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Fixed Point Theorems in Bicomplex Partial S
Metric Spaces and Applications to Boundary Value
Problems

M Madhuri and M V R Kameswari

Abstract—In this article, we extend the concept of bicomplex
partial metric space to bicomplex partial S metric spaces and
apply this extension to determine fixed points for generalized
contractions. Our findings extend and enhance existing results
in this field. To illustrate the significance and applicability of
our main result, we present several examples. Furthermore, our
results are employed to explore the existence of solutions for
two-point boundary value problems.

Index Terms—Bicomplex partial S metric space, Boundary
value problems, Fixed points, Generalized contractions.

I. INTRODUCTION AND PRELIMINARIES

N the advancement of special algebra, Serge[ll] cre-

ated a commutative generalization of complex numbers,
bicomplex numbers, tricomplex numbers, and so on, as
members of an infinite set of algebra. Various researchers,
such as Choi[2], Jebril[5], Beg[1], and Datta[3], have made
significant contributions by formulating fixed point theorems
in bicomplex-valued metric spaces. Recently, Gu et al.[4]
introduced the concept of bicomplex partial metric spaces
and established several fixed point theorems in this new
context.

In this paper, R, C; and C; represents the set of real num-
bers, complex numbers and bicomplex numbers respectively.

In [9,6] the set of bicomplex numbers defined as follows:

Co = {x : x = nmo+m i1+ n2ia + 131142, Where
70,71, 7M2,13 € R},

that is C2 = {X X = Cl + iQCQ, Cl,CQ c Cl},
where Cl = Mo + il m and CQ = 12 + i17]3 and il,ig
are an imaginary independent units such that ¥ = —1 = i3,
169 = i901.
The norm of a bicomplex number || x || is defined by
) 1
Ix =l G +iG =G lI*+ 1 Il?):?
1
= (16 + % +n3 +n3)*.
A bicomplex number x = ng + 11 t1 + N2l + N3i1%2

is degenerated [9] if the matrix ( ZO Zl ) is degener-
2 73

ated.
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For any two complex numbers p, 7 € Co, we have
DO0=pp=pr=lpl<|T]

@ p+rl<lpll+I7l

(i) [apl[<alpl ifceR

) 1| 2 1= 14

=P

Also, for p, 7 € Co, we have

@ [or I<V21p 7|

(@) || p7 1=l o Il 7 || whenever at least one of p and 7.

if 7 is a degenerated bicomplex number.

(iii) || p=1 ||=|| p ||* holds for any degenerated
bicomplex number.

In [2], the partial order relation on =;, is defined as
follows:

Let p = p1 +i2p2 € Cyand 7 = 11 + 1979 € Co, We
define a partial order relation on Cy as p =;, 7 if and only
if p1 =i, 71 and py =;, 7o, where =<;, is a partial order
relation in C; . Then

(1) Re(p1) = Re(m1) and Sm(p1) = Sm(m)
Re(pz2) = Re(12) and Sm(pz) = Sm(72)
(2) Re(p1) < Re(71) and Sm(p1) < Sm(m1)
Re(ps) = Re(12) and Sm(pa) = Sm(r2)
(3) Re(p1) = Re(r1) and Sm(p1) = Sm(m)
Re(pa) < Re(12) and Sm(p2) < Sm(72)
(4) Re(p1) < Re(my) and Sm(p1) < Sm(m)
Re(p2) < Re(72) and Sm(p2) < Sm(re).

We write p <;, 7 and p # 7 if any one of (1), (2) and (3)
is satisfied and p <, 7 if condition (4) is satisfied.

Throughout this paper, we denote:

(a) SMS as S - metric space;

(b) PSMS as partial S,, - metric space;

(¢) BCSMS as bicomplex Sps metric space;

(d) BCPSMS as bicomplex partial Sp,,s metric space;
(e) POSET as partial order set.

Definition I.1: ([10,7]) Let D be a non-empty set. If a
function S: D? — [1, 00) satisfies the following:

1 S(e,0,5) > 0;

2) S(0,0,6)=0iff p=0 =;
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3) S(o,0,¢) <S(0,0,k) +S(0,0,K) + 5(5,5, k),

for each g, 0,¢, and k € D. Then the pair (D, S) is referred
as SMS.

In several studies, comparisons between metrics and SMS
have been explored [13, 14, 15]. As noted in [15], an S-
metric can arise from the standard metric d. However, there
also exists an S-metric that does not arise from any metric
[15].

Definition 1.2: ([12]) Let D be a non-empty set. If a

function S,,: D3 — [1, 00) satisfies the following:

1) Sp(ga o, Q) = SP(Ua 070) = Sp(gv Q,O’) = Sp(ga O',§>
if and only if p =0 =¢;

2) Sp(0,0,0) < Spo,0,5);
3) Sp(gﬂ g, §) S SP(Q7 0, Q) +'SP(U7 g, «Q) +Sp(g7§7 Q)

—28,(0, 0, 0),

for each g, 0,¢, and ¢ € D. Then the pair (D, S,) is referred
as a PSMS. Clearly, each SMS is a PSMS with zero self
distance, but the converse of this fact need not be true [12].

Definition 1.3: ([16]) Let D be a non-empty set. If a
function

Sps: D? — C satisfies the following:

D) Sps(0,0.9) =4, 0;

2) Sps(o,0,6)=0iff o =0 =¢;

3) Sps(0,0,5)=i Sbs(0, 0, k) +8bs (0,0, 1) +Sps (S, S, k),

for each g, 0, ¢, and k € D. Then the pair (D, Sp) is referred
as BCSMS.

Definition 1.4: Let D be a non-empty set. If a function
Spps: D* — C5f satisfies the following:

Do = o =
prs ) = prs(o—» 070) = prs(§a§7§);

(0,00
2) Sips(0,0,0) =i, Seps(0,0,5);
3) prs(@

¢ if and only if Sps(0,0,6) =

, 0, §) j’ig prs(gv 0, Q) + prs(av g, Q)
+prs (§7 Sy Q) - Q-prs(g7 0, Q)’

for each g,0,¢, and ¢ € D. Then the pair (D, Spps) is
referred as BCPSMS.

A BCSMS is obviously a BCPSMS with self distance. A
BCPSMS does not have to be a BCSMS.

Example 1.5: Let D = R* and we define Spps: D3 — Cf
by Spps(0,0,¢) =240 — 0|+ |0 —<|+[c — of +i2(2+
lo—o|+ | —¢|+ |s — 0]), for each p,0,¢ € D.
Therefore Sy, is a BCPSMS, but it is does not have

to be a BCSMS, since Sps(0, 0, 0) = 2(1 + i2) # 0.
Example 1.6: Let D = R* and we define Syps: D> — Cf
by Spps(0,0,¢) = 2(maz{o, 0,5} +|o— 0|+ |0 — |+
s = ol) + § (maz{o,0,¢} + o — a| + |0 — s| +|s — o),
for each p,0,¢ € D.

Therefore Sy, is a BCPSMS, but it is does not have
to be a BCSMS, since Sps(0, 0, 0) = (#)Q, o #0.
Definition I.7: In a BCPSMS (D, S,5), a sequence
{on} converges to p € D if and only if Sp,s(0, 0, 0)
= lim Spps(0n; 0n,0) = lm Spps(0n, 0ns 0n)-
i.e. for each 0 <;, € € C; then there exist ng € N such
that

|[Sbps(0n; 0n, 0) — Sbps(0, 0, 0)|| <&, for all n > no.
Definition L.8: Let (D, Spps) be a BCPSMS. If K >;, 0
then the ball Bs, (0, ) with centre ¢ € D and radius
KC is known as an open ball, where
By, (0,K)={0 € X : Spps(0, 0,0) =i, Spps(0, 0, 0) + K},
for 0 <, K €Cy.
Lemma 1.9: Let (D, Spp) be a BCPSMS. A sequence
{on} € D converges to p € D if and only if Spps(0, 0, 0)
= lim Spps(on, 0n,0) = lm_ Spps(on, on, 0n)-
Proof. Let {p,} converges to .
Given any € > 0, let K = § +i15 +i25 + i1i25,
then 0 <,, K € C;.
For every K, then there exists ng € A such that
on € Bs,,,(0,K) , for all n > ny.

i.e., Spps(0ns 0ns 0) 2y K+ Spps(0, 0, 0)

= ||Spps(0n, 0ns 0) — Shps(0, 0, 0)|| <€

= |[Sbps (0n; 0ns 0n) — Spps(0, 0, 0)|| <e,
for all n > ng.
Thus lim Spps(0n, 0ns 0)= 1 Spps(0n, 0n; 0n)

= Sips(0,0,0).

Conversly, suppose that nhﬁrr;o Stps(0n, O 0)
= lim Spps(0n, 0n, 0n) = Sops(0, 0, 0)-
ie, for 0 <;, K € C, then there exists a real number
£ > 0 such that for all ¢ € C5, ||¢|| < € implies
¢ =i, K.
For € > 0, then there exists ng € A such that
||Sbps (@ns @ns 0) — Spps(0, 0, 0)|| <e and
[|Stps (0n, 0n> 0n) — Seps(0, 0, 0)|| < &, for all n > ny.
= Sips(0ns 0ns 0) Ziy K+ Sips(0,0,0), n > no.
Hence {p,,} is converges to a point p.
Lemma 1.10: For BCPSMS, we have
(@) Spps(0,0,0) = Spps(0, 0, 0).
(ii) Seps(0,0,0) =0 then p = 0.
Proof. (i) (a) Spps(0, 0,0)
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Sy Shps(0,0,0) + Sps(0, 0, 0) + Spps(0, 0, 0)
—2Sups(0, 0, 0)

= Sips(0,0,0).

(®) Spps(0, 0, 0)

2y Stps(0,0,0) + Spps(0,0,0) + Spps(0, 0,0)
—28pps(0,0,0)

= Sbps (0, 0,0).

From (a) and (b), we have Spps(0, 0,0) = Spps(0, 0, 0).

(i1) By the condition (2) of Definition 1.2, we have

ey

2

Sbps (0, 0, 0) Ziy Spps(0,0,0) = 0.
Stps(0,0,0) =i, Seps(o,0,0) =0.
From (1) and (2), we get o = 0.
Definition I.11: In a BCPSMS (D, S,5), a sequence
{on} C D is referred as a Cauchy’s sequence in (D, Spps)

if for each £ > 0, then there exists p € C5 and ng € N/
such that ||Spps(0n, 0n, 0m) — 9|| <€, for all n,m € N and
n,m > ng.

Definition 1.12: A BCPSMS (D, Sps) is complete if for
every Cauchy’s sequence in D is converges in D.

Lemma L.13: Let (D, Spps) be a BCPSMS and {p,} be
a sequence in D. Then {g,} is a Cauchy’s sequence in D if

and only if  lim_ Stps(0ns Ony 0m) = Sips(0, 0, 0).

Proof. Let {o,} be a sequence in D. Let ¢ > 0 then
there exists a real number K = § + 415 +i25 +41i25 then
0=, K€ C; and for this radius K there exists ng € N
such that g,, € Bs,,, (0m, ) for all m,n > ny.

ie., prs(@na On, Qm) =iy K+ prs(@v 0, Q)

= ||prs(Qn7 On, Qm) - prs(Qa 0, Q)H <€, for all m,n Z
no.

Therefore nh_}n;O Stps (0n, Ons 0m) = Seps (0 0, 0)-
Conversely, suppose that Spps(0n, 0n, 0m) = Seps(0, 0, 0)
as m,n — oo.

For each 0 <;, K € C, then there exists ¢ > o

such that for all ¢ € C, ||¢]| <& = ¢ =<, K.

For € > o, then there exists ng € A such that

[|Sbps(0ns Ons Om) — Spps (0, 0, 0)|| < €, for all m,n > ny.
Therefore Spps(0n, 0n, 0m) =iy K + Stps(0; 0, 0)s

for all m,n > ng.

Lemma 1.14: Let (D, Sp,s) be a BCPSMS. A sequence
{on} in D converges to o then p is unique.

Proof. Let a sequence {p,} in D converges to ¢ and o.
Based on the condition (i) of Lemma 1.10, we have

prs(@a 0, U)
jiz 2817178(@7 0, Qn) + prs(07 g, Qn) - 28bps(@n7 On; Qn)
ji2 Q(prs(gnv On, Q) - prs(@na On, Qn)>+

Stps (0, 0ny ) —Spps(0,0,0) + Spps(0, 0, 0).
Taking limit n — co, we have

Stps(0,0,0) =i, Spps(o,0,0).
Hence, Spps(0, 0,0) = Spps(0,0,0).
Similarly, we can show that Syps(0, 0,0) = Spps(0; 0, 0)-
Therefore Syps(0, 0,0) = Seps(0, 0,0)= Spps(0, 0, 0)-

Hence o = 0.

Theorem L.15: ([8]) Let a POSET (D, <) and assume that
(D, S*) is a complete PSMS with a partial S-metric S*
on D. Suppose O : D — D is a nondecreasing and
continuous mapping such that

S*(00,0¢,09) < komax{S*(o,s,v),S5*(c,0,00),
§(6,6,0%), 8 (¥, ¥, O9),
118%(0,0,6¢) + S*(0,0,09)]},
for all o,¢,9 € D with ¥ < ¢ <0 where 0 < k < 1.
If there exists an oy € D with g9 =< ©0y, then there
exists o € D such that ¢ = ©c. Moreover,
S*(o,0,0) =0.
Theorem I.16: ([4]) Let a complete BPMS (D, 9pc) and
two continuous mappings ¥, ) : D — D such that
0beb (Y, Q0) =i, 0.maz{opes(9, 0), Ober (@5 ¥o),

0beb(0,20), 5 [0ver (6, 20) + opes(0, ¥o)]},
for all ¢, 0 € D, where 0 < p < 1. Then, (¥, {2) has a
unique common fixed point and gy (0", ¢*) = 0.

By the motivation of the Theorem I.15 and Theorem I1.16,
in this paper we extend the notion of bicomplex partial metric
space [4] to BCPSMS and obtain fixed points for certain
contractions. To verify the importance and effectiveness of
our main result, examples are given. As a consequence of
our result, we study the existence solutions of a two point
boundary value problem.

II. MAIN RESULTS

Theorem IL.1: Let (D, Syys) be a complete BCPSMS and
a function £ : D — D be a continuous mapping such that

prs(5Q7 50-7 Eg)
jiz (e max{prs(Q7 g, C), prs (8§7 €<7 g@)a
prs(g‘;v EC, §), %prs(gQ 5§, 9)7

Stps($,6,E9) (1 + Spps(0,0,E0))
1+ prs(g> g, ()

for all p,0,¢ € D, where 0 < o < 1. Then & has a unique
fixed point in D.

2 3)

Proof: Let gy € D, define a sequence {g,} as:
On+1 = Eon,Vn € N. “4)
If 0, = 0n+1, then {p,} is a fixed point of &£ in D.

On 7é On+1, foralln e N .
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Consider Spps(0n, Ons On+1)

= Spps(E0n-1,€0n-1,E0n)

iy .max{Spps(0n—1, 0n—1,0n); Stps(E0n, Eon, E0n-1),
Sips(E0n: E0ns 0n)s 5Shps (E0n, E0n,y On-1),

Stps (0n,0n,E0n) (14+Spps (0n—1,0n-1,£0n-1)) }
1+prs(£)n71 7971,717971)

ji2 Oé~max{8bps(gn—la On—1, Qn)a prs(gn—o—h On+1, Qn)a

prs(QnJrlv On+1, Qn)7 %prs(QnJrlv On+1, anl)}a

Stps(0n,0n,0n+1)(1+Stps (0n—1,0n—1,0n)) }
1+Sbps(@n—1,0n—1,0n)

=iy .maz{Spps(0n—1, On—1, 0n), Sops (On+1, Ont1, On);
2 Sbps(Ont15 On+1: 0n—1); Stps (0n: Ons On+1)}
=iy maz{Spps(0n—1, 0n—1, 0n): Sbps(On+1, Ont1, Ont1)
+Sbps (On+1, Ont+1, On+1) + Sops(Ons Ons Ont1)
—28bps (041, Ont15 On+1); 3Stps (On+1, Ont1, On)
+Sbps(0nt15 0nt15 0n) + Shps(@n—1, 0n—1, 0n)
~284ps(0ns Ons 0n))s Shps(0ns Ons Ont1)}

=is a-max{sbps(:gnfla On—1, Qn>7 prs(Qna On» Qn+1),

1
g(Qprs(an On, Qn+1) + prs(Qn—lv On—1, Qn))}- (5)

Case(i). If maz{Spps(0n—1,0n—1,0n), Sops(0n, On, On+1),
2(280ps(0n, On, Ont1)+ Sops(0n—1,0n-1, 00))}
= Spps(0ns Ons On+1),
then from (5), we have
Stps(0ns 0n» Ont1) iy -Spps(0n, Ony Ont1),
which is contradiction, since o < 1.
Case(ii). If maz{Stps(0n—1, 0n—1,0n), Stps(0n, Ons On+1)s
5(28ps(0n> 0ns Ont1) + Stps(0n—1, 0n—1,0n))}
= Spps(On—1, 0n—1, 0n),
then from (5), we have
Stps(0ns Ons 0nt1) Ry -Stps(0n—1,0n-1,0n).  (6)
Case(iii). If maz{Spps(0n—1, 0n—1, 0n)s Shps(0n, 0n, On+1),
5(28ps(0n> 0ns Ont1)+ Shps(0n—1,0n-1,0n))}
= 3 (2Sbps(0ns 0n» Ont1)+ Stps(On—1+0n-1, 0n)),
then from (5) we have
Stps (0ns Ons Ont1) Ziy @5 (2Sbps(0ns 0ns Ont1)+
Sbps(On—1,0n—1,0n))
= 3Sups (0n, 0ns 0n11)Riy @-28bps(0ns Ons Ont1)
+Sups(0n—1, 0n—1, 0n)

«
:>Ss ny Uny Un '<i785 n—1,n—-1,U¢n)-
bps(On, 0 Q+1)_2(3—2a) bps (On—1, On—1, On)
(7N
Since o < 1, Wehaveﬁ<1.
Let A = Max{a, ﬁ}

Therefore from (6) and (7), we have
Stps(0n) Ons Ont1) iy AStps(0n—1,0n-1,0n). (8)
Similarly,
Sbps(0n+1, On+1, Ont2) Ziy A\-Sops(0n, Ons Ont1). (9)
Then from (8) and (9), we can conclude that
Stps(0n, Ony On+1) =iy Stps(On—1, 0n—1,0n)
for all m € V.
Hence, for all n =0,1,2,..., we get
Sops(On+1; On+1, On+2) Sis A-Sops(0ns Ons On+1)
iy A(ASpps(0n-1,0n-1,0n))
=iz A2Sbps(0n—1,0n—1,0n))

=iy X" 8400, 00, 01)).  (10)

For m,n € N',m > n, we have
Stps(0n, 0ns Om)
=2 Sbps(0n; Ons Ont1) +Shps(0ns Ons On+1)

+Sbps(0m; Om Ont1)—=2Sbps (@n+1, Ont1, On1)
=iz 28bps(0n, 0ns 0nt1) + Sbps(On+1, 0nt15 0m)
=iy 20" Spps (00, 00, 01) 4 Sbps (0415, Ont1s Ony2)+

Stps (0On+1, Ont15 Ont2) + Sops(Oms Oms Ont2)

—28pps(0n+2, Ont2, Ont2)
=iy 22" Spps (00, 005 01) + 2N 1Sy (00, 00, 01)+

prs (Qn+2 y On+2, Qm)

Sy 2" + A L+ A, (00, 00, 01)

Sy 2.5 Sbps (00, 00, 01)-

Hence [[Syps (0n: 0ns 0m )| < 2.2 |Seps (00, 00, 01)]]
— 0 as n — oo.

Therefore {o,,} is a Cauchy’s sequence in D.

Since (D, Spps) is complete, then there exists ¢ € D such
that o, — ¢ as n — oco. And

Sbps (€)= I Spps(0n; 0n )
= lim Sys(0n, 0n, 0n) =0
In the view of continuous of &, it follows that
On+1 = E0n — ES as n — 0
ie., Spps(Es,Es,E¢) = Jim. Sps(Eon, Eon, £9)
= nler;Oprs(Sgn,Egn7Sgn) =0.
Let us consider

||prs(g<7g§7§)”
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< [Sbps (€5, Es, E0n) + Sops(Es, Es, Eon)
+Sbps (S, S, E0n) — 2Spps(E0n, E0n, E0n)|

< 2[|Sbps (E0n, E0ns ES)I| + [|Spps (656, @nt1)

< 2[|Seps(En, Eon, )| 4 [|Stps (@n+15 0nt1, )l

as n — oo, we obtain ||Syys(Es,Es,9)|| <0

Hence Sps(€5,E6,5) =0

=E¢=q.

Therefore ¢ follows as a fixed point of £ in D.

Uniqueness: Let i, v be two fixed points of £ in D, then
Ep = p and Ev = v. Consider

prs(é'u, gﬂa EV)
=iy .maz{Spps (1, 1, V), Spps (Ev, EV, E),
Seps (Ev, Ev, V), %prs (Ev,Ev, ),

Sbps (V,V,EV) (1+Sbps (1,414,E 1) }
(1+Sbps (p,1,v))

ji‘z oz.max{&,ps (:U’7 1y V)7 ‘prs (Vv v, :u')v

3Sbps (v, v, 10)}
=i €z {Sups (1 1,1), Sops (v, v, 1)}
Ziy -maz{Spps (1, 1, V), Sops (4, 115 V) }
=iy . Spps (ps 1, ),
which is contradiction. Hence p = v.
Therefore £ has a unique fixed point in D.

In the lack of the continuity criterion for mapping &, we
have the following theorem.

Theorem I1.2: Let (D, Syps) be a complete BCPSMS and
Sfunction £: D — D a mapping such that

prs (597 807 g§)
=iy a.maz{Spps(0,0,5), Spps(Es,E5,E0),

prs (gg, ggv C), %prs (Eq, ggv Q),

Sbps (6,6,E5)(14+Spps (0,0,E0)) }
1+Sbps(0,0,5) ’

forall p,0,¢ € D, where 0 < o < 1. Then & has a unique
fixed point in D.

Proof. Following from the Theorem IL.1, {p,} is a
Cauchy’s sequence in D.

Since D is complete, there exists ¢ € D such that o, — ¢
as n — oo.

Since £ is not continuous, we have Spp,(s,5,E5) =L >0
L = Spps(s,, )
=is Stps (S S, Ont1) + Spps (S, S, Ont1)+
Sips(E6, €S, 0nt1) = 28ups (Ont1, Ont1, On+1)
=is 28ps (65 S, 0n41) + Sops(E<,ES, 0nt1)
=is 28bps (S, S, Ont1) + Sops(On+1, Ont1,ES)
=iz 28bps (S, S, On+1) + Sops(Eon, E0n, ES)
)

jiz 2817178 Sy Sy On+1 + a.maw{SbPS(Qm On, <)7

(
(

prs (6§7 Sga SQ’R)) prs (5(, gga g)?

1 Sbps (5,5,E6) (1+Sbps (0n,0n,E0n))
ngps(gga 5§7 Qn)a = 1+prs(Q:~,Qm§) }

=is 2prs ((, Ss Qn+1) + O"max{‘sbps(gnv On, §),

prs (5§7 g§7 Qn+1)7 prs (ga Sy g§),

Sbps (5,6,E9) (1+Spps (0n:0n,0n+1)) }
14+5bps(0n;0n,S) ’

5 Sbps(0n, 0n, E5),
As n — oo, we have £ <, a.Sips(s, s, £9).
Therefore
2] < all]],
which is contradiction, since o < 1.

Then Spps(s,5,E5) =0
=& =¢
Hence ¢ is the fixed point of £ in D.

The uniqueness of the fixed point follows from above
Theorem 2.1.

Corollary I1.3: Theorem II.1 continues to be true if (3)
is replaced by

prs (595 Eo, gg)jiz OC-prs(Q, g, C),

for all p,0,¢ € D and 0 < « < 1. Then £ has a unique
fixed point in D.

Corollary I1.4: Theorem II.1 continues to be true if (3)
is replaced by

prs (597 507 gC)
=iy @ max{sbps(Qa g, §), prs(gga &, 59)7 prs(g§7 &g, §),
%'prs (Ega ‘SC? 9)}’

for all p,0,¢ € D and 0 < a < 1. Then £ has a unique
fixed point in D.

III. EXAMPLES

Example IIL1: Let D € [0,0) and we define S: D3 —
Cy by Sipale,0,6) = (1 +1i2)(Je — |+ |o )., for each
0,0, and ¢ € D.

Clearly Spps is a complete BCPSMS.

We define a mapping £: D — D by Ep = %1.

We now verify the inequality (3) with o = i.

pr5(€Q7 807 g§)

:prs(%lv%ﬂ’%)

1
= (L +a)[| 5 — < + 17 - <H)
= (1 i) {1255+ |55
= 11 +is)[lo— <] +]o —<]]
=iy @.Spps(0,0,5)
=is amaz{Spps(0,0,5), Sps(Es,Es, Ep),

Stps (£5,E6,5), £Sips (£, €5, 0),

Sbps (6,6,E6)(14+Spps (0,0,E0)) }
1+prs (Quo'S)

Hence & satisfies all the conditions of Theorem II.1, ’%’
follows as a unique fixed point of £.
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Example II1.2: Let D = [0, 1] and we define S: D3 —
[17 OO) by prs(Q7 g, §) = (1—|—22)ma:c{g, ag, g}a for each 0,0,
and ¢ € D.

Similarly, ¢ < ¢ the inequality (3) holds.
Case (iv): If 0,0 € [0,1],c € (1,1] and ¢ > 0,

Clearly Spps is a complete BCPSMS.
We define a mapping £: D — D by
2 .
& ifeel0,3)
i if e€(3.1]

We now verify the inequality (3) with a = 1.

Eo =

Case (i): If p,0,6 € [0,3] and 0 > o >, then

)
prs(ggv SU, gg)

=S5 %)

= (1+12)maa:{%2,%2,%}
= (1+12) %2
=1(1+1i2).0

ji2 %(1 + i2)ma’x{97 g, §}
jig a-prs(Qa a, §)
=iy .maz{Spps(0,0,5), Spps(Es,E5,E0),

prs (5(7 Sg, g)a %prs (8§7 ggy Q)a

Sbps (5,5,E5) (1+Sbps (0,0,E0)) }
1+Spps(0,0,5) :

Similarly, when ¢ < ¢ < ¢ the inequality (3) holds.

Case (ii): If p,0,¢ € (%7 1] and ¢ > o > ¢, then
Sips(E0,E0,E9)

= prs(iv %v %)

= (L+i)mar{s, 3, 3} = (L +i2).-5

=i 2(141i2).0

=iy 3-(1+i2)maz{p, 0,¢}

=i, a.Spps(0,0,9)

=iy .max{Spps(0,,5), Stps (s, Es, E0),

prs (£§7 EC, C), %prs (ggv EC, Q)a

Sps (6,6,E5)(14+Spps(0,0,E0)) }
1+Sbps (0,0,5) '

Similarly, when ¢ < o < ¢ the inequality (3) holds.
Case (jii): If o € [0, 3],0,¢ € (3,1] and o >, then
Sips(E0,E0,E9)

= prs(%:v %7 %)

=(1+ ’iz)mal‘{%27 L =01+4).1

=iy %(1 +i9).0

=is %(1 + ig)maz{o, 0,5}

=i .Spps(0,0,¢)

=iy .max{Spps(0,0,5), Stps(Es, Es, E0),

Stps(£6,E6,6), 3Stps (£, €5, 0),

Sips (5,5,E9) 1+Spps (0,0,E0)) }
1+Spps(0,0,5) :

then

L
= (1+i)mar{%, %, 1} = (1+i2).g
=iy 3(1+1i2)c

=iy %(1 + i9)maz{o,0,¢}

=iy .Spps(0,0,¢)

=iy .maz{Spps(0,0,5), Spps(Es,E5,E0),

prs (5(7 Eg, g)a %prs (8§7 g§7 Q)a

Sbps ($,5,E¢)(1+Spps (0,0,E0)) }
1+Spps(0,0,5) .

Similarly, when g < o, the inequality (3) holds.

Case (v): If 0,6 € [0,3],0€ (3,1] and 0 >,
then

prs (697 50'7 Eg)

_ 1 0% ¢
- prs(Zv 279

)
= (L+ig)maz{}, 5. 5} = (1+i2)-5
=iy 3(1+142).0
=is %(1 + ig)maz{o, 0,5}
=iy .Spps(0,0,9)
=iy .maz{Spps(0,0,5), Spps(Es,E5, E0),

prs (6(, Ega g)a %prs (€§, Ega Q)a

Stps (5,5,E5)(14Sbps(0,0,E0)) }
1+Sbps(0,0,5) )

Similarly, when o < ¢ the inequality (3) holds.

Case (vi): If ¢ € [0, 3],0,0 € (3,1] and 0 > o,
then

Stps(£0,E0,E9)

= prs(i? %7 %)

= (1 +ig)mar{}, §, 5} = (1 +i2).]

=iy 3(141i2).0

<is %(1 + i9)maz{o,0,¢}

=iy a.Spps(0,0,9)

=iy amaz{Spps(0,0,5), Spps(Es,Es, E0),
Stps (£5,E6,5), 1 Sips (€6, €5, 0),

Spps (5,6,E6)(14+Spps(0,0,E0)) }
1+Spps(0,0,5) :

Similarly, when ¢ < o the inequality (3) holds.

Case (vii): If o € [0, 1], 0, € (3,1] and 0 > ¢,
then

prs (5Q7 807 gg)

2
= prs(iv %7 %)

2

= (1+ix)maz{3,%, 1} = (1+i2).5
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=i, 5(1+1i2).0

is %(1 + ig)maz{o,o,¢}

=iy @.Spps(0,0,5)

=iy a.maz{Spps(0,0,5), Spps(Es,E5,E0),

prs (5§7 g<7 §), %prs (5§a gg, Q)a

Stps(5,5,E5) (1+Sbps(0,0,E0)) }
1+Spps (0,0,9) :

Similarly, when g < ¢ the inequality (3) holds.

Case (viii): If 0,c € [0,3],0 €
Stps(E0,E0,E9)

2 2
= prs(%7 %7 %)

. 2 2
= (1 +imaz{4,1, 9} =
ji2 %(1 + ’ig).O’

jig %(1 + z'z)max{g, a, §}

(3,1] and o > g, then

(1+41i2).2

in a'prs(Q7 g, <)
=iy .maz{Spps(0,0,5), Spps(Es,Es, E0),
prs(€§7 gg, §), %prs(g§7 ggy Q),

prs (§1<75§)(1+prs (‘77‘77817)) }
1+Spps(0,0,5) :

Similarly, when ¢ < ¢ the inequality (3) holds.

Hence & satisfies all the conditions of Theorem II.1, °0’
follows as a unique fixed point of &£.

IV. APPLICATIONS

In this section, we obtain solution of the following two
point boundary value problem

o
dw?

= _]:(wvg(w))’ (11)

for each w € [0,1] and the initial conditions are p(0) =
o(1) =0.

The Green’s function corresponding to given differential
equation is

w(l—kK)

k(1 —w)

if0<w<k<1
G(w,k) = (12)

if 0<kr<w<l1
The solution of (11) is the same as finding the solution
o(w) of the given integral equation
w) = fol G(w, k)F(k, o(k))dr, for each w € [0, 1].

Let U = C([0,1],R) be the class of all real valued
continuous functions on [0,1]. We define =<;, in C; by
0 R, o if and only if o < 0.

Define Spps : U x U — C;“ defined by Spps(0,0,6) =
(1 +i2)[|lo—s|+ |o —s| + 2], for each g, and ¢ € U.

We define a operator £ : U{ — U by

_ /O G(w, 8)F(k, o(r))dr, (13)

for each w € [0, 1].
Clearly the solution of (11) is a fixed point of £.

Theorem IV.1: Consider the differential equation (11).
Suppose that:

[ F(k; 0(r)) = F(r, s(0))| + | F(k, 0 (k) = F(, 5 (k)|
—s(R)| +lo(r) = <(r)[}.

Then the integral operator defined as in (13) has a unique
solution.

Proof. We define a BCPSMS on U/ by
(1+i2)[lo — |+ o — <[ +2],
for each p,0 and ¢ € U.
Clearly Sy, is a complete BCPSMS.
Spps(E0(r), Ea(k), E(k))
= (1 +1i2)[[€a(r) — Ec(k)| + |€a(k) — Ec(k)| + 2]
= (L4 id)[| fy G(w, 1)(F(5, 0(k)) = F(r,(x)))dn|+
[ Jo Gl k)(F (0 (k) = Flr,5())dr] +2)
= (1+i2)[fy G(w, k)dr(|F (k, o(k)) — F(r,s(x))|+
|F(r, 0(r)) = F(r, s (k)] +2)]
=i, (L+i2) g G(w, m)dr.(maz{o(x)
+lo(k) —<(r)] +2)]
(1+1i9) fo (w,k)dk + f(j G(w, k)dK).
maz{|o(r) — (k)| + |o(r) = <(k)[ + 2]
=i (L i)[(Jy RO = w)dr + [ w(l — K)dr)
maz{|e(r) — (k)| + |o(r) = <(k)[ + 2]
ia (Lri2)[(§ =5 )maz{|o(r) =< (k)| +]o (k) ~<(w)|+2]
i2)llo(r) = <(k)| +|o(k) — <(k)| + 2]}
ia §maz{Spps(0(k), 0(k),<(r)}
=i, gmaz{Syps(o(k), o (), <(K)),
Sops (Es(k), E¢(k), E0(K)), Stps (E6(k), E<(k),
)

1 Sps(Ec(k), Es(k), o(k)),

Sops ((5(£),5(£),E5(K)) [148bps (0(£),0(x),E () }
1+Spps (0(k),0(k),5(K)) ’

=i, maz{|o(x)

prs(Q7 g, <) =

—<(®)]

in %.maas{(l

s(k)),

G(w, k)dk = L.

1
we note that SUPwe[0,1] fo 3

Hence, £ satisfies all the conditions of Theorem II.1, then
the function £ has a unique fixed point. As a result, the
integral equation (11) has a solution in U/, ensuring the
existence of a solution to the integral equation (11).

V. CONCLUSIONS

We extend the concept of a bicomplex partial S-metric
space and establish the existence of fixed points for certain
generalized contraction mappings. The bicomplex partial
S-metric space is particularly significant, as it does not
necessarily arise from any standard metric space, making it a
compact and unique framework. Through illustrative exam-
ples, we demonstrated that these extensions, improvements,
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and generalizations are valid and meaningful. The paper
concludes by addressing a boundary value problem, and the
results offer a concrete approach for further exploration in
this emerging area of bicomplex partial S-metric theory.
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