1 0 0 0 4 n− 6 1 0 (2n ·8.8594)α (4n ·1.0685×108)α

F35 0 0 0 0 0 2 0 0 1 n− 4 1 0 (2n ·6.7500)α (4n ·2.2958×108)α

F36 0 0 0 0 0 1 1 1 0 n− 4 1 0 (2n ·7.5000)α (4n ·1.4580×108)α

F37 0 0 0 0 0 1 0 2 1 n− 5 1 0 (2n ·9.0000)α (4n ·0.8062×108)α

F38 0 0 0 0 0 1 0 1 3 n− 6 1 0 (2n ·10.1250)α (4n ·0.5740×108)α

F39 0 0 0 0 0 1 0 0 5 n− 7 1 0 (2n ·11.3906)α (4n ·0.4086×108)α

F40 0 0 0 0 0 0 3 0 0 n− 4 1 0 (2n ·7.8125)α (4n ·1.1921×108)α

F41 0 0 0 0 0 0 2 1 1 n− 5 1 0 (2n ·9.3750)α (4n ·0.6592×108)α

F42 0 0 0 0 0 0 2 0 3 n− 6 1 0 (2n ·10.5469)α (4n ·0.4693×108)α

F43 0 0 0 0 0 0 1 3 0 n− 5 1 0 (2n ·10.0000)α (4n ·0.5120×108)α

F44 0 0 0 0 0 0 1 2 2 n− 6 1 0 (2n ·11.2500)α (4n ·0.3645×108)α

F45 0 0 0 0 0 0 1 1 4 n− 7 1 0 (2n ·12.6563)α (4n ·0.2595×108)α

F46 0 0 0 0 0 0 1 0 6 n− 8 1 0 (2n ·14.2383)α (4n ·0.1847×108)α

F47 0 0 0 0 0 0 0 4 1 n− 6 1 0 (2n ·12.0000)α (4n ·0.2831×108)α

F48 0 0 0 0 0 0 0 3 3 n− 7 1 0 (2n ·13.5000)α (4n ·0.2016×108)α

F49 0 0 0 0 0 0 0 2 5 n− 8 1 0 (2n ·15.1875)α (4n ·0.1435×108)α

F50 0 0 0 0 0 0 0 1 7 n− 9 1 0 (2n ·17.0860)α (4n ·0.1022×108)α

F51 0 0 0 0 0 0 0 0 9 n− 10 1 0 (2n ·19.2217)α (4n ·0.0727×108)α
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Lemma 2.2: [10] Let l2(x) = (x+c)x+c

xx . Then l2(x) is
strictly increasing in x ≥ 1, where c ≥ 1 is an integer.

��
��q ��
��qqq H1 H2x1x2 y

- ��
��q ��
��q qqH2 H1y x2 x1

G G′

A

Fig. 1. Transformation A

Transformation A: Let H1 and H2 be two graphs with
vertices x1, x2 ∈ V (H1), y ∈ V (H2) such that dH1

(x1) ≥ 2,
dH1

(x2) = 1, as shown in Fig. 1. Let G be the graph
obtained from H1 and H2 by attaching vertices x1 and y.
Set G′ = G− x1y + x2y, as shown in Fig. 1.

Lemma 2.3: Suppose G and G′ are graphs in Fig. 1, then
Pα1 (G) < Pα1 (G′), Pα2 (G) > Pα2 (G′) for α > 0, and
Pα1 (G) > Pα1 (G′), Pα2 (G) < Pα2 (G′) for α < 0.

Proof: By (1) and Lemma 2.1, Lemma 2.2, for α > 0,
we deduce that

Pα1 (G)

Pα1 (G′)
=

(dH1(x1) + 1)α

2αdH1
(x1)α

=

( dH1
(x1)+1

dH1
(x1)

2
1

)α
< 1

and

Pα2 (G)

Pα2 (G′)
=

(dH1
(x1) + 1)α(dH1

(x1)+1)

22αdH1
(x1)αdH1

(x1)

=

( (dH1
(x1)+1)

(dH1
(x1)+1)

dH1
(x1)

dH1
(x1)

22

11

)α
> 1.

Similarly, we can draw conclusions for α < 0.

III. MAIN RESULT

Lemma 3.1: [16] An n-vertex tree T belongs to one of
equivalence classes given in Table I if and only if T satisfies
the condition 2 ≤ n1(T ) ≤ 6.

Theorem 3.1: Let T ∗ be a tree of order n. For n ≥ 10,
T1 ∈ A1, T2 ∈ A2, T3 ∈ A4, T4 ∈ A3, T5 ∈ A7, T6 ∈ A6,
T7 ∈ A12 (see Table I), and T ∈ T ∗ \ {T1, T2, · · · , T7},
then Pα1 (T1) > Pα1 (T2) > Pα1 (T3) > Pα1 (T4) > Pα1 (T5) >
Pα1 (T6) > Pα1 (T7) > Pα1 (T ) and Pα2 (T1) < Pα2 (T2) <
Pα2 (T3) < Pα2 (T4) < Pα2 (T5) < Pα2 (T6) < Pα2 (T7) <
Pα2 (T ) for α > 0. Furthermore, we have Pα1 (T1) <
Pα1 (T2) < Pα1 (T3) < Pα1 (T4) < Pα1 (T5) < Pα1 (T6) <
Pα1 (T7) < Pα1 (T ) and Pα2 (T1) > Pα2 (T2) > Pα2 (T3) >
Pα2 (T4) > Pα2 (T5) > Pα2 (T6) > Pα2 (T7) > Pα2 (T ) for
α < 0.

Proof: By using Table I, for α > 0, we have Pα1 (T1) >
Pα1 (T2) > Pα1 (T3) > Pα1 (T4) > Pα1 (T5) > Pα1 (T6) >
Pα1 (T7) and Pα2 (T1) < Pα2 (T2) < Pα2 (T3) < Pα2 (T4) <
Pα2 (T5) < Pα2 (T6) < Pα2 (T7). If n1(T ) = 5 or 6, then from
the data in Table I, the result holds. If n1(T ) ≥ 7, then by
using Transformation A repeatedly, one can obtain a tree T ′

such that n1(T ′) = 6. By Lemma 2.3, Pα1 (T ′) > Pα1 (T )
and Pα2 (T ′) < Pα2 (T ) for α > 0. Moreover, by Table I,
Pα1 (T7) ≥ Pα1 (T ′) and Pα2 (T7) ≤ Pα2 (T ′) for α > 0, which
yields the result.

Similarly, the conclusions for α < 0 can be proved.
Lemma 3.2: [16] An n-vertex unicyclic graph U belongs

to one of equivalence classes given in Table II if and only if
U satisfies the condition n1(U) ≤ 2.

Theorem 3.2: Let U∗ be a unicyclic graph of order n. For
n ≥ 5, G1 ∈ U1, G2 ∈ U2, G3 ∈ U4 (see Table II), and U ∈
U∗ \ {G1, G2, G3}, then Pα1 (G1) > Pα1 (G2) > Pα1 (G3) >
Pα1 (U) and Pα2 (G1) < Pα2 (G2) < Pα2 (G3) < Pα2 (U)
for α > 0. Furthermore, we have Pα1 (G1) < Pα1 (G2) <
Pα1 (G3) < Pα1 (U) and Pα2 (G1) > Pα2 (G2) > Pα2 (G3) >
Pα2 (U) for α < 0

Proof: By using Table II, for α > 0, we have Pα1 (G1) >
Pα1 (G2) > Pα1 (G3) and Pα2 (G1) < Pα2 (G2) < Pα2 (G3). If
n1(U) = 2, then the theorem holds from the data in Table II.
If n1(U) ≥ 3, then by using Transformation A repeatedly,
one can obtain a unicyclic graph U ′ such that n1(U ′) = 2.
By Lemma 2.3, Pα1 (U ′) > Pα1 (U) and Pα2 (U ′) < Pα2 (U)
for α > 0. Moreover, by the data displayed in Table II,
Pα1 (G3) ≥ Pα1 (U ′) and Pα2 (G3) ≤ Pα2 (U ′) for α > 0,
which yields the result.

Similarly, the case of α < 0 can be proved.
Lemma 3.3: [16] An n-vertex bicyclic graph B belongs to

one of equivalence classes given in Table III if and only if
B satisfies the condition n1(B) ≤ 1.

Theorem 3.3: Let B∗ be a bicyclic graph of order n. For
n ≥ 7, G1 ∈ B2, G2 ∈ B1, G3 ∈ B5 (see Table III), and B ∈
B∗ \ {G1, G2, G3}, then Pα1 (G1) > Pα1 (G2) > Pα1 (G3) >
Pα1 (B) and Pα2 (G1) < Pα2 (G2) < Pα2 (G3) < Pα2 (B)
for α > 0. Furthermore, we have Pα1 (G1) < Pα1 (G2) <
Pα1 (G3) < Pα1 (B) and Pα2 (G1) > Pα2 (G2) > Pα2 (G3) >
Pα2 (B) for α < 0.

Proof: By using Table III, for α > 0, we have
Pα1 (G1) > Pα1 (G2) > Pα1 (G3) and Pα2 (G1) < Pα2 (G2) <
Pα2 (G3). If n1(B) = 1, then the theorem holds from the data
in Table III. If n1(B) ≥ 2, then by using Transformation
A repeatedly, one can obtain a bicyclic graph B′ such
that n1(B′) = 1. By Lemma 2.3, Pα1 (B′) > Pα1 (B) and
Pα2 (B′) < Pα2 (B) for α > 0. Moreover, by the data
displayed in Table III, Pα1 (G3) ≥ Pα1 (B′) and Pα2 (G3) ≤
Pα2 (B′) for α > 0, which yields the result.

Similarly, the results for α < 0 can be proved.
Lemma 3.4: [16] An n-vertex tricyclic graph D belongs

to one of equivalence classes given in Tables IV-VI if and
only if D satisfies the condition n1(D) ≤ 2.

Theorem 3.4: Let D∗ be a tricyclic graph of order n.
For n ≥ 11, G1 ∈ D5, G2 ∈ D4, G3 ∈ D3, G4 ∈
D12, G5 ∈ D2, G6 ∈ D11, G7 ∈ D1 or D10, G8 ∈ D23,
(see Tables IV-VI), and D ∈ D∗ \ {G1, G2, · · · , G8}, then
Pα1 (G1) > Pα1 (G2) > Pα1 (G3) > Pα1 (G4) > Pα1 (G5) >
Pα1 (G6) > Pα1 (G7) > Pα1 (G8) > Pα1 (D) for α > 0 and
Pα1 (G1) < Pα1 (G2) < Pα1 (G3) < Pα1 (G4) < Pα1 (G5) <
Pα1 (G6) < Pα1 (G7) < Pα1 (G8) < Pα1 (D) for α < 0;
For n ≥ 11, H1 ∈ D5, H2 ∈ D4, H3 ∈ D12, H4 ∈
D3, H5 ∈ D11, H6 ∈ D2, H7 ∈ D23 (see Tables IV-VI), and
D′ ∈ D∗ \ {H1, H2, · · · , H7}, then Pα2 (H1) < Pα2 (H2) <
Pα2 (H3) < Pα2 (H4) < Pα2 (H5) < Pα2 (H6) < Pα2 (H7) <
Pα2 (D′) for α > 0 and Pα2 (H1) > Pα2 (H2) > Pα2 (H3) >
Pα2 (H4) > Pα2 (H5) > Pα2 (H6) > Pα2 (H7) > Pα2 (D′) for
α < 0.

Proof: By using Tables IV-VI, for α > 0, we have
Pα1 (G1) > Pα1 (G2) > Pα1 (G3) > Pα1 (G4) > Pα1 (G5) >
Pα1 (G6) > Pα1 (G7) > Pα1 (G8) and Pα2 (H1) < Pα2 (H2) <
Pα2 (H3) < Pα2 (H4) < Pα2 (H5) < Pα2 (H6) < Pα2 (H7).
If n1(D) ≤ 2 or n1(D′) ≤ 2, we can get the results
from the data given in Tables IV-VI. If n1(D) ≥ 3 or
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n1(D′) ≥ 3, then by using Transformation A repeatedly,
one can obtain a tricyclic graph D′′ such that n1(D′′) = 2.
By Lemma 2.3, Pα1 (D′′) > Pα1 (D) and Pα2 (D′′) < Pα2 (D′)
for α > 0. Moreover, by the data displayed in Table VI,
we have Pα1 (G8) ≥ Pα1 (D′′) and Pα2 (H7) ≤ Pα2 (D′′) for
α > 0, which yields the result.

Similarly, the case of α < 0 can be proved.
Lemma 3.5: [16] An n-vertex tetracyclic graph G belongs

to one of equivalence classes given in Tables VII and VIII
if and only if G satisfies the condition n1(G) ≤ 1.

Theorem 3.5: Let G∗ be a tetracyclic graph of order n.
For n ≥ 12, G1 ∈ E11, G2 ∈ E10, G3 ∈ E9, G4 ∈ E26, (see
Tables VII and VIII), and G ∈ G∗ \ {G1, G2, G3, G4}, then
Pα1 (G1) > Pα1 (G2) > Pα1 (G3) > Pα1 (G4) > Pα1 (G) for
α > 0 and Pα1 (G1) < Pα1 (G2) < Pα1 (G3) < Pα1 (G4) <
Pα1 (G) for α < 0; For n ≥ 12, H1 ∈ E11, H2 ∈ E10, H3 ∈
E26 (see Tables VII and VIII), and G′ ∈ G∗ \{H1, H2, H3},
then Pα2 (H1) < Pα2 (H2) < Pα2 (H3) < Pα2 (G′) for α > 0
and Pα2 (H1) > Pα2 (H2) > Pα2 (H3) > Pα2 (G′) for α < 0.

Proof: By using Tables VII and VIII, for α > 0, we have
Pα1 (G1) > Pα1 (G2) > Pα1 (G3) > Pα1 (G4) and Pα2 (H1) <
Pα2 (H2) < Pα2 (H3). If n1(G) ≤ 1 or n1(G′) ≤ 1, we can
get the results from the data given in Tables VII and VIII.
If n1(G) ≥ 2 or n1(G′) ≥ 2, then by using Transformation
A repeatedly, one can obtain a tetracyclic graph G′′ such
that n1(G′′) = 1. By Lemma 2.3, Pα1 (G′′) > Pα1 (G)
and Pα2 (G′′) < Pα2 (G′) for α > 0. Moreover, by the
data displayed in Table VIII, Pα1 (G4) ≥ Pα1 (G′′) and
Pα2 (H3) ≤ Pα2 (G′′) for α > 0, which yields the result.

Similarly, the results for α < 0 can be proved.
Lemma 3.6: [16] An n-vertex pentacyclic graph H belongs

to one of equivalence classes given in Tables IX and X if
and only if H satisfies the condition n1(H) ≤ 1.

Theorem 3.6: Let H∗ be a pentacyclic graph of order n.
For n ≥ 16, G1 ∈ F22, G2 ∈ F21, G3 ∈ F20, G4 ∈ F51, (see
Tables IX and X), and H ∈ H∗ \ {G1, G2, G3, G4}, then
Pα1 (G1) > Pα1 (G2) > Pα1 (G3) > Pα1 (G4) > Pα1 (H) for
α > 0 and Pα1 (G1) < Pα1 (G2) < Pα1 (G3) < Pα1 (G4) <
Pα1 (H) for α < 0; For n ≥ 12, H1 ∈ F22, H2 ∈ F21, H3 ∈
F51 (see Tables IX and X), and H ′ ∈ H∗ \ {H1, H2, H3},
then Pα2 (H1) < Pα2 (H2) < Pα2 (H3) < Pα2 (H ′) for α > 0
and Pα2 (H1) > Pα2 (H2) > Pα2 (H3) > Pα2 (H ′) for α < 0.

Proof: By using Tables IX and X, for α > 0, we have
Pα1 (G1) > Pα1 (G2) > Pα1 (G3) > Pα1 (G4) and Pα2 (H1) <
Pα2 (H2) < Pα2 (H3). If n1(H) ≤ 1 or n1(H ′) ≤ 1, we can
get the results from the data given in Tables IX and X. If
n1(H) ≥ 2 or n1(H ′) ≥ 2, then by using Transformation
A repeatedly, one can obtain a pentacyclic graph H ′′ such
that n1(H ′′) = 1. By Lemma 2.3, Pα1 (H ′′) > Pα1 (H) and
Pα2 (H ′′) < Pα2 (H ′) for α > 0. Moreover, by the data
displayed in Table X, Pα1 (G4) ≥ Pα1 (H ′′) and Pα2 (H3) ≤
Pα2 (H ′′) for α > 0, which yields the result.

Similarly, the case of α < 0 can be proved.

IV. COROLLARIES

Remark 4.1: For any extremal graphs in Theorems 3.1-3.3,
3.5 and 3.6, the maximum degree of these extremal graphs
is less than or equal to 4, so Theorems 3.1-3.3, 3.5 and 3.6
hold for chemical tree, chemical unicyclic graph, chemical
bicyclic graph, chemical tetracyclic graph and chemical
pentacyclic graph, respectively.

Note that for D ∈ D1 or D2 in Table IV, D is not
a chemical tricyclic graph, by Theorem 3.4, we have the
following theorem.

Theorem 4.2: Let D∗ be a chemical tricyclic graph of
order n. For n ≥ 11, G1 ∈ D5, G2 ∈ D4, G3 ∈
D3, G4 ∈ D12, G5 ∈ D11, G6 ∈ D10, G7 ∈ D23, (see
Tables IV-VI), and D ∈ D∗ \ {G1, G2, · · · , G7}, then
Pα1 (G1) > Pα1 (G2) > Pα1 (G3) > Pα1 (G4) > Pα1 (G5) >
Pα1 (G6) > Pα1 (G7) > Pα1 (D) for α > 0 and Pα1 (G1) <
Pα1 (G2) < Pα1 (G3) < Pα1 (G4) < Pα1 (G5) < Pα1 (G6) <
Pα1 (G7) < Pα1 (D) for α < 0; For n ≥ 11, H1 ∈ D5, H2 ∈
D4, H3 ∈ D12, H4 ∈ D3, H5 ∈ D11, H6 ∈ D23 (see
Tables IV-VI), and D′ ∈ D∗ \ {H1, H2, · · · , H6}, then
Pα2 (H1) < Pα2 (H2) < Pα2 (H3) < Pα2 (H4) < Pα2 (H5) <
Pα2 (H6) < Pα2 (D′) for α > 0 and Pα2 (H1) > Pα2 (H2) >
Pα2 (H3) > Pα2 (H4) > Pα2 (H5) > Pα2 (H6) > Pα2 (D′) for
α < 0.

Note that Π1(G) = P 2
1 (G) and Π2(G) = P 1

2 (G) for a
(chemical) graph G, by Theorems 3.1-3.6, Theorem 4.2 and
Remark 4.1, one can derive the following corollaries.

Corollary 4.1: Let T ∗ be a tree or a chemical tree of
order n. For n ≥ 10, T1 ∈ A1, T2 ∈ A2, T3 ∈ A4, T4 ∈
A3, T5 ∈ A7, T6 ∈ A6, T7 ∈ A12 (see Table I), and
T ∈ T ∗ \ {T1, T2, · · · , T7}, then Π1(T1) > Π1(T2) >
Π1(T3) > Π1(T4) > Π1(T5) > Π1(T6) > Π1(T7) > Π1(T )
and Π2(T1) < Π2(T2) < Π2(T3) < Π2(T4) < Π2(T5) <
Π2(T6) < Π2(T7) < Π2(T ).

Corollary 4.2: Let U∗ be a unicyclic graph or a chemical
unicyclic graph of order n. For n ≥ 5, G1 ∈ U1, G2 ∈
U2, G3 ∈ U4 (see Table II), and U ∈ U∗ \ {G1, G2, G3},
then Π1(G1) > Π1(G2) > Π1(G3) > Π1(U) and Π2(G1) <
Π2(G2) < Π2(G3) < Π2(U).

Corollary 4.3: Let B∗ be a bicyclic graph or a chemical
bicyclic graph of order n. For n ≥ 7, G1 ∈ B2, G2 ∈
B1, G3 ∈ B5 (see Table III), and B ∈ B∗ \ {G1, G2, G3},
then Π1(G1) > Π1(G2) > Π1(G3) > Π1(B) and Π2(G1) <
Π2(G2) < Π2(G3) < Π2(B).

Corollary 4.4: (i) Let D∗ be a tricyclic graph of order n.
For n ≥ 11, G1 ∈ D5, G2 ∈ D4, G3 ∈ D3, G4 ∈ D12, G5 ∈
D2, G6 ∈ D11, G7 ∈ D1 or D10, G8 ∈ D23, (see Tables
IV-VI), and D ∈ D∗ \ {G1, G2, · · · , G8}, then Π1(G1) >
Π1(G2) > Π1(G3) > Π1(G4) > Π1(G5) > Π1(G6) >
Π1(G7) > Π1(G8) > Π1(D); For n ≥ 11, H1 ∈ D5, H2 ∈
D4, H3 ∈ D12, H4 ∈ D3, H5 ∈ D11, H6 ∈ D2, H7 ∈ D23

(see Tables IV-VI), and D′ ∈ D∗ \ {H1, H2, · · · , H7}, then
Π2(H1) < Π2(H2) < Π2(H3) < Π2(H4) < Π2(H5) <
Π2(H6) < Π2(H7) < Π2(D′).

(ii) Let D∗ be a chemical tricyclic graph of order n.
For n ≥ 11, G1 ∈ D5, G2 ∈ D4, G3 ∈ D3, G4 ∈
D12, G5 ∈ D11, G6 ∈ D10, G7 ∈ D23, (see Tables IV-
VI), and D ∈ D∗ \ {G1, G2, · · · , G7}, then Π1(G1) >
Π1(G2) > Π1(G3) > Π1(G4) > Π1(G5) > Π1(G6) >
Π1(G7) > Π1(D); For n ≥ 11, H1 ∈ D5, H2 ∈ D4, H3 ∈
D12, H4 ∈ D3, H5 ∈ D11, H6 ∈ D23 (see Tables IV-
VI), and D′ ∈ D∗ \ {H1, H2, · · · , H6}, then Π2(H1) <
Π2(H2) < Π2(H3) < Π2(H4) < Π2(H5) < Π2(H6) <
Π2(D′).

Corollary 4.5: Let G∗ be a tetracyclic graph or a chem-
ical tetracyclic graph of order n. For n ≥ 12, G1 ∈
E11, G2 ∈ E10, G3 ∈ E9, G4 ∈ E26, (see Tables VII and
VIII), and G ∈ G∗ \ {G1, G2, G3, G4}, then Π1(G1) >
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Π1(G2) > Π1(G3) > Π1(G4) > Π1(G); For n ≥ 12,
H1 ∈ E11, H2 ∈ E10, H3 ∈ E26 (see Tables VII and VIII),
and G′ ∈ G∗ \ {H1, H2, H3}, then Π2(H1) < Π2(H2) <
Π2(H3) < Π2(G′).

Corollary 4.6: Let H∗ be a pentacyclic graph or a chem-
ical pentacyclic graph of order n. For n ≥ 16, G1 ∈
F22, G2 ∈ F21, G3 ∈ F20, G4 ∈ F51, (see Tables IX and
X), and H ∈ H∗ \ {G1, G2, G3, G4}, then Π1(G1) >
Π1(G2) > Π1(G3) > Π1(G4) > Π1(H); For n ≥ 12,
H1 ∈ F22, H2 ∈ F21, H3 ∈ F51 (see Tables IX and X),
and H ′ ∈ H∗ \ {H1, H2, H3}, then Π2(H1) < Π2(H2) <
Π2(H3) < Π2(H ′).

V. CONCLUSION

The vertices and edges of graphs represent the atoms and
the chemical bonds of a compound, respectively. So we can
use graph theory to characterize these chemical structures.
The mathematical properties of general multiplicative Zagreb
indices deserve further study since they can be used to
detect the chemical compounds which may have desirable
properties. Namely, if one can find some properties well-
correlated with these two descriptors for some value of α,
then the extremal graphs should correspond to compounds
with minimum or maximum value of that property. Fur-
thermore, one such property has already been found for
multiplicative Zagreb indices.

Through out this paper, we determine the extremal gen-
eral multiplicative Zagreb indices of n-vertex (chemical)
trees, (chemical) unicyclic graphs, (chemical) bicyclic graph-
s, (chemical) tricyclic graphs, (chemical) tetracyclic graphs
and (chemical) pentacyclic graphs. Furthermore, we apply
these results directly to multiplicative Zagreb indices. We
will consider the extremal values with respect to general
multiplicative Zagreb indices of other chemical graphs as
a near future work.
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