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Abstract—This work presents a collection of fixed point theo-
rems and introduce the idea of common fixed point theorems
for a pair of weakly compatible mappings in dislocated cone
metric space over Banach algebra. In addition we generalise
common fixed point theorems for two pairs of self-mapping by
using the α-property in cone metric space. We also provide
illustrations and examples to support our results. Our findings
are significant and expand upon and generalise a number of
recent findings from the literature.

Index Terms—cone metric space, dislocated cone metric space,
α-property, weakly compatible mappings, contraction mapping.

I. INTRODUCTION

F IXED point theory is a very effective tool in current
mathematics, and its conclusions are directly applied to

many existence and uniqueness theories in numerous fields.
Banach Contraction Principle [1] act as the base for majority
of the results obtained so far in fixed point theory. Later on,
Multiple authors have derived various generalisations of it
using different methods [2], [3]. S.Sessa [4] introduced the
concept of weakly commuting self mapping of a complete
metric space. Further, G. Jungck [5] generalised the concept
of weak commutativity by introducing the notion of com-
patible mappings and demonstrated compatibility of weakly
commuting maps but not the converse. After that, Jungck
and Rhoades [7] introduced the more general idea of weak
compatibility to the setting of single-valued and multi-valued
mappings by replacing compatibility. Pant [9] first proposed
the idea of common fixed points of incompatible mappings.
Aamri et al., [10] presented the idea of property (E.A) and
Al-Thagafi et al., [13] presented the idea of mappings that
are occasionally weakly compatible. Huang and Zhang [12]
introduced the idea of cone metric spaces and afterwards
generalised to cone metric space over Banach algebra by Xu
and Liu [21]. They established certain fixed point results
for various contractive conditions by replacing the whole
normed space to cone metric space over Banach algebra and
showed the existence of fixed points. Muhammad Nazam
et al., [24] use the idea of Ciric-type and Hardy-Rogers type
(αs, F ) - contractions based on four self-mappimgs defined
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on a b - metric space to αs - complete b - metric space,
ordered b - metric space and graphic b - metric space. Akash
Singhal et al., [25] present a common fixed point theorem
for four self-mappings in cone metric spaces where the cone
is not necessarily normal. Manoj Kumar et al., [27] show a
common fixed point theorem for four self-maps which are
weakly compatible and satisfy a general contractive condition
and also prove common fixed point theorem for weakly
compatible maps along with E.A. and (CLR) properties.
Many authors established a number of other fixed point
theorems for weakly compatible mappings satisfying certain
contractive condition in certain spaces [17], [26], [28]–[38].
In this paper, we generalise common fixed point theorems
for two pairs of self mapping by using α - property in cone
metric space and generalise common fixed point theorems
for two pairs of self mapping in dislocated cone metric space
over Banach algebra.

II. PRELIMINARIES

In this part, we outline fundamental concepts and necessary
outcomes for the sequel.

Definition 1. Given two self-mappings J,K : X ×X on a
metric space (X, d), then the mappings J and K are

1) weakly commuting if d(JKx,KJx) ≤ d(Jx,Kx) ∀ x
in X [4],

2) compatible if limm→∞ d(JKxm,KJxm) = 0 for
each sequence {xm} ∈ X such that limm→∞ Jxm =
limm→∞Kxm [5],

3) noncompatible if ∃ a sequence {xm} ∈ X
such that limm→∞ Jxm = limm→∞Kxm, but
limm→∞ d(JKxm,KJxm) is either nonexistent or
nonzero [9],

4) pair is weakly compatible when it commutes to its
coincidence point; that is, JKu = KJu whenever
Ju = Ku, for any u ∈ X [7].

5) occasionally weakly compatible if J and K commute
at a point x ∈ X that serves as their coincidence point
[13],

6) with the characteristic (E.A) if some z ∈ X and a
sequence {xn} exist in X such that limn→∞ Jxn =
limn→∞Kxn = z [10].

It is evident that any two mappings meeting the condition
(E.A.) do not necessarily have to be incompatible, even when
noncompatible arbitrary self-mappings fulfills the property
(E.A.) (see [15], Example 1). Furthermore, property (E.A)
and weak compatibility are unrelated to one another (see
[11], Example 2.1 and 2.2).
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Definition 2. (see [8]) Suppose (X, d) be a metric space.
If limm→∞ JKxm = Ju and limm→∞KJxm = Ku for
every u in X , then the pair (J,K) of self-mappings on (X, d)
is said to be reciprocally continuous.

It is obvious that two self-mappings must be reciprocally con-
tinuous if they are continuous. However, the contrary claim
cannot be true. In theory, compatible pairs of self-mappings
that adhere to contractive restrictions are considered, the
presence of a continuous mapping in one of the mappings
implies that the mappings are reciprocally continuous, but
the converse is not valid (see to Pant [18]).

Definition 3. [14] Suppose (X, d) be a metric space. Then,
the pair (J,K) of self-mappings on (X, d) is considered
subcompatible if ∃ a sequence {xn} that satisfies the given
condition

lim
n→∞

Jxn = lim
n→∞

Kxn = z,

for some z ∈ X and

lim
n→∞

d(JKxn,KJxn) = 0.

A pair of mappings that are subcompatible meets the property
(E.A). Clearly, mappings that are compatible and fulfills
property (E.A) are also subcompatible. However, reverse
assertion is not generally true (see [19], Example 2.3). Pairs
of mappings that exhibit occasional poor compatibility are
regarded as subcompatible. However, this is not always the
case (see [14].

Definition 4. [14] Let (X, d) be a metric space. Subse-
quentially continuous is the pair (J,K) of self-mappings on
(X, d) if

∃ lim
m→∞

JKxm = Ju

and
lim

m→∞
KJxm = Ku,

where
lim

m→∞
Jxm = lim

m→∞
Kxm = u

for some u ∈ X .

It is verifiable that two self-mappings J and K are re-
ciprocally continuous if they are both continuous. As seen
in Example 1 ( [18]), J and K are not subsequentially
continuous.

Definition 5. (see [16]) For ∗ : R+ × R+ → R+, a binary
operation shall be represented, which fulfils the conditions
below:

1) ∗ is both commutative and associative,
2) ∗ is continuous.

These are a few common instances of ∗:

r ∗ s = max{r, s}, r ∗ s = r + s,

r ∗ s = rs, r ∗ s = rs+ r + s

and
r ∗ s = rs/max{r, s, 1},

for each r, s ∈ R+.

Definition 6. (see [16]) The binary operation ∗ satisfies the
α-property when ∃ α > 0 such that

r ∗ s ≤ αmax{r, s}, (1)

for all r, s ∈ R+.

Example 7. (see [16])
(1) For r ∗ s = r + s, r, s ∈ R+, thus for α ≥ 2, we get

r ∗ s ≤ αmax{r, s}.
(2) For r∗s = rs/max{r, s, 1}, r, s ∈ R+, thus for α ≥ 1,

we get r ∗ s ≤ αmax{r, s}.

Definition 8. [12] Let E be a real Banach space and P a
subset of E. Then P is called a cone if and only if:

1) P is closed, non-empty and P ̸= {0};
2) ax+by ∈ P ∀x, y ∈ P and non negative real numbers

a, b;
3) P ∩ (−P ) = 0.

Definition 9. [12] E is a real Banach space, P is a cone in
E with intP ̸= 0 and ≤ is the partial ordering with respect
to P . Let X be a non empty set and

d : X ×X → P

a mapping such that:
1) 0 ≤ d(x, y) ∀x, y ∈ X (non-negativity);
2) d(x, y) = 0 if and only if x = y;
3) d(x, y) = d(y, x) ∀x, y ∈ X (symmetry);
4) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X (triangle

inequality).
Then d is called a cone metric on X and (X, d) is called a
cone metric space.

III. FIXED POINT THEOREMS USING α-PROPERTY

First, we present common fixed point theorems for two pairs
of self-mapping in a cone metric space by using the α-
property.

Theorem 10. Consider a complete cone metric space (X, d)
and ∗ fulfills the α-property with α greater than 0. Define
J, L,K, and M as self-mappings on X which satisfy the
conditions below:

1) M(X) or K(X) is a closed subset of X and J(X) ⊆
M(X), L(X) ⊆ K(X),

2) (J,K) and (L,M) are weakly compatible,
3) ∀ a, b ∈ X ,

d(Ja, Lb) ≤ q1(d(Ka,Mb) ∗ d(Ja,Ka))

+ q2(d(Ka,Mb) ∗ d(Lb,Mb))

+ q3

{
d(Ka,Mb)∗

d(Ka,Lb) + d(Ja,Mb)

2

}
(2)

where q1, q2, q3 > 0 and 0 < α(q1 + q2 + q3) < 1. Then,
J, L,K, and M possess a unique common fixed point within
X .

Proof: Assume that a0 is any point within the set X .
By (1), we can define a sequence {bm} in X such that
b2m = Ja2m = Ma2m+1 and b2m+1 = La2m+1 =
Ka2m+2, for m = 0, 1, 2, . . .
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Now, we prove that {bm} is a Cauchy sequence.
Applying condition (3), we get

d(b2m, b2m+1) = d(Ja2m, La2m+1)

≤ q1(d(Ka2m,Ma2m+1) ∗ d(Ja2m,Ka2m))

+ q2(d(Ka2m,Ma2m+1) ∗ d(La2m+1,Ma2m+1))

+ q3

{
(d(Ka2m,Ma2m)∗

d(Ka2m, La2m+1 + d(Ja2m,Ma2m+1)

2

}
= q1(d(b2m−1, b2m) ∗ d(b2m, b2m−1))

+ q2(d(b2m−1, b2m) ∗ d(b2m+1, b2m))

+ q3

{
d(b2m−1, b2m) ∗ d(b2m−1, b2m+1) + d(b2m, b2m)

2

}
Fix d(bm, bm+1) = dm. Applying the above inequality, we
obtain

d2m ≤ q1(d2m−1 ∗ d2m−1) + q2(d2m−1 ∗ d2m)

+ q3

{
d2m−1 ∗

d(b2m−1, b2m+1)

2

}
Therefore,

d2m ≤ q1αmax{d2m−1 ∗ d2m−1}
+ q2αmax{d2m−1 ∗ d2m}

+ q3αmax

{
d2m−1 ∗

d(b2m−1, b2m+1)

2

}
If d2m−1 < d2m, we get

dm ≤ q1αd2m + q2αd2m + q3αd2m < d2m

which contradicts itself. Hence, d2m−1 ≥ d2m. Similarly,
d2m ≥ d2m−1. Hence, dm−1 ≥ dm, for m = 1, 2, . . .
Applying the above inequality, we obtain

dm ≤ α(q1 + q2 + q3)dm−1 = qdm−1,

where α(q1 + q2 + q3) = q < 1. So

dm ≤ qdm−1 ≤ q2dm−2 ≤ ....... ≤ qmd0

That is,

d(bm, bm+1) ≤ qmd(b0, b1) → 0 as m→ ∞

If n > m, then

d(bm, bn) ≤ d(bm, bm+1) + d(bm+1, bm+2) + . . .

+ d(bn−1, bn)

≤ qmd(b0, b1) + qm+1d(b0, b1) . . .

+ qn+1d(b0, b1)

=
qm

1− q
d(b0, b1) → 0

as m,n → ∞. Hence, {bm} is a Cauchy sequence and by
completeness property of X ,{bm} converges to b in X . Thus,

lim
m→∞

bm = lim
m→∞

Ja2m = lim
m→∞

La2m+1

= lim
m→∞

Ka2m+2 = lim
m→∞

Ma2m+1 = b.

Suppose that M(X) ⊆ X . Then ∃ υ in X such that Mυ = b.
If Lυ ̸= b, then applying condition (3), we get

d(Ja2m, Lυ) ≤ q1(d(Ka2m,Mυ) ∗ d(Ja2m,Ka2m))

+ q2(d(Ka2m,Mυ) ∗ d(Lυ,Mυ))

+ q3

{
d(Ka2m,Mυ)∗

d(Ka2m, Lυ) + d(Ja2m,Mυ)

2

}

For m→ ∞, we obtain

d(b, Lυ) ≤ q1(d(b,Mυ) ∗ d(b, b))
+ q2(d(b,Mυ) ∗ d(Lυ,Mυ))

+ q3

{
d(b,Mυ) ∗ d(b, Lυ) + d(b,Mυ)

2

}
≤ q1αmax{d(b,Mυ), 0}
+ q2αmax{0, d(Lυ, b)}

+ q3αmax

{
0,
d(b, Lυ) + 0

2

}
< d(b, Lυ).

Consequently, Lυ = b = Mυ. As L and M are weakly
compatible, we get LMυ =MLυ and so Lb =Mb
If b ̸= Bb, by condition (3), we obtain

lim
m→∞

d(Ja2m, Lb) ≤ lim
m→∞

q1(d(Ka2m,Mb) ∗ d(Ja2m,Ka2m))

+ q2(d(Ka2m,Mb) ∗ d(Lb,Mb))

+ q3

{
d(Ka2m,Mb)∗

d(Ka2m, Lb) + d(Ja2m,Mb)

2

}
.

Hence,

d(b, Lb) ≤ q1(d(b,Mb) ∗ d(b, b))
+ q2(d(b,Mb) ∗ d(Lb,Mb))

+ q3

{
d(b,Mb) ∗ d(b, Lb) + d(b,Mb)

2

}
≤ q1αmax(d(b,Mb), d(b, b))

+ q2αmax(d(b,Mb), d(Lb,Mb))

+ q3αmax

{
d(b,Mb),

d(b, Lb) + d(b,Mb)

2

}
< d(b, Lb)

Therefore, Lb = b.
As L(X) ⊆ K(X), ∃ w in X such that Kw = b.
If Jw ̸= b, then applying condition (3), we get

d(Jw, b) ≤ q1(d(Kw,Mb) ∗ d(Jw,Kw))
+ q2(d(Kw,Mb) ∗ d(Lb,Mb))

+ q3

{
d(Kw,Mb) ∗ d(Kw,Lb) + d(Jw,Mb)

2

}
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consequently,

d(Jw, b) ≤ q1(d(Kw, b) ∗ d(Jw,Kw))
+ q2(d(Kw, b) ∗ d(b, b))

+ q3

{
d(Kw, b) ∗ d(Kw, b) + d(Jw, b)

2

}
≤ q1αmax(d(Kw, b), d(Jw,Kw))

+ q2αmax(d(Kw, b), d(b, b))

+ q3αmax

{
d(Kw, b),

d(Kw, b) + d(Lw, b)

2

}
< d(Jw, b).

Hence, Jw = b. Thus, Jw = Kw = b. As J and K are
weakly compatible, JKw = KJw. Hence,

Jb = Kb.

If Jb ̸= b, then by condition (3), we obtain

d(Jb, b) = d(Jb, Lb)

≤ q1(d(Kb,Mb) ∗ d(Jb,Kb))
+ q2(d(Kb,Mb) ∗ d(Lb,Mb))

+ q3

{
d(Kb,Mb)∗

d(Kb,Lb) + d(Jb,Mb)

2

}
= q1(d(Kb, b) ∗ d(Jb,Kb))
+ q2(d(Kb, b) ∗ d(b, b))

+ q3

{
d(Kb, b) ∗ k3(d(Kb, b)∗

d(Kb, b) + d(Jb, b)

2

}
≤ q1αmax(d(Kb, b), d(Jb,Kb))

+ q2αmax(d(Kb, b), d(b, b))

+ q3αmax

{
d(Kb, b),

d(Kb, b) + d(Jb, b)

2

}
< d(Jb, b).

So, Jb = b. Hence,

Jb = Kb = Lb =Mb = b,

i.e., J, L,K and M has a common fixed point b.
The proof is analogous for K(X) ⊆ X .
Also, the uniqueness of b holds using condition (3).

Example 11. Consider a cone metric space (X, d) with
d(a, b) = |a − b|. Let J, L,K and M be self-mappings on
X by

Ja = La =
1

2
, Ka =

3a+ 1

5
, Ma =

4a+ 1

6

for all a ∈ X . It is easy to verify all the conditions of
Theorem 10 with ∗ = max , α = 1 and q1+q2+q3 = 3

8 . Hence,
1
2 is the unique fixed point of the mappings J, L,K and M .

Now we prove our main result.

Theorem 12. Let J, L,K, and M be four self-mappings on
a cone metric space (X, d), and let the operation ∗ satisfy

the α-property with α > 0. Suppose that the pairs (J,K)
and (L,M) are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), ful-
fils the inequality (2) of Theorem 10. Then J, L,K, and M
has a unique common fixed point in X .

Proof: If the set of mappings (J,K) is both subsequen-
tially continuous and compatible, then ∃ a sequence {am} ∈
X such that

lim
m→∞

Jam = lim
m→∞

Kam = u, (3)

for some u ∈ X , and

lim
m→∞

d(JKam,KJam) = d(Ju,Ku) = 0; (4)

i.e., Ju = Ku. Similarly, for the pair (L,M), ∃ a sequence
{bm} in X such that

lim
m→∞

Lbm = lim
m→∞

Mbm = w, (5)

for some w ∈ X , and

lim
m→∞

d(LMbm,MLbm) = d(Lw,Mw) = 0; (6)

i.e., Lw =Mw. Thus, for the pair (J,K), u is a coincidence
point and for the pair (L,M), w is a coincidence point.
We now claim that u = w. Suppose u ̸= w, then applying
(2) with a = am and b = bm, we obtain

d(Jam, Lbm) ≤ q1(d(Kam,Mbm) ∗ d(Jam,Kam))

+ q2(d(Kam,Mbm) ∗ d(Lbm,Mbm))

+ q3

{
d(Kam,Mbm)∗

d(Kam, Lbm) + d(Jam,Mbm)

2

}
.

(7)

Suppose m→ ∞, we obtain

d(u,w) ≤ q1(d(u,w) ∗ d(u, u))

+ q2(d(u,w) ∗ d(w,w))

+ q3

{
d(u,w) ∗ d(u,w) + d(u,w)

2

}
.

(8)

Given that ∗ fulfils the α-property, we get

d(u,w) ≤ q1 α max(d(u,w), d(u, u))

+ q2 α max(d(u,w), d(w,w))

+ q3 α max

{
d(u,w),

d(u,w) + d(u,w)

2

}
= q1α max(d(u,w), 0)

+ q2α max(d(u,w), 0)

+ q3α max(d(u,w), d(u,w))

= α (q1 + q2 + q3)d(u,w)

< d(u,w)

(9)

which contradicts itself. Thus, u = w. We now show that
Ju = u. Assume Ju ̸= u, then applying the inequality (2)
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with a = u and b = bm, we obtain

d(Ju, Lbm) ≤ q1(d(Ku,Mbm) ∗ d(Ju,Ku))

+ q2(d(Ku,Mbm) ∗ d(Lbm,Mbm))

+ q3

{
(d(Ku,Mbm)∗

d(Ku,Lbm) + d(Ju,Mbm)

2

}
.

(10)

Taking the limit as m→ ∞, we have

d(Ju,w) ≤ q1(d(Ku,w) ∗ d(Ju, Ju))

+ q2(d(Ju,w) ∗ d(w,w))

+ q3

{
d(Ju,w)∗

d(Ju,w) + d(Ju,w)

2

}
;

(11)

that is,

d(Ju, u) ≤ q1(d(Ku, u) ∗ d(Ju, Ju))

+ q2(d(Ju, u) ∗ d(u, u))

+ q3(d(Ju, u) ∗
d(Ju, u) + d(Ju, u)

2
)

≤ q1 α max(d(Ku, u), d(Ju, Ju))

+ q2 α max(d(Ju, u), d(u, u))

+ q3 α max

{
d(Ju, u),

d(Ju, u) + d(Ju, u)

2

}
.

(12)

Simplifying the above inequality, we get

d(Ju, u) ≤ α(q1 + q2 + q3)d(Ju, u)

< d(Ju, u),
(13)

which contradicts itself. Thus, Ju = u. Hence, Ju = Ku =
u. We now prove that Lu = u. If Lu ̸= u then applying
condition (2) with a = am and b = u, we obtain

d(Jam, Lu) ≤ q1(d(Kam,Mu) ∗ d(Jam,Kam))

+ q2(d(Kam,Mu) ∗ d(Lu,Mu))

+ q3

{
d(Kam,Mu)∗

d(Kam, Lu) + d(Jam,Mu)

2

}
.

(14)

When m→ ∞, we obtain

d(u, Lu) ≤ q1(d(u, Lu) ∗ d(u, u))

+ q2(d(u, Lu) ∗ d(Lu,Lu))

+ q3

{
d(u, Lu)∗

d(u, Lu) + d(u, Lu)

2

}
≤ q1α max(d(u, Lu), d(u, u))

+ q2α max(d(u, Lu), d(Lu,Lu))

+ q3α max

{
d(u, Lu),

d(u, Lu) + d(u, Lu)

2

}
.

(15)

Simplifying the above inequality, we get

d(u, Lu) ≤ α(q1 + q2 + q3)d(u, Lu)

< d(u, Lu),
(16)

which contradicts itself. Thus, Lu = u. Hence, u = Ju =
Ku = Lu = Mu; i.e., J, L,K and M have a common
fixed point u. The uniqueness of a common fixed point
can be deduced from inequality (2).
We now assume the mappings (J,K) (as well as (L,M))
are both reciprocally continuous and subcompatible. Then ∃
{am} ∈ X such that

lim
m→∞

Jam = lim
m→∞

Kam = u, (17)

for some u in X , and thus

lim
m→∞

d(JKam,KJam) = d(Ju,Ku) = 0, (18)

whereas in respect of the pair (L,M), there exists a sequence
{bm} in X with

lim
m→∞

Lbm = lim
m→∞

Mbm = w, (19)

for some w in X , and

lim
m→∞

d(LMbm,MLbm) = d(Lw,Mw) = 0. (20)

Therefore, Ju = Ku and Lw =Mw; i.e., u is a coincidence
point of the pair (J,K), while w is a coincidence point of the
pair (L,M). One can easily complete the rest of the proof.

Example 13. Consider the set X defined on the interval
[0,∞). Suppose d represent the usual metric on X . Let
J, L,K and M be self-mappings defined as

Ja = La =

{
a
7 , for a in [0, 1];

a+6
7 , for a in (1,∞),

Ka =Ma =

{
a
6 , for a in [0, 1];

a+5
6 , for a in (1,∞).

(21)

Assume the sequence {am} = {1/m}m∈N ∈ X . Now

lim
m→∞

Jam = lim
m→∞

1

7m
= 0

= lim
m→∞

1

6m
= lim

m→∞
Kam.

(22)

Next

lim
m→∞

JKam = lim
m→∞

J

(
1

6m

)
= lim

m→∞

1

42m
= 0 = J0,

lim
m→∞

KJam = lim
m→∞

K

(
1

7m

)
= lim

m→∞

1

42m
= 0 = K0,

lim
m→∞

d(JKam,KJam) = 0.

(23)

Assume another sequence {am} = {1 + 1/m}m∈N ∈ X .
Now,

lim
m→∞

Jam = lim
m→∞

(
1 +

1

7m

)
= 1

= lim
m→∞

(
1 +

1

6m

)
= lim

m→∞
Kam.

(24)
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However,

lim
m→∞

JKam = lim
m→∞

J

(
1 +

1

6m

)
= lim

m→∞

(
1 +

1

42m

)
= 1, ̸= J1

lim
m→∞

KJam = lim
m→∞

K

(
1 +

1

7m

)
= lim

m→∞

(
1 +

1

42m

)
= 1 ̸= K1,

(25)

but limm→∞ d(JKam,KJam) = 0. Therefore, the pair
(J,K) is not reciprocally continuous but is compatible and
subsequentially continuous (holds for (L,M) as well). It is
straightforward to verify that inequality (2) is fulfilled using
∗ = max, α = 1, q1 + q2 + q3 = 6/7. Thus, all criteria of
Theorem 12 are fulfilled. Hence, the mappings J, L,K and
M have 0 as both the coincidence and the unique common
fixed point.
It should be noted that fixed point theorems that require
criteria of closedness of respective ranges or that require
both reciprocal continuity and compatibility cannot apply to
this example. In fact, neither J(X) nor K(X) are closed
in this case since J(X) = [0, 1/7] ∪ (1,∞) and K(X) =
[0, 1/6] ∪ (1,∞).

Example 14. Let d be the usual metric on X and let X = R
be a collection of real numbers. Define J, L,K and M self-
mappings by

Ja = La =

{
a
4 , if a ∈ (−∞, 1);

4a− 3, if a ∈ [1,∞),

Ka =Ma =

{
a+ 3, if a ∈ (−∞, 1);

5a− 5, if a ∈ [1,∞].

(26)

Assume the sequence {am} = {1 + 1/m}m∈N in X . Then

lim
m→∞

Jam = lim
m→∞

(
1 +

4

m

)
= 1

= lim
m→∞

(
1 +

5

m

)
= lim

m→∞
Kam.

(27)

Also,

lim
m→∞

JKam = lim
m→∞

J

(
1 +

5

m

)
= lim

m→∞

(
1 +

20

m

)
= 1 = J1,

lim
m→∞

KJam = lim
m→∞

K

(
1 +

4

m

)
= lim

m→∞

(
1 +

20

m

)
= 1 = K1,

lim
m→∞

d(JKam,KJam) = 0.

(28)

Assume another sequence

{am} = {(1/m)− 4}m∈N

∈ X . Wehave

lim
m→∞

J(am) = lim
m→∞

(
1

4m
− 1

)
= −1

= lim
m→∞

(
1

m
− 1

)
= lim

m→∞
K(am).

(29)

Next,

lim
m→∞

JKam = lim
m→∞

J

(
1

m
− 1

)
= lim

m→∞

(
1

4m
− 1

4

)
= −1

4
= J(−1),

lim
m→∞

KJam = lim
m→∞

K

(
1

4m
− 1

)
= lim

m→∞

(
1

4m
− 1 + 3

)
= 2 = K(−1),

(30)

also, limm→∞ d(JKam,KJam) ̸= 0. Hence, the pair
(J,K) is not compatible but is subcompatible and recipro-
cally continuous (holds for (L,M) as well). It is straight-
forward to verify inequality (2) is fulfilled using ∗ = max,
α = 1, q1+ q2+ q3 = 4/5. Thus, criteria of Theorem 12 are
fulfilled. Here, the pair (J,K) have 1 as both the coincidence
and unique common fixed point.
This example does not satisfy the conditions of fixed point
theorems that need both compatibility and reciprocal conti-
nuity. Also, J(X) = (−∞, 14 ) ∪ [1,+∞) is not closed. It is
important to mention that the mappings J and K have (−1
and 1) as points of coincidence, which not weakly compatible
but occasionally weakly compatible.
In the following example (see [14], Example 1.4), we illus-
trate a scenario where the criteria of Theorem 12 are not
met, where the pairs have no common fixed points.

Example 15. Assume X = [0,+∞) with the standard metric
d. Suppose J, L,K,M : X → X be given by

Ja = La =

{
a+ 1, 0 ≤ a ≤ 1,

2a− 1, a > 1,

Ka =Ma =

{
1− a, 0 ≤ a < 1,

3a− 2, a ≥ 1.

(31)

Furthermore, as seen in ( [14], Example 1.4), the pairs (J,K)
and (L,M) are both subcompatible and subsequentially con-
tinuous. They are not, however, compatible or reciprocally
continuous — not even occassionally weakly compatible. We
see that the pair (J,K) doesn’t have common fixed point,
however it does have a single point of coincidence at u = 1.
We provide an alternative example that was motivated by (
[22], Example 3)

Example 16. Define a metric d on X ,where X =
{0, 1, 2, ....., 10}, by

d(a, b) =

{
0, a = b,

max{a, b}, a ̸= b.
(32)

Let the mappings of J, L,K,M : X → X as

Ja = La =

{
0, a = 0,

a− 1, a ≥ 1
;

Ka =Ma =


0, a = 0,

a+ 1, 1 ≤ a ≤ 9,

10, a = 10

.

(33)

Consider ∗ = max, and fulfils the α-condition for α = 1.
Now, (1)
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1) (J,K) is both subsequentially continuous and compat-
ible, as is the pair (L,M),

2) with q1 = q2 = q3 = 0.3 inequality (2) is satisfied.
Indeed, to demonstrate (1), assume that am = 0 ∀ m
except for a finite number of them, as this is the sole
method by which the same limit can be obtained for (Jam)
and (Kam). Now, d(Jam, 0) → 0 and d(Kam, 0) → 0;
JKam → 0 = J0 and KJam → 0 = K0. Thus, (J,K) is
both subsequentially continuous and compatible.
To show (2), for a, b in X , a ̸= b (for a = b is trivial). With
J = L,K =M and q1 = q2, inequality (2) shows symmetric
in a, b; Therefore, we can assume that a ≥ b without losing
generality. Now, the following cases arises.
Case 1. If a = 1 and b = 0. Then, Ja = Lb = 0, d(Ja, Lb) =
0, and inequality (2) is satisfied.
Case 2. If 2 ≤ a ≤ 9 and b ∈ {0, 1}. Then, Bb = 0, Ja =
a− 1 and d(Ja, Lb) = a− 1. The solution to inequality (2)
on the right-hand side is now (t ∈ {0, 2}).
T =q1 max{a+ 1, t}+ q2 max{a+ 1, a+ 1}

+ q3 max

{
a+ 1,

1

2
[max{Ka,Lb}+ a+ 1]

}
=(q1 + q2 + q3)(a+ 1) = 0.9(a+ 1)

≥ 0.9.
10

8
(a− 1) > a− 1 = d(Ja, Lb).

(34)

Case 3. If a = 10 and b ∈ {0, 1}. Then,

d(Ja, Lb) = 9 = (q1 + q2 + q3) · 10 = T. (35)

Case 4. If 2 ≤ b < a ≤ 9. Then

d(Ja, Lb) = a− 1 = d(a− 1, b− 1)

also,

T = q1 max{a+ 1, a+ 1}+ q2max{a+ 1, a+ 1}

+ q3 max

{
a+ 1,

1

2
[a+ 1 +max{Ja,Mb}]

}
= (q1 + q2 + q3)(a+ 1) = 0.9(a+ 1)

≥ 0.9 · 10
8
(a− 1)

> d(Ja, Lb) = a− 1.

(36)

Case 5. If 2 ≤ b < b < a = 10. Again inequality (2) reduces
to (q1 + q2 + q3) · 10 = 9.
All criteria of Theorem 12 are satisfied, and J, L,K, and M
possess a unique common fixed point, u = 0.
We can derive corollaries for two or three self-mappings by
selecting J, L,K and M appropriately in Theorem 12. We
derive the subsequent corollary for two self-mappings as a
sample.

Corollary 17. Let J and K be two self-mappings on a cone
metric space (X, d) that satisfy the α-property, where α is a
positive constant. Let the pair (J,K) be both subsequentially
continuous and compatible, or alternatively, reciprocally
continuous and subcompatible, satisfying

d(Ja, Jb) ≤ q1(d(Ka,Kb) ∗ d(Ja,Ka))
+ q2(d(Ka,Kb) ∗ d(Jb,Kb))

+ q3

{
d(Ka,Kb)∗

d(Ka, Jb) + d(Ja,Kb)

2

}
,

(37)

∀ a, b in X , where q1, q2, q3 > 0 and

0 < α(q1 + q2 + q3) < 1,

then, ∃ a unique common fixed point in X for both J and
K.

Remark 18. The result of Theorem 12 remains valid when
inequality (2) is substituted with the following:

d(Ja, Lb) ≤ q1(d(Ka,Mb) + d(Ja,Ka))

+ q2(d(Ka,Mb) + d(Lb,Mb))

+ q3

{
d(Ka,Mb)+

d(Ka,Lb) + d(Ja,Mb)

2

}
,

(38)

∀ a, b in X , where q1, q2, q3 > 0 and

0 < q1 + q2 + q3 < 1/2.

Likewise, different contractive conditions can be derived by
defining operation ∗.

Remark 19. Similar findings can be achieved by replacing
inequality (2) with the following one:
With an appropriate function ψ : [0,+∞) → [0,+∞),

d(Ja, Lb) ≤ ψ(z) for some

z ∈ {d(Ka,Mb), d(Ja,Ka),

d(Lb,Mb), d(Ka,Lb), d(Ja,Mb)}.
(39)

IV. FIXED POINT RESULTS IN BANACH SPACE

Second, we introduce the notion of common fixed point
theorems for a pair of weakly compatible mappings in
dislocated cone metric space over Banach algebra.

Definition 20. [6] A Banach algebra A is a real Banach
space with a multiplication operation is defined as ∀ a, b, c
in A, α in R

1) (ab)c = a(bc),
2) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc,
3) α(ab) = (αa)b = a(αb),
4) ||ab|| ≤ ||a|| ||b||

Then, B ⊆ A is called a cone if
1) B is non-empty, closed and {θ, e} ⊂ B;
2) βB + γB ⊂ B ∀ non-negative β, γ ∈ R;
3) B2 = BB ⊂ B;
4) B ∩ (−B) = {θ},

where the unit and zero elements of the Banach algebra A
are denoted by e and θ, respectively. For B ⊂ A, we write
b − c ∈ B iff c ⪯ b, where ⪯ is a partial ordering on B.
Furthermore, a≪ b will be denoted for b−a ∈ intB, where
intB represents the interior of B. Also, B is called a solid
cone if intB ̸= ϕ.

Definition 21. [23] Let X be a non-empty set. Suppose that
d : X × X → A be a mapping satisfying the following
conditions:

1) θ ⪯ d(m,n) ∀ a, b in X and d(m,n) = θ ⇒ m = n;
2) d(m,n) = d(n,m) ∀ m,n in X;
3) d(m,n) ⪯ d(m, o) + d(o, n) ∀ m,n, o in X
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Then, d is called a dislocated cone metric space on X and
(X, d) is called a dislocated cone metric space over Banach
algebra A.

Remark 22. [23] For each element a ∈ X in a dislocated
cone metric space (X, d), d(a, a) does not necessarily have
to be zero. Therefore, any metric space that is on a Banach
algebra is also a dislocated cone metric space on the same
algebra. However, the reverse is not always true.

Example 23. [23] Let A = {p = (pmn)3×3 : pmn ∈ R, 1 ≤
m,n ≤ 3}, ||p|| =

∑
1≤m,n≤3 |pm,n|,B = {p ∈ A : pm,n ≥

0, 1 ≤ m,n ≤ 3} be a cone in A. Let X = R+ ∪ {0}. Let a
mapping d : X ×X → A be define by

d(a, b) =

 a+ b a+ b a+ b

2a+ 2b 2a+ 2b 2a+ 2b

3a+ 3b 3a+ 3b 3a+ 3b

∀ a, b in X

Then, over a Banach algebra A, (X, d) is a dislocated cone
metric space but not a cone metric space because

d

(
1

2
,
1

2

)
=

 1 1 1

2 2 2

3 3 3

 ̸= θ

Definition 24. [23] Let a ∈ X and {am} be a sequence in
a dislocated cone metric space (X, d) over Banach algebra
A, then

1) {am} converges to a whenever for each b ∈ A with
θ ≪ b, ∃N ∈ N such that d(am, an) ≪ b ∀ m,n ≥ N .

2) {ai} is a Cauchy sequence whenever for each b ∈ A
with θ ≪ b, ∃N ∈ N such that d(am, an) ≪ b ∀
m,n ≥ N .

3) (X, d) is considered complete if every Cauchy se-
quence in X is convergent.

Definition 25. [20] Let B be a solid cone in a Banach
algebra A. A sequence {am} ⊂ B is defined as a c-sequence
if for every θ ≪ b, there exists a N in N such that am ≪ b
for all m > N .

Lemma 26. [20] Consider a solid cone B in a Banach
algebra A and let {αn} and {βn} be sequences in B.
If {αn} and {βn} are c-sequences and q1, q2 ∈ B, then
{q1αn + q2βn} is also a c-sequence.

Lemma 27. [20] Consider a real Banach space E with a
solid cone B:

1) If a, b, c are in E and a ⪯ b ⪯ c implies a ⪯ c.
2) If a ∈ B and θ ⪯ a ⪯ c implies a = θ.

Definition 28. Consider two self-mappings, J and K, rep-
resented on a set X . A coincidence of J and K is defined
as Ja = Ka for some a ∈ X .

Definition 29. Assume J , K be two self-mappings on set X .
Mappings J , K are said to be commuting if JKx = KJx
for all x ∈ X .

Lemma 30. Consider a complete dislocated cone metric
space (X, d) over Banach algebra A, suppose R : X → X
be a contraction mapping. Then, R has a unique fixed point.

Definition 31. Let J and K be mappings from a dislocated
cone metric space (X, d) over Banach algebra A into itself.

Then, J and K are said to be weakly compatible if they
commute at their coincident point, that is, Jx = Kx for
some x ∈ X implies JKx = KJx.

Definition 32. Consider a dislocated cone metric space
(X, d) over Banach algebra A, then a mapping T : X → X
is said to be contraction if ∃ a number λ with 0 ≤ λ < 1
such that d(Tx, Ty) ≤ λd(x, y).

Definition 33. A function ϕ defined on B over Banach
algebra A is said to be upper semi-continuous if

lim
n→∞

ϕ(tn) ≤ ϕ(t)

for every sequence {tn} ∈ X with tn → t as n→ ∞.

Definition 34. A function ϕ : B → B is said to be contractive
modulus if ϕ(t) < t for t > 0.

Theorem 35. Consider a complete dislocated cone metric
space (X, d) over Banach algebra A, where B be the
underlying solid cone and e is a unit. Suppose that J, L,K
and M be four self-mappings of X fulfilling the conditions
below:

1) M(X) ⊆ J(X) and K(X) ⊆ L(X)
2) d(Ka,Mb) ≤ ϕ(m(a, b)), ϕ is upper semi-continuous

contractive modules and
m(a, b) = max{d(Ja, Lb), d(Ja,Ka), d(Lb,Mb),

1
2d(Ja,Mb), 12d(Lb,Ka)}

3) (K,J) and (M,L) are weakly compatible,
then J, L,K and M have a unique common fixed point.

Proof: Consider an arbitrary point a0 in X . Define a
sequence {bn} ∈ X such that

bn = Kan = Lan+1

and
bn+1 =Man+1 = Jan+2

Now by condition (2), we have

d(an, bn+1) = d(Kan,Man+1) ≤ ϕ(m(an, an+1))

where

m(an, an+1) = max{d(Jan, Lan+1),

d(JKan,KJan), d(Lan,Man+1),

1

2
d(Jan,Man+1),

1

2
d(Lan+1,Kan)}

= max{d(Man−1,Kan),

d(Man−1,Kan), d(Kan,Man+1),

1

2
d(Man−1,Man+1),

1

2
d(Kan,Kan)}

= max{d(bn−1, bn), d(bn, bn+1),

1

2
d(bn−1, bn+1),

1

2
d(bn, bn)}

= max{d(bn−1, bn), d(bn, bn−1)}
m(an, an+1) = d(bn, bn+1)

is impossible because ϕ is contractive modulus, therefore

d(bn, bn+1) ≤ (d(bn−1, bn)) (40)

According to equation (40), because ϕ is upper semi-
continuous contractive modulus, sequence {d(bn+1, bn)} is
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continuous and monotonic decreasing. Therefore, ∃ t ∈ R,
t ≥ 0 such that

lim
n→∞

d(bn+1, bn) = t.

By limiting in (40), we get, t ≤ ϕ(t), possible only when
t = 0, because ϕ is contractive modulus, therefore

lim
n→∞

d(bn+1, bn) = 0.

Next, we show {bn} is a Cauchy sequence.
Suppose {bn} is not a Cauchy sequence. Then, ∃ a real
number ε > 0, also subsequences qi and pi such that
pi < qi < pi+1 and

d(bpi
, bqi−1

) ≥ ε and d(bpi
, bqi−1

) < ε (41)

so that,

ε ≤d(bpi , bqi)

≤d(bpi , bqi−1) + d(bqi−1 , bqi)

<ε+ d(bqi−1 , bqi)

Hence,
lim
n→∞

d(bpi
, bqi) = ε

Now,

d(bpi−1 , bqi−1) ≤ d(bpi−1 , bpi) + d(bpi , bqi) + d(bqi , bqi−1)

Taking limit as n→ ∞ we have

lim
i→∞

d(bpi
, bqi) = ε

So by contractive condition (2) and equation (41),

ε ≤ d(bpi
, bqi) = d(Kapi

,Maqi) ≤ ϕ(m(api
, aqi)) (42)

where

m(api
, aqi) = max{d(Japi

, Laqi), d(Japi
,Kapi

),

d(Laqi ,Maqi),
1

2
d(Japi ,Maqi),

1

2
d(Laqi ,Kaqi)}

= max{d(Mapi−1
,Kaqi−1

),

d(Mapi−1
,Kapi

),

d(Kaqi−1
,Maqi),

1

2
d(Mapi−1

,Maqi),

1

2
d(Kaqi−1

,Kaqi)}

= max{d(bpi−1
, bqi−1

), d(bpi−1
, bpi

),

d(bqi−1
, bqi),

1

2
d(bpi−1

, bqi),

1

2
d(bqi−1

, bpi
)}

Now, taking limit as n→ ∞, we get

lim
n→∞

m(api
, aqi) = max{ε, 0, 0, 1

2
ε,

1

2
ε} = ε

Hence, from (42), we get ε ≤ ϕ(ε), a contradiction, because
ϕ is contractive modulus. Thus, {bn} is a Cauchy sequence.
Because X is complete, ∃ a point u ∈ X such that

lim
n→∞

bn = u.

Therefore,

lim
n→∞

Kan = lim
n→∞

Lan+1 = u

and
lim
n→∞

Man+1 = lim
n→∞

Jan+2 = u.

Hence,
1

2
d(bqi−1 , bpi)}

lim
n→∞

Kan = lim
n→∞

Lan+1

= lim
n→∞

Man+1

= lim
n→∞

Jan+2 = u.

Since, M(X) ⊆ J(X), ∃ a point v in X such that u = Jv.
So, by condition (2)

d(Kv, u) ≤d(Kv,Man+1) + d(Man+1, u)

≤ϕ(m(v, an+1)) + d(Man+1, u)

where

m(v, an+1) = max{d(Jv, Lan+1), d(Jv,Kv),

d(Lan,Man+1),
1

2
d(Jv,Man+1),

1

2
d(Lan+1,Kv)}

= max{d(u,Kan), d(u,Kv),

d(Kan,Man+1),
1

2
d(u,Man+1),

1

2
d(Kan,Kv)}.

Taking limit n→ ∞, we get

m(v, an+1) = max{d(u,Kv), 1
2
d(u,Kv) = d(u,Kv)}

For n → ∞ ⇒ d(u,Kv) ≤ ϕ(d(u,Kv)), a contradiction
because ϕ is contractive modulus. Thus, Kv = u and Jv =
Kv = u represents v is the coincidence point of J and K.
Since the pair (K,J) are weakly compatible, so KJv =
JKv ⇒ Ku = Ju. Also, K(X) ⊆ L(X) then ∃ a point w
in X such that u = Lw. Thus, by condition (2), we get,

d(u,Mw) = d(Kv,Mw) ≤ (m(v, w))

where

m(v, w) = max{d(Jv, Lw), d(Jv,Kv), d(Lw,Mw),

1

2
d(Jv,Mw),

1

2
d(Lw,Kv)}

= max{d(u, u), d(u, u), d(u,Mw),
1

2
d(u,Mw),

1

2
d(u, u)}

= max{d(u, u), d(u,Mw)}.

If d(u, u) = m(v, u) then, we have m(v, w) ≤ 2d(u,Mw)
implies that

d(u,Mw) ≤ ϕ(2d(u,Mw)) < 2d(u,Mw)

which is a contradiction because ϕ is a contractive modulus.
Also, if m(v, w) = d(u,Mw) then, we have

d(u,Mw) ≤ ϕ(d(u,Mw)) < d(u,Mw)
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which is a contradiction. Thus,

d(u,Mw) = 0

implies that u = Mw. Thus, Mw = Lw = u. Hence, w is
the coincidence point of L and M .
As the pair (L,M) is weakly compatible, LMw =MLw ⇒
Lu = Mu. We shall now prove that u is the fixed point of
K. From condition (2), we get

d(Ku, u) = d(Ku,Mw) ≤ ϕ(m(u,w))

where
m(v, w) = max{d(Ju, Lw), d(Ju,Ku), d(Lw,Mw),

1

2
d(Ju,Mw),

1

2
d(Lw,Ku)}

= max{d(Ku, u), d(Ku,Ku), d(u, u),
1

2
d(Ku, u),

1

2
d(u,Ku)}

= max{d(Ku, u), d(Ku,Ku), d(u, u)}

If d(Ku, u) = m(u,w), we have

d(Ku, u) ≤ ϕ(m(u, u)) = ϕ(d(Ku, u)) < d(Ku, u)

which is a contradiction because ϕ is contractive modulus.
Also, if d(Ku,Ku) = m(u,w) or d(u, u) = m(u,w), which
is a contradictions in both the cases. Thus, d(Ku, u) = 0
implies that Ku = u. Hence, Ku = Ju = u.
We now prove u is fixed point of M . From (2), we have

d(u,Mu) = d(Ku,Mu) ≤ ϕ(m(u, u))

where
m(u, u) = max{d(Ju, Lu), d(Ju,Ku), d(Lu,Mu),

1

2
d(Ju,Mu),

1

2
d(Lu,Ku)}

= max{d(u,Mu), d(u, u), d(Mu,Mu),

1

2
d(u,Mu),

1

2
d(Mu, u)}

= max{d(u,Mu), d(u, u), d(Mu,Mu)}

If m(u, u) = d(u,Mu) then,

d(u,Mu) ≤ ϕ(m(u, u)) = ϕ(d(u,Mu)) < d(u,Mu)

which is a contradiction.
If d(u, u) = m(u, u) or d(Mu,Mu) = m(u,w), a contra-
dictions in both the cases. Thus, d(u,Mu) = 0 implies that
Mu = u. Thus, Mu = Lu = u.
Therefore, Ju = Lu = Ku =Mu = u, that is, J, L,K and
M have a common fixed point u.
Uniqueness:
Suppose the mappings J, L,K and M have two common
fixed points u and z(u ̸= z). Then, from condition (2), we
get

d(u, z) = d(Ku,Mz) ≤ ϕ(m(u, z))

where
m(u, z) = max{d(Ju, Lz), d(Ju,Ku), d(Lz,Mz),

1

2
d(Ju,Mz),

1

2
d(Lz,Ku)}

= max{d(u, z), d(u, u), d(z, z),
1

2
d(u, z),

1

2
d(z, u)}

= max{d(u, z), d(u, u), d(z, z)}

If d(u, z) = m(u, z) implies that

d(u, z) ≤ ϕ(m(du, z)) < d(u, z)

which is a contradiction because ϕ is a contractive modulus.
Again, if d(u, u) = m(u, z) or d(z, z) = m(u, z), we can see
that it is a contradiction in both the cases. Thus, d(u, z) = 0
⇒ u = z.
Hence, J, L,K and M have a unique common fixed point
u.

Example 36. Consider the set X = (0, 1] equipped with the
usual metric defined by

d(a, b) = |a− b| ∀ a, b ∈ X.

Self-maps J, L,K,M of X are defined as follows:

Ja = La =

{
1
2 , if 0 < a ≤ 1

2

2
3 , if 1

2 < a ≤ 1.

and

Ka =Ma =

{
1− a, if 0 < a ≤ 1

2

a, if 1
2 < a ≤ 1.

Then, K(X) = M(X) = [ 12 , 1] and J(X) = L(X)
= { 1

2 ,
2
3}

Clearly, J(X) ⊆ M(X) and L(X) ⊆ K(X). Next,
Consider a sequence {an}, where

an =
1

2
− 1

5n

for n ≥ 1 . Then,

J(
1

2
) = K(

1

2
) =

1

2

so that
JK(

1

2
) =

1

2

and
KJ(

1

2
) =

1

2
.

Also,
L(

1

2
) =M(

1

2
) =

1

2

so that
LM(

1

2
) =

1

2

and
ML(

1

2
) =

1

2
.

Further,
d(Ja, La) =| 1

2
− 2

3
|= 1

6

and

d(Ka,Ma) =| 1− a− a |=| 1− 2a |≤ d(Ja, La)

∀ 0 < a ≤ 1. Taking ϕ = 1, the contractive result holds.
Hence, J, L,K,M have a unique common fixed point 1

2 .

Example 37. Assume X = [0,∞) with the usual metric
d(a, b) = |a − b| ∀ a, b ∈ X . We define self-maps J, L,K
and M of X by

Ja =
a

3
, La =

a

6
,Ka =

a

24
,Ma =

a

36
.
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Clearly, all the conditions of Theorem 35 are satisfied with
ϕ = 1. Hence, 0 is unique common fixed point of J, L,K
and M in X .

Presented below are the corollaries:

Corollary 38. Consider a complete dislocated cone metric
space (X, d) over Banach algebra A where B be the under-
lying solid cone and e is a unit. Suppose that J,K and M
are three self-mappings of X fulfilling the conditions below:

1) M(X) ⊆ J(X) and K(X) ⊆ J(X)
2) d(Ka,Mb) ≤ ϕ(m(a, b)), ϕ is upper semi-continuous

contractive modulus and
m(a, b) = max{d(Ja, Jb), d(Ja,Ka), d(Jb,Mb),

1
2d(Ja,Mb), 12d(Jb,Ka)}

3) (K,J) and (M,J) are weakly compatible, then J,K
and M have a unique common fixed point.

Proof: Take J = L in Theorem (35) then we get the
desired result.

Corollary 39. Consider a complete dislocated cone metric
space (X, d) over Banach algebra A where B be the under-
lying solid cone and e is a unit. Let J and K be two self
mappings of X such that:

1) K(X) ⊆ J(X).
2) d(Ka,Kb) ≤ ϕ(m(a, b)), ϕ is upper semi-continuous

contractive modulus and
m(a, b) = max{d(Ja, Jb), d(Ja,Ka), d(Jb,Kb),

1
2d(Ja,Kb),

1
2d(Jb,Ka)}

3) The pairs (K,J) is weakly compatible, then J and K
have an unique common fixed point.

Proof: Take J = L and K = M in Theorem (35) then
we get the desired result.

Corollary 40. Consider a complete dislocated cone metric
space (X, d) over Banach algebra A where B be the under-
lying solid cone and e is a unit. Let K and M be two self
mappings in X such that:

1) d(Ka,Mb) ≤ ϕ(m(a, b)), ϕ is upper semi-continuous
contractive modulus and
m(a, b) = max{d(a, b), d(a,Kb), d(a,Mb),

1
2d(a,Mb), 12d(b,Ka)}

2) (K, I) and (M, I) are weakly compatible. Then K and
M have a unique common fixed point.

Proof: Take J = L = I in Theorem (35) then we get
the desired result.

Corollary 41. Consider a complete dislocated cone metric
space (X, d) over Banach algebra A where B be the un-
derlying solid cone and e is a unit. Consider a mapping
K : X → X such that
d(Ka,Kb) ≤ ϕ(m(a, b)), ϕ is upper semi-continuous con-
tractive modulus and
m(a, b) = max{d(a, b), d(a,Kb), d(a,Mb),

1
2d(a,Kb),

1
2d(a,Kb)}.

Then, K has a unique fixed point.

Proof: Take M = K in Theorem (35) then we get the
desired result.

V. CONCLUSION

The goal of this study is to look into common fixed point
theorems and fixed point theorems for weakly compatible

mappings in dislocated cone metric space over Banach
algebra. In this study, we successfully established the unique
common fixed point for four self-mappings that satisfy
certain contractive conditions over a Banach algebra. We also
had successfully dicovered the unique common fixed point
for four self-mappings that satisfy certain contractive condi-
tions and α-property in a cone metric space. The inclusion
of illustrative examples bolstered the validity of our findings.
We anticipate that our findings will aid in ascertaining the
presence of solutions to mathematical representations of real-
life scenarios.
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