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Abstract—Big data has made analyzing redundant and dis-
tributed data a significant challenge. This article presents a
new method to determine the optimal subset of redundant
distributed data. This method is based on PPC algorithms,
which allow it to extract valuable insights from redundant data,
making it easier to estimate the optimal data subset. Testing has
shown that this method improves data quality and enhances
data utilization and performance evaluation.

Index Terms—Distributed redundant data, optimal subset
test, PPC method, performance evaluation.

I. INTRODUCTION

THE novelty of this research is the selection of an
optimal subset. Our method differs from past methods

that may include extra information. We select the subset
using the intersection of two estimation algorithms, which
forms our optimization scheme. An advantage of this method
is that it uses a small amount of data to contain a significant
amount of information, leading to much better outcomes than
previous work.

Research in distributed data explores divide-and-conquer
algorithms. It studies communication strategies to optimize
big data statistics. Two communication algorithms are exam-
ined. Optimal subset selection is a strategy for managing big
data. A method called leverage is proposed for subsampling.

The research explores principal component analysis and
algorithmic aspects for data distributed across servers. Vari-
ational Bayesian formulations are applied to derive optimal
probability distributions for regression parameters. Other
advancements include partitioned quasi-likelihood, parallel
statistical computing, parallel maximum likelihood estima-
tion, and distributed online EM. These contribute to efficient
and accurate insights from big data. The article proposes a
distributed algorithm PPC for subset selection and prediction
in linear models. It uses LIC as a comparison method.

In the realm of distributed statistical inference, Guo et
al.[1] introduced LIC method, which has enhanced the
efficiency of statistical inference in big data environments.
Guo et al. [2] devised an optimization program for dis-
tributed interval estimation problems, leading to improved
estimation accuracy. The literature also includes references
to Guo et al. [3]–[5] and Ma et al. [6]. These methodologies
collectively provide effective statistical inference tools for
handling large-scale distributed data.
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A. Linear model

The model utilizing multiple linear regression is

Y = β0 + β1X1 + · · ·+ βKXK + ε.

In practice, we employ a distributed method to divide the
original data matrix into K blocks by utilizing a sequence
of projection matrices {Rk}Kk=1. The process of partitioning
the original data matrix into K blocks is achieved through
the following transformations

YIk = RkY,XIk = RkX, εIk = Rkε,

where YIk and XIk represent the nIk × p submatrices of
Y and X , nIk ≥ p. Additionally, εIk denotes the sub-
residual vector. The original data is divided into K blocks
using distributed computing methods. Since this process is
conducted independently on the K machines, each machine
yields a processed data subset. Therefore, after applying
the optimization method, the data subsets residing on the
K machines can be expressed as QIk = (YIk , XIk), QIk

denotes the data subset on the k − th machine, where YIk

and XIk represent the response variable and feature vari-
ables of that subset, respectively. The subscript Ik indicates
that this is the k − th subset and implicitly suggests that
each subset may contain only a portion or specific part
of the original dataset Q. In summary, the entire dataset
Q = (Y,X) = {(YIk , XIk)}

K
k=1 is segmented into K parts

and processed in parallel on K machines.

B. Our work

Firstly, the PPC algorithm is introduced as a means to
filter the best subsets by intersecting the subsets derived from
two specified criteria. This algorithm boasts the advantage
of shortening the subset length without compromising esti-
mation accuracy, thereby enhancing overall work efficiency.

Secondly, the study examines how explanatory variables,
sample size, and dimensionality affect the PPC. Results
show that the PPC method’s estimation accuracy improves
with larger sample sizes. Additionally, as dimensionality
increases, PPC’s estimation accuracy also rises. A compari-
son between PPC and LIC methods further confirms PPC’s
effectiveness and superiority.

Ultimately, the proposed method not only enhances di-
mensionality reduction efficiency but also boosts estimation
accuracy while significantly decreasing computational load.

We have developed the code into an R package named
PPCDT.

II. METHOD AND THEOREM

The model is YIk = XIkβ + εIk where YIk is the
random response variable with observations distributed as
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YIk ∼ N
(
µIk , σ

2
Ik

)
, k = 1, ...,K , where µ̂Ik = XIk β̂Ik

and β̂Ik =
(
XT

Ik
XIk

)−1
XT

Ik
YIk . The estimator is

σ̂2
Ik

=
1

nIk − Pn

(
YIk −XIk β̂Ik

)T (
YIk −Xβ̂Ik

)
=

1

nIk − Pn
Y T
Ik

(
IIk −HIk

)
YIk .

For the projection matrix {Rk}Kk=1, it is obtained that
YIk = RkY,XIk = RkX, εIk = Rkε. The distributed
hypothesis testing is

HIk0:AIkβ ≤ bIk , HIk1:AIkβ > bIk

where AIk = RkA, bIk = Rkb, then

β̂Ik(ĤIk0) = β̂Ik−

(XT
Ik
XIk)

−1AT
Ik

(
AIk(X

T
Ik
XIk)

−1AT
Ik

)−1
(
AIk β̂Ik − bIk

)
,

σ̂2
Ik

(
HIk0

)
=

1

nI − Pn

(
YIk −XIk β̂Ik

(
HIk0

))T (
YIk −XIk β̂Ik(HIk0)).

In the case where the null hypothesis holds true, the t-test
statistic is

TIk =
(AIk β̂Ik − bIk)/(σIk/

√
nIk)√

S2
Ik
/σ2

Ik

.

The F-test statistic would be expressed as

FIk =
(σ̂2

Ik
(HIk0)− σ̂2

Ik
)/(σ2

Ik
·m)

σ̂2
Ik
/(σ2

Ik
· (nIk − Pn))

∼ FIk(m,nIk − Pn)

where S2
Ik

is the variance of the k− th block of the sample
matrix.

Different tests can lead to different conclusions for a given
sample. Test power is a crucial metric for assessing the
effectiveness of a test, and a higher value indicates greater
efficiency. Assuming the rejection region of the test is W ,
and the sample observations are X , the power of the test
represents the probability of correctly rejecting H0 when H1

is true. The power g(β) can be written as 1 − γ(β) where
γ(β) is the probability of accepting H0 when β belongs to
H1:

g(β) = 1− γ(β) = 1− Pβ(acceptH0|β ∈ H1).

For the hypothesis

HIk0,σ2
Ik

: σ2
Ik
(HIk0) ≤ σ2

Ik
, HIk1,σ2

Ik

: σ2
Ik
(HIk0) > σ2

Ik
,

where σ2
Ik
(HIk0) = σ2

a > σ2
Ik

, then

FIk =
(σ̂2

Ik

(
HIk0

)
− σ̂2

Ik
)/(σ2

Ik
·m)

σ̂2
Ik
/(σ2

Ik
· (nIk − Pn))

∼ FIk(m,nIk − Pn).

The probability is

γ
(
σ2
Ik
(HIk0)

)
= P (FIk < Fα(m,nIk − Pn)|σ2

a > σ2
Ik
).

Therefore, the power of the test is

g
(
σ2
Ik
(HIk0)

)
= 1−γ

(
σ2
Ik
(HIk0)

)
= 1−P (0 < FIk <

σ2
Ik

σ2
a

Fα).

For the subset sequence {Ik}Kk=1, the optimal indicator
subset based on maximum power is

I1F = argmax
Ik

{
1− P (0 < FIk <

σ2
Ik

σ2
a

Fα)
}
.

The hypothesis may be useful to consider that for a
particular parameter value µa. The t-test statistic is

TIk =
X̄Ik − µa

SIk/
√
nIk

, TIk ∼ N(0, 1).

Similarly, for the subset sequence {Ik}Kn

k=1, we select the
optimal indicator subset based on maximum power

I1t = argmax
Ik

{
1− ϕ

(
ta +

µIk0 − µa

sIk/
√
nIk

)}
.

When presenting the outcomes of hypothesis testing, it is
not only beneficial to rely on power but also to incorporate
the p-value. Furthermore, for each sample point (x, y), a
statistic W (X,Y ) is defined, and associated with this statis-
tic is a probability p(x, y), which represents the supremum of
the probability Pβ that W (X,Y ) exceeds or equals W (x, y)
over all possible parameter values β. W (X,Y ) is a statistic
defined as follows for each sample point (x, y)

p(x, y) = sup
β

Pβ(W (X,Y ) ≥ W (x, y)).

The optimal subset of indications is selected based on the
minimum p-value

I2F = argmin
Ik

{
P

{
(σ̂2

Ik
(HIk0)− σ̂2

Ik
)/(σ2

Ik
·m)

σ̂2
Ik
/(σ2

Ik
· (nIk − Pn))

> C1

}}
.

The optimal subset of indicator I2t based on the minimum
p-value such that the p-value corresponds to the test statistic,
exceeding a critical value C2, where I2t is

I2t = argmin
Ik

{
P

{
X̄Ik − µIk0

SIk/
√
nIk

> C2

}}
.

A novel method has been introduced for pinpointing
optimal subsets by seamlessly merging two distinct screening
criteria. This integration effectively removes any extraneous
information, leading to a substantial decrease in the number
of subsets. When it comes to distributed hypothesis testing,
a PPC criterion based on the intersection of maximum power
and minimum p-value is suggested. This criterion serves as
a robust tool in determining the most suitable subset.

I12FF = I1F ∩ I2F .

One subset can be identified as I1t and another subset that
satisfies the minimum p-value as I2t . The optimal indication
subset can be obtained by taking the intersection of these
two subsets

I12tt = I1t ∩ I2t .

In the aforementioned scenario, the intersection of two
subsets, each satisfying an identical test, yielded a subset that
met only one criterion. Alternatively, in the present context,
it is feasible to stipulate that the two subsets independently
fulfill the criteria of maximum power and minimum p-value.

The subsets I1t that satisfy the maximum power and I2F
that satisfy the test hypotheses while also adhering to the
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minimum p-value can be obtained by taking the intersection
of these two subsets

I12tF = I1t ∩ I2F .

Subsequently, the subset I12tF fulfills both the tests for
variance and mean, as well as the maximum power and the
minimum p-value. Similarly, the subset I1F satisfies the test
hypotheses while adhering to the minimum p-value.

The subset I1F and the subset I2t can be obtained by taking
the intersection of these two subsets

I12Ft = I1F ∩ I2t .

The subsets obtained in the previous steps are as follows:
Type1:I12tF , Type2:I12FF , Type3:I12Ft, Type4:I12tt .

Type3 and Type4 are theoretically superior to Type1 and
Type2 having higher accuracy.

III. SIMULATION

A. Preparatory work

The dataset (X,Y ) is produced by a linear model given
by YIk = XIkβIk + εIk where εIk ∼ N

(
0, σ2InIk

×nIk

)
,

k = 1, ...,K. In the simulation process, (X1, X2) is used
to construct X , and (Y1, Y2) is utilized to construct Y. The
dataset has the following definition

Y1 = X1βIk + ε1, ε1 ∼ N(0, 3),

Y2 = X2βIk + ε2, ε2 ∼ N(0, 10),

X1 = (X1ij) ∈ R(n−m)×p, X1ij ∼ N(0, 5),

where βIk ∼ Unif(−3, 3), ε ∼ (ε1, ε2). This can be
achieved by adjusting the values of n, p,K, ratio to observe
the changes in the simulation results, thereby determining
the optimal parameters.

Scenario 1: The parameters are set as n = 10, p = 8,
α = 0.05, and ratio = 0.05. In this scenario, n is varied to
1000, 2000, 3000, 4000, and 5000. Subsequently, we obtain
Figure 1 which illustrates the results.

Scenario 2: The parameters are set as K = 10, n = 3000,
α = 0.05, and ratio = 0.05, p is varied to 6, 7, 8, 9,
and 10. The resulting Figure 2 shows the outcomes of these
variations.

Scenario 3: The parameters are set as n = 3000, p = 8,
α = 0.05, and ratio = 0.05. In this scenario, K is varied
to 5, 10, 15, 20, and 25. Subsequently, we obtain Figure 3
which illustrates the results.

Scenario 4: The parameters are set as n = 3000, p = 8,
α = 0.05. In this scenario, ratio is varied to 0.02, 0.03,
0.04, 0.05, and 0.06. Subsequently, we obtain Figure 4 which
illustrates the results.

B. Simulation analysis

To evaluate the prediction accuracy in data simulation,
several metrics are considered: the MSE and MAE. The MSE
and MAE formulas related to error are as follows

MSE(Ŷ ) =
1

n

n∑
i=1

|Ŷi − Yi|2,

Fig. 1. The comparison results for Scenario 1 in Poisson distribution

Fig. 2. The comparison results for Scenario 2 in Poisson distribution

Fig. 3. The comparison results for Scenario 3 in Poisson distribution

MAE(Ŷ ) =
1

n

n∑
i=1

|Ŷi − Yi|.

Case 1. Poisson Distribution

X2 = (X2ij) ∈ Rm×p, X2ij ∼ Pois(λ).

Figure 1 indicate that the PPC outperforms the LIC no-
tably when n equals 2000. Specifically, the MSE and MAE
for the LIC are approximately 1.462 and 0.971, respectively,
whereas for Type 4, these values are reduced to 0.716
and 0.692. Similarly, when p is 9, the PPC demonstrates
significantly higher accuracy compared to the LIC. In this
scenario, the MSE and MAE for the LIC are 1.413 and 0.978,
respectively, whereas the MSE for Type 3 is 0.605 and the
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Fig. 4. The comparison results for Scenario 4 in Poisson distribution

Fig. 5. The comparison results for Scenario 1 in Exponential distribution

MAE for Type 1 is 0.610. Analysis of Figure 3 suggests
that the PPC exhibits greater stability than the LIC across
varying values of K. Furthermore, Figure 4 reveals that when
adjusting the proportion of redundant data, represented by
ratio, the performance of the LIC is particularly poor when
ratio is 0.04.

A detailed analysis of Figures 3 and 4 reveals that the
PPC shows more consistent performance than the LIC ,
especially under varying K. Notably, the performance of
LIC significantly deteriorates at a redundancy level of 0.04
in Figure 4, indicating its limitation in handling highly
redundant datasets.

These findings reinforce the notion that the PPC not only
excels in precision but also maintains a higher degree of
robustness and adaptability across varying levels of dataset
complexity and redundancy.

Case 2. Exponential Distribution

X2 = (X2ij) ∈ Rm×p, X2ij ∼ Exp(θ).

At first, our task is to create a data set based on the
exponential distribution, using a parameter value of θ = 5.

This process allows us to generate a random dataset that
accurately reflects specific parameters for our analysis.

Referring to Figure 5, it’s evident that the PPC performs
better than the LIC as the value of n increases. Specifically,
when n reaches 5000, the LIC’s MSE and MAE are ap-
proximately 1.242 and 1.044, respectively. The MSE of the
PPC ranges from 0.60 to 0.80, while its MAE consistently
remains below 0.80. This emphasizes that as n increases, the

Fig. 6. The comparison results for Scenario 2 in Exponential distribution

Fig. 7. The comparison results for Scenario 3 in Exponential distribution

Fig. 8. The comparison results for Scenario 4 in Exponential distribution

PPC demonstrates superior stability and accuracy compared
to the LIC. When p is set to 8 or 9, the MSE and MAE of
the LIC are relatively high, with the MSE peaking at 1.242.
In contrast, the maximum MSE of the PPC is 1.044.

Figure 7 offers additional insight, revealing that while the
error metrics of the LIC do decrease with an increase in K,
the PPC sustains a higher level of stability and consistently
outperforms with lower MSE and MAE values.

Lastly, Figure 8 explores variations in the proportion
of redundant data denoted as ratio. The PPC solidify its
position as a highly effective tool.

Case 3. Negative Binomial Distribution

X2 = (X2ij) ∈ Rm×p, X2ij ∼ NB(θ).
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Fig. 9. The comparison results for Scenario 1 in Negative Binomial
distribution

Fig. 10. The comparison results for Scenario 2 in Negative Binomial
distribution

Fig. 11. The comparison results for Scenario 3 in Negative Binomial
distribution

Our data set is generated by a foundation of the negative
binomial distribution, meticulously calibrated with parame-
ters γ = 10 and θ = 1. This method fosters the synthesis
of a randomized dataset meticulously tailored to conform
to these exact specifications, thereby establishing a robust
analytical baseline.

In Figure 9, the MSE and MAE related to the PPC show
a strong clustering effect, indicating increased stability. This
characteristic of the PPC becomes even more noticeable as
the variable K changes. Additionally, when we adjust the
ratio parameter, the MSE and MAE for LIC being much

Fig. 12. The comparison results for Scenario 4 in Negative Binomial
distribution

higher than those for the PPC.

IV. CONCLUSION

This paper delves into the examination of optimal subset
selection for distributed interval estimation and hypothe-
sis testing, utilizing fixed subset size processing as a key
methodology. Through rigorous analysis, It becomes clear
that the PPC method outperforms the LIC method, with
reductions in MSE and MAE indicating a minimum im-
provement of 30%. This performance advantage of the PPC
is further underscored by its notable stability across different
values of K.
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