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Abstract—In this article, we extend the concept of bicomplex
partial metric space to bicomplex partial S metric spaces and
apply this extension to determine fixed points for generalized
contractions. Our findings extend and enhance existing results
in this field. To illustrate the significance and applicability of
our main result, we present several examples. Furthermore, our
results are employed to explore the existence of solutions for
two-point boundary value problems.

Index Terms—Bicomplex partial S metric space, Boundary
value problems, Fixed points, Generalized contractions.

I. INTRODUCTION AND PRELIMINARIES

IN the advancement of special algebra, Serge[11] cre-
ated a commutative generalization of complex numbers,

bicomplex numbers, tricomplex numbers, and so on, as
members of an infinite set of algebra. Various researchers,
such as Choi[2], Jebril[5], Beg[1], and Datta[3], have made
significant contributions by formulating fixed point theorems
in bicomplex-valued metric spaces. Recently, Gu et al.[4]
introduced the concept of bicomplex partial metric spaces
and established several fixed point theorems in this new
context.

In this paper, R, C1 and C2 represents the set of real num-
bers, complex numbers and bicomplex numbers respectively.

In [9,6] the set of bicomplex numbers defined as follows:

C2 = {χ : χ = η0 + η1 i1 + η2i2 + η3i1i2, where
η0, η1, η2, η3 ∈ R},

that is C2 = {χ : χ = ζ1 + i2ζ2, ζ1, ζ2 ∈ C1},

where ζ1 = η0 + i1 η1 and ζ2 = η2 + i1η3 and i1, i2
are an imaginary independent units such that i21 = −1 = i22,
i1i2 = i2i1.

The norm of a bicomplex number ∥ χ ∥ is defined by

∥ χ ∥=∥ ζ1 + i2ζ2 ∥= (∥ ζ1 ∥2 + ∥ ζ2 ∥ |2) 1
2

= (η20 + η21 + η22 + η23)
1
2 .

A bicomplex number χ = η0 + η1 i1 + η2i2 + η3i1i2

is degenerated [9] if the matrix
(
η0 η1
η2 η3

)
is degener-

ated.
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For any two complex numbers ρ, τ ∈ C2, we have

(i) 0 ≺i2 ρ ≺i2 τ ⇒∥ ρ ∥≤∥ τ ∥

(ii) ∥ ρ+ τ ∥≤∥ ρ ∥ + ∥ τ ∥

(iii) ∥ αρ ∥≤ α ∥ ρ ∥, if α ∈ R

(iv) ∥ ρ
τ ∥= ∥ρ∥

∥τ∥ , if τ is a degenerated bicomplex number.
Also, for ρ, τ ∈ C2, we have

(i) ∥ ρτ ∥≤
√
2 ∥ ρ ∥∥ τ ∥.

(ii) ∥ ρτ ∥=∥ ρ ∥∥ τ ∥ whenever at least one of ρ and τ .

(iii) ∥ ρ−1 ∥=∥ ρ ∥−1 holds for any degenerated
bicomplex number.

In [2], the partial order relation on ⪯i2 is defined as
follows:

Let ρ = ρ1 + i2ρ2 ∈ C2 and τ = τ1 + i2τ2 ∈ C2, we
define a partial order relation on C2 as ρ ⪯i2 τ if and only
if ρ1 ⪯i1 τ1 and ρ2 ⪯i1 τ2, where ⪯i1 is a partial order
relation in C1 . Then

(1) Re(ρ1) = Re(τ1) and ℑm(ρ1) = ℑm(τ1)

Re(ρ2) = Re(τ2) and ℑm(ρ2) = ℑm(τ2)

(2) Re(ρ1) < Re(τ1) and ℑm(ρ1) < ℑm(τ1)

Re(ρ2) = Re(τ2) and ℑm(ρ2) = ℑm(τ2)

(3) Re(ρ1) = Re(τ1) and ℑm(ρ1) = ℑm(τ1)

Re(ρ2) < Re(τ2) and ℑm(ρ2) < ℑm(τ2)

(4) Re(ρ1) < Re(τ1) and ℑm(ρ1) < ℑm(τ1)

Re(ρ2) < Re(τ2) and ℑm(ρ2) < ℑm(τ2).

We write ρ ≺i2 τ and ρ ̸= τ if any one of (1), (2) and (3)
is satisfied and ρ ≺i2 τ if condition (4) is satisfied.

Throughout this paper, we denote:

(a) SMS as S - metric space;

(b) PSMS as partial Sp - metric space;

(c) BCSMS as bicomplex Sbs metric space;

(d) BCPSMS as bicomplex partial Sbps metric space;

(e) POSET as partial order set.

Definition I.1: ([10,7]) Let D be a non-empty set. If a

function S: D3 → [1,∞) satisfies the following:

1) S(ϱ, σ, ς) ≥ 0;

2) S(ϱ, σ, ς) = 0 iff ϱ = σ = ς;
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3) S(ϱ, σ, ς) ≤ S(ϱ, ϱ, κ) + S(σ, σ, κ) + S(ς, ς, κ),

for each ϱ, σ, ς, and κ ∈ D. Then the pair (D,S) is referred
as SMS.

In several studies, comparisons between metrics and SMS
have been explored [13, 14, 15]. As noted in [15], an S-
metric can arise from the standard metric d. However, there
also exists an S-metric that does not arise from any metric
[15].

Definition I.2: ([12]) Let D be a non-empty set. If a

function Sp: D3 → [1,∞) satisfies the following:

1) Sp(ϱ, ϱ, ϱ) = Sp(σ, σ, σ) = Sp(ϱ, ϱ, σ) = Sp(ϱ, σ, ς)
if and only if ϱ = σ = ς;

2) Sp(ϱ, ϱ, ϱ) ≤ Sp(ϱ, ϱ, ς);

3) Sp(ϱ, σ, ς) ≤ Sp(ϱ, ϱ, ϱ) + Sp(σ, σ, ϱ) + Sp(ς, ς, ϱ)

−2Sp(ϱ, ϱ, ϱ),

for each ϱ, σ, ς, and ϱ ∈ D. Then the pair (D,Sp) is referred
as a PSMS. Clearly, each SMS is a PSMS with zero self
distance, but the converse of this fact need not be true [12].

Definition I.3: ([16]) Let D be a non-empty set. If a
function

Sbs: D3 → C+
2 satisfies the following:

1) Sbs(ϱ, σ, ς) ⪰i2 0;

2) Sbs(ϱ, σ, ς) = 0 iff ϱ = σ = ς;

3) Sbs(ϱ, σ, ς)⪯i2 Sbs(ϱ, ϱ, κ)+Sbs(σ, σ, κ)+Sbs(ς, ς, κ),

for each ϱ, σ, ς, and κ ∈ D. Then the pair (D,Sbs) is referred
as BCSMS.

Definition I.4: Let D be a non-empty set. If a function

Sbps: D3 → C+
2 satisfies the following:

1) ϱ = σ = ς if and only if Sbps(ϱ, σ, ς) =
Sbps(ϱ, ϱ, ϱ) = Sbps(σ, σ, σ) = Sbps(ς, ς, ς);

2) Sbps(ϱ, ϱ, ϱ) ⪯i2 Sbps(ϱ, ϱ, ς);

3) Sbps(ϱ, σ, ς) ⪯i2 Sbps(ϱ, ϱ, ϱ) + Sbps(σ, σ, ϱ)

+Sbps(ς, ς, ϱ)− 2.Sbps(ϱ, ϱ, ϱ),

for each ϱ, σ, ς, and ϱ ∈ D. Then the pair (D,Sbps) is
referred as BCPSMS.

A BCSMS is obviously a BCPSMS with self distance. A
BCPSMS does not have to be a BCSMS.

Example I.5: Let D = R+ and we define Sbps: D3 → C+
2

by Sbps(ϱ, σ, ς) = 2 + |ϱ− σ|+ |σ − ς|+ |ς − ϱ| +i2(2+

|ϱ− σ|+ |σ − ς|+ |ς − ϱ|), for each ϱ, σ, ς ∈ D.

Therefore Sbps is a BCPSMS, but it is does not have

to be a BCSMS, since Sbs(ϱ, ϱ, ϱ) = 2(1 + i2) ̸= 0.

Example I.6: Let D = R+ and we define Sbps: D3 → C+
2

by Sbps(ϱ, σ, ς) =
1
2 (max{ϱ, σ, ς}+ |ϱ− σ|+ |σ − ς|+

|ς − ϱ|) + i2
2 (max{ϱ, σ, ς}+ |ϱ− σ|+ |σ − ς|+ |ς − ϱ|),

for each ϱ, σ, ς ∈ D.

Therefore Sbps is a BCPSMS, but it is does not have

to be a BCSMS, since Sbs(ϱ, ϱ, ϱ) = ( 1+i2
2 )ϱ, ϱ ̸= 0.

Definition I.7: In a BCPSMS (D,Sbps), a sequence

{ϱn} converges to ϱ ∈ D if and only if Sbps(ϱ, ϱ, ϱ)

= lim
n→∞

Sbps(ϱn, ϱn, ϱ) = lim
n→∞

Sbps(ϱn, ϱn, ϱn).

i.e. for each 0 ⪯i2 ε ∈ C+
2 then there exist n0 ∈ N such

that

||Sbps(ϱn, ϱn, ϱ)− Sbps(ϱ, ϱ, ϱ)|| < ε, for all n ≥ n0.

Definition I.8: Let (D,Sbps) be a BCPSMS. If K ⪰i2 0

then the ball Bsb(ϱ,K) with centre ϱ ∈ D and radius

K is known as an open ball, where

Bsb(ϱ,K)={σ ∈ X : Sbps(ϱ, ϱ, σ) ⪯i2 Sbps(ϱ, ϱ, ϱ) +K},

for 0 ⪯i2 K ∈ C+
2 .

Lemma I.9: Let (D,Sbps) be a BCPSMS. A sequence

{ϱn} ∈ D converges to ϱ ∈ D if and only if Sbps(ϱ, ϱ, ϱ)

= lim
n→∞

Sbps(ϱn, ϱn, ϱ) = lim
n→∞

Sbps(ϱn, ϱn, ϱn).

Proof. Let {ϱn} converges to ϱ.

Given any ε > 0, let K = ϵ
2 + i1

ϵ
2 + i2

ϵ
2 + i1i2

ϵ
2 ,

then 0 ⪯i2 K ∈ C+
2 .

For every K, then there exists n0 ∈ N such that

ϱn ∈ BSbps
(ϱ,K) , for all n ≥ n0.

i.e., Sbps(ϱn, ϱn, ϱ) ⪯i2 K + Sbps(ϱ, ϱ, ϱ)

⇒ ||Sbps(ϱn, ϱn, ϱ)− Sbps(ϱ, ϱ, ϱ)|| < ϵ

⇒ ||Sbps(ϱn, ϱn, ϱn)− Sbps(ϱ, ϱ, ϱ)|| < ϵ,

for all n ≥ n0.

Thus lim
n→∞

Sbps(ϱn, ϱn, ϱ)= lim
n→∞

Sbps(ϱn, ϱn, ϱn)

= Sbps(ϱ, ϱ, ϱ).

Conversly, suppose that lim
n→∞

Sbps(ϱn, ϱn, ϱ)

= lim
n→∞

Sbps(ϱn, ϱn, ϱn) = Sbps(ϱ, ϱ, ϱ).

i.e., for 0 ⪯i2 K ∈ C+
2 , then there exists a real number

ε > 0 such that for all ζ ∈ C+
2 , ||ζ|| < ϵ implies

ζ ⪯i2 K.

For ε > 0, then there exists n0 ∈ N such that

||Sbps(ϱn, ϱn, ϱ)− Sbps(ϱ, ϱ, ϱ)|| <ε and

||Sbps(ϱn, ϱn, ϱn)− Sbps(ϱ, ϱ, ϱ)|| < ε, for all n ≥ n0.

⇒ Sbps(ϱn, ϱn, ϱ) ⪯i2 K + Sbps(ϱ, ϱ, ϱ), n ≥ n0.

Hence {ϱn} is converges to a point ϱ.

Lemma I.10: For BCPSMS, we have

(i) Sbps(ϱ, ϱ, σ) = Sbps(σ, σ, ϱ).

(ii) Sbps(ϱ, ϱ, σ) = 0 then ϱ = σ.

Proof. (i) (a) Sbps(ϱ, ϱ, σ)
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⪯i2 Sbps(ϱ, ϱ, ϱ) + Sbps(ϱ, ϱ, ϱ) + Sbps(σ, σ, ϱ)

−2Sbps(ϱ, ϱ, ϱ)

= Sbps(σ, σ, ϱ).

(b) Sbps(σ, σ, ϱ)

⪯i2 Sbps(σ, σ, σ) + Sbps(σ, σ, σ) + Sbps(ϱ, ϱ, σ)

−2Sbps(σ, σ, σ)

= Sbps(ϱ, ϱ, σ).

From (a) and (b), we have Sbps(ϱ, ϱ, σ) = Sbps(σ, σ, ϱ).

(ii) By the condition (2) of Definition I.2, we have

Sbps(ϱ, ϱ, ϱ) ⪯i2 Sbps(ϱ, ϱ, σ) = 0. (1)

Sbps(σ, σ, σ) ⪯i2 Sbps(σ, σ, ϱ) = 0. (2)

From (1) and (2), we get ϱ = σ.

Definition I.11: In a BCPSMS (D,Sbps), a sequence

{ϱn} ⊆ D is referred as a Cauchy’s sequence in (D,Sbps)

if for each ε > 0, then there exists ℘ ∈ C+
2 and n0 ∈ N

such that ||Sbps(ϱn, ϱn, ϱm)−℘|| < ϵ, for all n,m ∈ N and
n,m ≥ n0.

Definition I.12: A BCPSMS (D,Sbps) is complete if for
every Cauchy’s sequence in D is converges in D.

Lemma I.13: Let (D,Sbps) be a BCPSMS and {ϱn} be
a sequence in D. Then {ϱn} is a Cauchy’s sequence in D if
and only if lim

n→∞
Sbps(ϱn, ϱn, ϱm) = Sbps(ϱ, ϱ, ϱ).

Proof. Let {ϱn} be a sequence in D. Let ε > 0 then
there exists a real number K = ϵ

2 + i1
ϵ
2 + i2

ϵ
2 + i1i2

ϵ
2 then

0 ⪯i2 K ∈ C+
2 and for this radius K there exists n0 ∈ N

such that ϱn ∈ BSbps
(ϱm,K) for all m,n ≥ n0.

i.e., Sbps(ϱn, ϱn, ϱm) ⪯i2 K + Sbps(ϱ, ϱ, ϱ)

⇒ ||Sbps(ϱn, ϱn, ϱm)−Sbps(ϱ, ϱ, ϱ)|| < ϵ, for all m,n ≥
n0.

Therefore lim
n→∞

Sbps(ϱn, ϱn, ϱm) = Sbps(ϱ, ϱ, ϱ).

Conversely, suppose that Sbps(ϱn, ϱn, ϱm) → Sbps(ϱ, ϱ, ϱ)

as m,n→ ∞.

For each 0 ⪯i2 K ∈ C+
2 , then there exists ε > o

such that for all ζ ∈ C+
2 , ||ζ|| < ε⇒ ζ ⪯i2 K.

For ε > o, then there exists n0 ∈ N such that

||Sbps(ϱn, ϱn, ϱm)−Sbps(ϱ, ϱ, ϱ)|| < ϵ, for all m,n ≥ n0.

Therefore Sbps(ϱn, ϱn, ϱm) ⪯i2 K + Sbps(ϱ, ϱ, ϱ),

for all m,n ≥ n0.

Lemma I.14: Let (D,Sbps) be a BCPSMS. A sequence
{ϱn} in D converges to ϱ then ϱ is unique.

Proof. Let a sequence {ϱn} in D converges to ϱ and σ.
Based on the condition (i) of Lemma 1.10, we have

Sbps(ϱ, ϱ, σ)

⪯i2 2Sbps(ϱ, ϱ, ϱn) + Sbps(σ, σ, ϱn)− 2Sbps(ϱn, ϱn, ϱn)

⪯i2 2(Sbps(ϱn, ϱn, ϱ)− Sbps(ϱn, ϱn, ϱn))+

Sbps(ϱn, ϱn, σ) −Sbps(σ, σ, σ) + Sbps(σ, σ, σ).

Taking limit n→ ∞, we have

Sbps(ϱ, ϱ, σ) ⪯i2 Sbps(σ, σ, σ).

Hence, Sbps(ϱ, ϱ, σ) = Sbps(σ, σ, σ).

Similarly, we can show that Sbps(ϱ, ϱ, σ) = Sbps(ϱ, ϱ, ϱ).

Therefore Sbps(ϱ, ϱ, σ) = Sbps(σ, σ, σ)= Sbps(ϱ, ϱ, ϱ).

Hence ϱ = σ.

Theorem I.15: ([8]) Let a POSET (D,⪯) and assume that
(D,S∗) is a complete PSMS with a partial S-metric S∗

on D. Suppose Θ : D → D is a nondecreasing and
continuous mapping such that

S∗(Θσ,Θς,Θψ) ≤ κ.max{S∗(σ, ς, ψ),S∗(σ, σ,Θσ),

S∗(ς, ς,Θς),S∗(ψ,ψ,Θψ),

1
2 [S

∗(σ, σ,Θς) + S∗(σ, σ,Θψ)]},

for all σ, ς, ψ ∈ D with ψ ⪯ ς ⪯ σ where 0 < κ < 1.

If there exists an σ0 ∈ D with σ0 ⪯ Θσ0, then there

exists σ ∈ D such that σ = Θσ. Moreover,

S∗(σ, σ, σ) = 0.

Theorem I.16: ([4]) Let a complete BPMS (D, ϱbcb) and
two continuous mappings Ψ,Ω : D → D such that

ϱbcb(Ψϕ,Ωϱ) ⪯i2 ϱ.max{ϱbcb(ϕ, ϱ), ϱbcb(ϕ,Ψϕ),

ϱbcb(ϱ,Ωϱ),
1
2 [ϱbcb(ϕ,Ωϱ) + ϱbcb(ϱ,Ψϕ)]},

for all ϕ, ϱ ∈ D, where 0 ≤ ϱ < 1. Then, (Ψ,Ω) has a
unique common fixed point and ϱbcb(ϕ∗, ϕ∗) = 0.

By the motivation of the Theorem I.15 and Theorem I.16,
in this paper we extend the notion of bicomplex partial metric
space [4] to BCPSMS and obtain fixed points for certain
contractions. To verify the importance and effectiveness of
our main result, examples are given. As a consequence of
our result, we study the existence solutions of a two point
boundary value problem.

II. MAIN RESULTS

Theorem II.1: Let (D,Sbps) be a complete BCPSMS and
a function E : D → D be a continuous mapping such that

Sbps(Eϱ, Eσ, Eς)

⪯i2 α max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),

Sbps(ς, ς, Eς)(1 + Sbps(σ, σ, Eσ))
1 + Sbps(ϱ, σ, ς)

}, (3)

for all ϱ, σ, ς ∈ D, where 0 ≤ α < 1. Then E has a unique
fixed point in D.

Proof: Let ϱ0 ∈ D, define a sequence {ϱn} as:

ϱn+1 = Eϱn,∀n ∈ N . (4)

If ϱn = ϱn+1, then {ϱn} is a fixed point of E in D.

ϱn ̸= ϱn+1, for all n ∈ N .
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Consider Sbps(ϱn, ϱn, ϱn+1)

= Sbps(Eϱn−1, Eϱn−1, Eϱn)

⪯i2 α.max{Sbps(ϱn−1, ϱn−1, ϱn),Sbps(Eϱn, Eϱn, Eϱn−1),

Sbps(Eϱn, Eϱn, ϱn), 13Sbps(Eϱn, Eϱn, ϱn−1),

Sbps(ϱn,ϱn,Eϱn)(1+Sbps(ϱn−1,ϱn−1,Eϱn−1))
1+Sbps(ϱn−1,ϱn−1,ϱn)

}

⪯i2 α.max{Sbps(ϱn−1, ϱn−1, ϱn),Sbps(ϱn+1, ϱn+1, ϱn),

Sbps(ϱn+1, ϱn+1, ϱn),
1
3Sbps(ϱn+1, ϱn+1, ϱn−1)},

Sbps(ϱn,ϱn,ϱn+1)(1+Sbps(ϱn−1,ϱn−1,ϱn))
1+Sbps(ϱn−1,ϱn−1,ϱn)

}

⪯i2 α.max{Sbps(ϱn−1, ϱn−1, ϱn),Sbps(ϱn+1, ϱn+1, ϱn),

1
3Sbps(ϱn+1, ϱn+1, ϱn−1),Sbps(ϱn, ϱn, ϱn+1)}

⪯i2 α.max{Sbps(ϱn−1, ϱn−1, ϱn),Sbps(ϱn+1, ϱn+1, ϱn+1)

+Sbps(ϱn+1, ϱn+1, ϱn+1) + Sbps(ϱn, ϱn, ϱn+1)

−2Sbps(ϱn+1, ϱn+1, ϱn+1),
1
3Sbps(ϱn+1, ϱn+1, ϱn)

+Sbps(ϱn+1, ϱn+1, ϱn) + Sbps(ϱn−1, ϱn−1, ϱn)

−2Sbps(ϱn, ϱn, ϱn)),Sbps(ϱn, ϱn, ϱn+1)}

⪯i2 α.max{Sbps(ϱn−1, ϱn−1, ϱn),Sbps(ϱn, ϱn, ϱn+1),

1

3
(2Sbps(ϱn, ϱn, ϱn+1) + Sbps(ϱn−1, ϱn−1, ϱn))}. (5)

Case(i). If max{Sbps(ϱn−1, ϱn−1, ϱn),Sbps(ϱn, ϱn, ϱn+1),

1
3 (2Sbps(ϱn, ϱn, ϱn+1)+ Sbps(ϱn−1, ϱn−1, ϱn))}

= Sbps(ϱn, ϱn, ϱn+1),

then from (5), we have

Sbps(ϱn, ϱn, ϱn+1) ⪯i2 α.Sbps(ϱn, ϱn, ϱn+1),

which is contradiction, since α < 1.

Case(ii). If max{Sbps(ϱn−1, ϱn−1, ϱn),Sbps(ϱn, ϱn, ϱn+1),
1
3 (2Sbps(ϱn, ϱn, ϱn+1) + Sbps(ϱn−1, ϱn−1, ϱn))}

= Sbps(ϱn−1, ϱn−1, ϱn),

then from (5), we have

Sbps(ϱn, ϱn, ϱn+1) ⪯i2 α.Sbps(ϱn−1, ϱn−1, ϱn). (6)

Case(iii). If max{Sbps(ϱn−1, ϱn−1, ϱn),Sbps(ϱn, ϱn, ϱn+1),

1
3 (2Sbps(ϱn, ϱn, ϱn+1)+ Sbps(ϱn−1, ϱn−1, ϱn))}

= 1
3 (2Sbps(ϱn, ϱn, ϱn+1)+ Sbps(ϱn−1+ϱn−1, ϱn)),

then from (5) we have

Sbps(ϱn, ϱn, ϱn+1) ⪯i2 α.
1
3 (2Sbps(ϱn, ϱn, ϱn+1)+

Sbps(ϱn−1, ϱn−1, ϱn))

⇒ 3Sbps(ϱn, ϱn, ϱn+1)⪯i2 α.2Sbps(ϱn, ϱn, ϱn+1)

+Sbps(ϱn−1, ϱn−1, ϱn)

⇒ Sbps(ϱn, ϱn, ϱn+1) ⪯i2

α

(3− 2α)
Sbps(ϱn−1, ϱn−1, ϱn).

(7)
Since α < 1, we have α

(3−2α) < 1.

Let λ =Max{α, α
(3−2α)}.

Therefore from (6) and (7), we have

Sbps(ϱn, ϱn, ϱn+1) ⪯i2 λ.Sbps(ϱn−1, ϱn−1, ϱn). (8)

Similarly,

Sbps(ϱn+1, ϱn+1, ϱn+2) ⪯i2 λ.Sbps(ϱn, ϱn, ϱn+1). (9)

Then from (8) and (9), we can conclude that

Sbps(ϱn, ϱn, ϱn+1) ⪯i2 Sbps(ϱn−1, ϱn−1, ϱn),

for all n ∈ N .

Hence, for all n = 0, 1, 2, ..., we get

Sbps(ϱn+1, ϱn+1, ϱn+2)⪯i2 λ.Sbps(ϱn, ϱn, ϱn+1)

⪯i2 λ.(λ.Sbps(ϱn−1, ϱn−1, ϱn))

⪯i2 λ
2Sbps(ϱn−1, ϱn−1, ϱn))
.
.
.

⪯i2 λ
n+1Sbps(ϱ0, ϱ0, ϱ1)). (10)

For m,n ∈ N ,m > n, we have

Sbps(ϱn, ϱn, ϱm)

⪯i2Sbps(ϱn, ϱn, ϱn+1) +Sbps(ϱn, ϱn, ϱn+1)

+Sbps(ϱm, ϱm, ϱn+1)−2Sbps(ϱn+1, ϱn+1, ϱn+1)

⪯i2 2Sbps(ϱn, ϱn, ϱn+1) + Sbps(ϱn+1, ϱn+1, ϱm)

⪯i2 2λnSbps(ϱ0, ϱ0, ϱ1) + Sbps(ϱn+1, ϱn+1, ϱn+2)+

Sbps(ϱn+1, ϱn+1, ϱn+2) + Sbps(ϱm, ϱm, ϱn+2)

−2Sbps(ϱn+2, ϱn+2, ϱn+2)

⪯i2 2λnSbps(ϱ0, ϱ0, ϱ1) + 2λn+1Sbps(ϱ0, ϱ0, ϱ1)+

Sbps(ϱn+2, ϱn+2, ϱm)
.
.
.

⪯i2 2[λn + λn+1 + ...+ λm−1]Sbps(ϱ0, ϱ0, ϱ1)

⪯i2 2. λn

1−λSbps(ϱ0, ϱ0, ϱ1).

Hence ||Sbps(ϱn, ϱn, ϱm)|| ≤ 2. λn

1−λ ||Sbps(ϱ0, ϱ0, ϱ1)||

→ 0 as n→ ∞.

Therefore {ϱn} is a Cauchy’s sequence in D.

Since (D,Sbps) is complete, then there exists ς ∈ D such
that ϱn → ς as n→ ∞. And

Sbps(ς, ς, ς)= lim
n→∞

Sbps(ϱn, ϱn, ς)

= lim
n→∞

Sbps(ϱn, ϱn, ϱn) = 0.

In the view of continuous of E , it follows that

ϱn+1 = Eϱn → Eς as n→ ∞

i.e., Sbps(Eς, Eς, Eς) = lim
n→∞

Sbps(Eϱn, Eϱn, Eς)

= lim
n→∞

Sbps(Eϱn, Eϱn, Eϱn) = 0.

Let us consider

||Sbps(Eς, Eς, ς)||
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≤ ||Sbps(Eς, Eς, Eϱn) + Sbps(Eς, Eς, Eϱn)

+Sbps(ς, ς, Eϱn)− 2Sbps(Eϱn, Eϱn, Eϱn)||

≤ 2||Sbps(Eϱn, Eϱn, Eς)||+ ||Sbps(ς, ς, ϱn+1)||

≤ 2||Sbps(Eϱn, Eϱn, Eς)||+ ||Sbps(ϱn+1, ϱn+1, ς)||,

as n→ ∞, we obtain ||Sbps(Eς, Eς, ς)|| ≤ 0

Hence Sbps(Eς, Eς, ς) = 0

⇒ Eς = ς .

Therefore ς follows as a fixed point of E in D.

Uniqueness: Let µ, ν be two fixed points of E in D, then
Eµ = µ and Eν = ν. Consider

Sbps(Eµ, Eµ, Eν)

⪯i2 α.max{Sbps(µ, µ, ν),Sbps(Eν, Eν, Eµ),

Sbps(Eν, Eν, ν), 13Sbps(Eν, Eν, µ),
Sbps(ν,ν,Eν)(1+Sbps(µ,µ,Eµ)

(1+Sbps(µ,µ,ν))
}

⪯i2 α.max{Sbps(µ, µ, ν),Sbps(ν, ν, µ),
1
3Sbps(ν, ν, µ)}

⪯i2 α.max{Sbps(µ, µ, ν),Sbps(ν, ν, µ)}

⪯i2 α.max{Sbps(µ, µ, ν),Sbps(µ, µ, ν)}

⪯i2 α.Sbps(µ, µ, ν),

which is contradiction. Hence µ = ν.

Therefore E has a unique fixed point in D.

In the lack of the continuity criterion for mapping E , we
have the following theorem.

Theorem II.2: Let (D,Sbps) be a complete BCPSMS and
function E : D → D a mapping such that

Sbps(Eϱ, Eσ, Eς)

⪯i2 α.max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),
Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))

1+Sbps(ϱ,σ,ς)
},

for all ϱ, σ, ς ∈ D, where 0 ≤ α < 1. Then E has a unique
fixed point in D.

Proof. Following from the Theorem II.1, {ϱn} is a
Cauchy’s sequence in D.

Since D is complete, there exists ς ∈ D such that ϱn → ς
as n→ ∞.

Since E is not continuous, we have Sbps(ς, ς, Eς) = L > 0

L = Sbps(ς, ς, Eς)

⪯i2 Sbps(ς, ς, ϱn+1) + Sbps(ς, ς, ϱn+1)+

Sbps(Eς, Eς, ϱn+1)− 2Sbps(ϱn+1, ϱn+1, ϱn+1)

⪯i2 2Sbps(ς, ς, ϱn+1) + Sbps(Eς, Eς, ϱn+1)

⪯i2 2Sbps(ς, ς, ϱn+1) + Sbps(ϱn+1, ϱn+1, Eς)

⪯i2 2Sbps(ς, ς, ϱn+1) + Sbps(Eϱn, Eϱn, Eς)

⪯i2 2Sbps(ς, ς, ϱn+1) + α.max{Sbps(ϱn, ϱn, ς),

Sbps(Eς, Eς, Eϱn),Sbps(Eς, Eς, ς),
1
3Sbps(Eς, Eς, ϱn), Sbps(ς,ς,Eς)(1+Sbps(ϱn,ϱn,Eϱn))

1+sbps(ϱn,ϱn,ς)
}

⪯i2 2Sbps(ς, ς, ϱn+1) + α.max{Sbps(ϱn, ϱn, ς),

Sbps(Eς, Eς, ϱn+1),Sbps(ς, ς, Eς),
1
3Sbps(ϱn, ϱn, Eς), Sbps(ς,ς,Eς)(1+Sbps(ϱn,ϱn,ϱn+1))

1+sbps(ϱn,ϱn,ς)
}.

As n→ ∞, we have L ⪯i2 α.Sbps(ς, ς, fς).

Therefore

||L|| ≤ α.||L||,

which is contradiction, since α < 1.

Then Sbps(ς, ς, Eς) = 0
⇒ Eς = ς

Hence ς is the fixed point of E in D.

The uniqueness of the fixed point follows from above
Theorem 2.1.

Corollary II.3: Theorem II.1 continues to be true if (3)
is replaced by

Sbps(Eϱ, Eσ, Eς)⪯i2 α.Sbps(ϱ, σ, ς),

for all ϱ, σ, ς ∈ D and 0 ≤ α < 1. Then E has a unique
fixed point in D.

Corollary II.4: Theorem II.1 continues to be true if (3)
is replaced by

Sbps(Eϱ, Eσ, Eς)

⪯i2 α max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),Sbps(Eς, Eς, ς),
1
3Sbps(Eς, Eς, ϱ)},

for all ϱ, σ, ς ∈ D and 0 ≤ α < 1. Then E has a unique
fixed point in D.

III. EXAMPLES

Example III.1: Let D ∈ [0,∞) and we define S: D3 →
C+
2 by Sbps(ϱ, σ, ς) = (1+ i2)(|ϱ− ς|+ |σ− ς|), for each
ϱ, σ, and ς ∈ D.

Clearly Sbps is a complete BCPSMS.

We define a mapping E : D → D by Eϱ = ϱ+1
4 .

We now verify the inequality (3) with α = 1
4 .

Sbps(Eϱ, Eσ, Eς)

= Sbps(
ϱ+1
4 , σ+1

4 , ς+1
4 )

= (1 + i2)[|ϱ+1
4 − ς+1

4 |+ |σ+1
4 − ς+1

4 |]

= (1 + i2)[|ϱ−ς
4 |+ |σ−ς

4 |]

= 1
4 (1 + i2)[|ϱ− ς|+ |σ − ς|]

⪯i2 α.Sbps(ϱ, σ, ς)

⪯i2 αmax{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),
Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))

1+Sbps(ϱ,σ,ς)
}

Hence E satisfies all the conditions of Theorem II.1, ’13 ’
follows as a unique fixed point of E .
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Example III.2: Let D = [0, 1] and we define S: D3 →
[1,∞) by Sbps(ϱ, σ, ς) = (1+i2)max{ϱ, σ, ς}, for each ϱ, σ,
and ς ∈ D.

Clearly Sbps is a complete BCPSMS.

We define a mapping E : D → D by

Eϱ =


ϱ2

2 if ϱ ∈ [0, 12 )

1
4 if ϱ ∈ ( 12 , 1]

We now verify the inequality (3) with α = 1
2 .

Case (i): If ϱ, σ, ς ∈ [0, 12 ] and ϱ ≥ σ ≥ ς , then

Sbps(Eϱ, Eσ, Eς)

= Sbps(
ϱ2

2 ,
σ2

2 ,
ς2

2 )

= (1 + i2)max{ϱ2

2 ,
σ2

2 ,
ς2

2 }

= (1 + i2).
ϱ2

2

= 1
2 (1 + i2).ϱ

⪯i2
1
2 .(1 + i2)max{ϱ, σ, ς}

⪯i2 α.Sbps(ϱ, σ, ς)

⪯i2 α.max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),
Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))

1+Sbps(ϱ,σ,ς)
}.

Similarly, when ϱ < σ < ς the inequality (3) holds.

Case (ii): If ϱ, σ, ς ∈ ( 12 , 1] and ϱ ≥ σ ≥ ς, then

Sbps(Eϱ, Eσ, Eς)

= Sbps(
1
4 ,

1
4 ,

1
4 )

= (1 + i2)max{ 1
4 ,

1
4 ,

1
4} = (1 + i2).

1
4

⪯i2
1
2 (1 + i2).ϱ

⪯i2
1
2 .(1 + i2)max{ϱ, σ, ς}

⪯i2 α.Sbps(ϱ, σ, ς)

⪯i2 α.max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),
Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))

1+Sbps(ϱ,σ,ς)
}.

Similarly, when ϱ < σ < ς the inequality (3) holds.

Case (iii): If ϱ ∈ [0, 12 ], σ, ς ∈ ( 12 , 1] and σ ≥ ς , then

Sbps(Eϱ, Eσ, Eς)

= Sbps(
ϱ2

2 ,
1
4 ,

1
4 )

= (1 + i2)max{ϱ2

2 ,
1
4 ,

1
4} = (1 + i2).

1
4

⪯i2
1
2 (1 + i2).σ

⪯i2
1
2 .(1 + i2)max{ϱ, σ, ς}

⪯i2 α.Sbps(ϱ, σ, ς)

⪯i2 α.max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),
Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))

1+Sbps(ϱ,σ,ς)
}.

Similarly, σ < ς the inequality (3) holds.

Case (iv): If ϱ, σ ∈ [0, 12 ], ς ∈ ( 12 , 1] and ϱ ≥ σ,
then

Sbps(Eϱ, Eσ, Eς)

= Sbps(
ϱ2

2 ,
σ2

2 ,
1
4 )

= (1 + i2)max{ϱ2

2 ,
σ2

2 ,
1
4} = (1 + i2).

1
4

⪯i2
1
2 (1 + i2).ς

⪯i2
1
2 .(1 + i2)max{ϱ, σ, ς}

⪯i2 α.Sbps(ϱ, σ, ς)

⪯i2 α.max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),
Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))

1+Sbps(ϱ,σ,ς)
}.

Similarly, when ϱ < σ, the inequality (3) holds.

Case (v): If σ, ς ∈ [0, 12 ], ϱ ∈ ( 12 , 1] and σ ≥ ς ,
then

Sbps(Eϱ, Eσ, Eς)

= Sbps(
1
4 ,

σ2

2 ,
ς2

2 )

= (1 + i2)max{ 1
4 ,

σ2

2 ,
ς2

2 } = (1 + i2).
1
4

⪯i2
1
2 (1 + i2).ϱ

⪯i2
1
2 .(1 + i2)max{ϱ, σ, ς}

⪯i2 α.Sbps(ϱ, σ, ς)

⪯i2 α.max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),
Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))

1+Sbps(ϱ,σ,ς)
}.

Similarly, when σ < ς the inequality (3) holds.

Case (vi): If ς ∈ [0, 12 ], ϱ, σ ∈ ( 12 , 1] and ϱ ≥ σ,
then

Sbps(Eϱ, Eσ, Eς)

= Sbps(
1
4 ,

1
4 ,

ς2

2 )

= (1 + i2)max{ 1
4 ,

1
4 ,

ς2

2 } = (1 + i2).
1
4

⪯i2
1
2 (1 + i2).ϱ

⪯i2
1
2 .(1 + i2)max{ϱ, σ, ς}

⪯i2 α.Sbps(ϱ, σ, ς)

⪯i2 α.max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),
Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))

1+Sbps(ϱ,σ,ς)
}.

Similarly, when ϱ < σ the inequality (3) holds.

Case (vii): If σ ∈ [0, 12 ], ϱ, ς ∈ ( 12 , 1] and ϱ ≥ ς ,
then

Sbps(Eϱ, Eσ, Eς)

= Sbps(
1
4 ,

σ2

2 ,
1
4 )

= (1 + i2)max{ 1
4 ,

σ2

2 ,
1
4} = (1 + i2).

1
4
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⪯i2
1
2 (1 + i2).ϱ

⪯i2
1
2 .(1 + i2)max{ϱ, σ, ς}

⪯i2 α.Sbps(ϱ, σ, ς)

⪯i2 α.max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),
Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))

1+Sbps(ϱ,σ,ς)
}.

Similarly, when ϱ < ς the inequality (3) holds.

Case (viii): If ϱ, ς ∈ [0, 12 ], σ ∈ ( 12 , 1] and ϱ ≥ ς , then

Sbps(Eϱ, Eσ, Eς)

= Sbps(
ϱ2

2 ,
1
4 ,

ς2

2 )

= (1 + i2)max{ϱ2

2 ,
1
4 ,

ς2

2 } = (1 + i2).
1
4

⪯i2
1
2 (1 + i2).σ

⪯i2
1
2 .(1 + i2)max{ϱ, σ, ς}

⪯i2 α.Sbps(ϱ, σ, ς)

⪯i2 α.max{Sbps(ϱ, σ, ς),Sbps(Eς, Eς, Eϱ),

Sbps(Eς, Eς, ς), 13Sbps(Eς, Eς, ϱ),

Sbps(ς,ς,Eς)(1+Sbps(σ,σ,Eσ))
1+Sbps(ϱ,σ,ς)

}.

Similarly, when ϱ < ς the inequality (3) holds.

Hence E satisfies all the conditions of Theorem II.1, ’0’
follows as a unique fixed point of E .

IV. APPLICATIONS

In this section, we obtain solution of the following two
point boundary value problem

d2ϱ

dω2
= −F(ω, ϱ(ω)), (11)

for each ω ∈ [0, 1] and the initial conditions are ϱ(0) =
ϱ(1) = 0.

The Green’s function corresponding to given differential
equation is

G(ω, κ) =

 ω(1− κ) if 0 ≤ ω ≤ κ ≤ 1

κ(1− ω) if 0 ≤ κ ≤ ω ≤ 1
(12)

The solution of (11) is the same as finding the solution
ϱ(ω) of the given integral equation

ϱ(ω) =
∫ 1

0
G(ω, κ)F(κ, ϱ(κ))dκ, for each ω ∈ [0, 1].

Let U = C([0, 1],R) be the class of all real valued
continuous functions on [0, 1]. We define ⪯i2 in C+

2 by
ϱ ⪯i2 σ if and only if ϱ ≤ σ.

Define Sbps : U × U → C+
2 defined by Sbps(ϱ, σ, ς) =

(1 + i2)[|ϱ− ς|+ |σ − ς|+ 2], for each ϱ, σ and ς ∈ U .

We define a operator E : U → U by

E(ϱ) =
∫ 1

0

G(ω, κ)F(κ, ϱ(κ))dκ, (13)

for each ω ∈ [0, 1].

Clearly the solution of (11) is a fixed point of E .

Theorem IV.1: Consider the differential equation (11).
Suppose that:

|F(κ, ϱ(κ))−F(κ, ς(κ))|+ |F(κ, σ(κ))−F(κ, ς(κ))|

⪯i2 max{|ϱ(κ)− ς(κ)|+ |σ(κ)− ς(κ)|}.

Then the integral operator defined as in (13) has a unique
solution.

Proof. We define a BCPSMS on U by

Sbps(ϱ, σ, ς) = (1 + i2)[|ϱ− ς|+ |σ − ς|+ 2],

for each ϱ, σ and ς ∈ U .

Clearly Sbps is a complete BCPSMS.

Sbps(Eϱ(κ), Eσ(κ), Eς(κ))

= (1 + i2)[|Eϱ(κ)− Eς(κ)|+ |Eσ(κ)− Eς(κ)|+ 2]

= (1 + i2)[|
∫ 1

0
G(ω, κ)(F(κ, ϱ(κ))−F(κ, ς(κ)))dκ|+

|
∫ 1

0
G(ω, κ)(F(κ, σ(κ))−F(κ, ς(κ)))dκ|+ 2]

= (1 + i2)[
∫ 1

0
G(ω, κ)dκ(|F(κ, ϱ(κ))−F(κ, ς(κ))|+

|F(κ, σ(κ))−F(κ, ς(κ))|+ 2)]

⪯i2 (1 + i2)[
∫ 1

0
G(ω, κ)dκ.(max{|ϱ(κ)− ς(κ)|

+|σ(κ)− ς(κ)|+ 2)]

⪯i2 (1 + i2)[(
∫ ω

0
G(ω, κ)dκ+

∫ 1

ω
G(ω, κ)dκ).

max{|ϱ(κ)− ς(κ)|+ |σ(κ)− ς(κ)|+ 2]

⪯i2 (1 + i2)[(
∫ ω

0
κ(1− ω)dκ+

∫ 1

ω
ω(1− κ)dκ)

max{|ϱ(κ)− ς(κ)|+ |σ(κ)− ς(κ)|+ 2]

⪯i2 (1+i2)[(
ω
2−

ω2

2 )max{|ϱ(κ)−ς(κ)|+|σ(κ)−ς(κ)|+2]

⪯i2
1
8 .max{(1 + i2)[|ϱ(κ)− ς(κ)|+ |σ(κ)− ς(κ)|+ 2]}

⪯i2
1
8max{Sbps(ϱ(κ), σ(κ), ς(κ)}

⪯i2
1
8max{Sbps(ϱ(κ), σ(κ), ς(κ)),

Sbps(Eς(κ), Eς(κ), Eϱ(κ)),Sbps(Eς(κ), Eς(κ), ς(κ)),
1
3Sbps(Eς(κ), Eς(κ), ϱ(κ)),

Sbps((ς(κ),ς(κ),Eς(κ))[1+Sbps(σ(κ),σ(κ),Eσ(κ))
1+Sbps(ϱ(κ),σ(κ),ς(κ))

},

we note that supw∈[0,1]

∫ 1

0
G(ω, κ)dκ = 1

8 .

Hence, E satisfies all the conditions of Theorem II.1, then
the function E has a unique fixed point. As a result, the
integral equation (11) has a solution in U , ensuring the
existence of a solution to the integral equation (11).

V. CONCLUSIONS

We extend the concept of a bicomplex partial S-metric
space and establish the existence of fixed points for certain
generalized contraction mappings. The bicomplex partial
S-metric space is particularly significant, as it does not
necessarily arise from any standard metric space, making it a
compact and unique framework. Through illustrative exam-
ples, we demonstrated that these extensions, improvements,
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and generalizations are valid and meaningful. The paper
concludes by addressing a boundary value problem, and the
results offer a concrete approach for further exploration in
this emerging area of bicomplex partial S-metric theory.
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