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Abstract—We study a multiple choice stochastic 

transportation problem that was proposed by Roy, Mahapatra 
and Biswal such that the cost coefficients of objective function 
have multiple choice. In this paper, we first point out that for a 
minimum problem, we can directly select the minimum cost 
among multiple choice and then we will present our simplified 
approach to provide the optimal solution without referring to 
the Lingo10 package. Our new findings will help researchers 
handle operation research problems in the future with respect 
to multiple choice objective functions. 
 

Index Terms—Stochastic transportation model, Multiple 
choice costs, Minimum problem, Analytic method 
 

I. INTRODUCTION 

ECENTLY, there are several published papers to 
emphasize on analytical method to improve previous 

results. For examples, Wu et al. [1] studied the Newton 
method to decide the optimal replenishment policy for an 
economic production quantity model so that the convergence 
of their sequence is superior to the traditional bisection 
method. Wu et al. [1] also investigated the Newton method 
for determining the optimal replenishment policy for 
economic ordering quantity model with present value such 
that their findings are more efficient than bisection method. 
Hung [2] constructed inventory models with crashable lead 
time and present value. He derived some theoretical findings 
to locate optimal solutions. Hung [2] also developed 
continuous review inventory models with the present value of 
money and crashable lead time and then he obtained several 
lemmas and one theorem to estimate optimal solutions. Lin et 
al. [3] constructed inventory models from ramp type demand 
to a generalized setting such that the optimal solution for 
replenishment policy is independent of demand type. Lin et al. 
[3] also examined inventory models to extend them from 
ramp type demand to a generalized environment so that the 
optimal solution for their model is not related to the demand 
type. Lin [4] showed some improvements for the landmark 
paper of fuzzy sets for distributive law, convex combination 
and convex fuzzy sets. Chuang and Chu [5] proved that the 
traffic model has a unique optimal solution and then offered a 
formulated approximated solution. Roy et al. [6] studied a 
multiple choice stochastic transportation problem in which 
cost coefficients of the objective function are of multiple 
choices and the demands and supplies are follow an 
exponential random variables. Therefore, Roy et al. [6] 
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developed a mathematical model for multiple choice 
stochastic transportation problem. In this study, we will 
present an improvement for Roy et al. [6] to help practitioners 
in the future when they deal with multiple choice objective 
functions. 

II. A BRIEF REVIEW OF PREVIOUS RESULTS 

Roy et al. [6] developed a multiple choice transportation 
problem where the coefficients containing exponential 
random variable in all constraints and cost coefficients of 
objective function are also satisfied the multiple choices as 
follows: 
for 1, 2,...,k K , 
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for 1, 2,...,i m , 
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for 1, 2,...,j n , 0i jx  , with 0 1i   and 

0 1j   for every i , and j . 

They assumed that ia , for 1, 2,...,i m  and jb , for 

1, 2,...,j n   both are exponential random variables with 

mean  i iE a   and variance   2
i iVar a   and then 

they transformed the stochastic constraint (2.2) into 

deterministic constraints as follows: 
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for 1, 2,...,i m . 

Moreover, with  j jE b    and variance   2
j jVar b    

and then they transformed the stochastic constraint (2.3) into 

deterministic constraints as follows: 
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for 1, 2,...,j n . 

After they converted the constraints from probabilistic format 
to the equivalent deterministic representation, they tried to 
transform the multiple choice cost coefficient of the objective 
function into an equivalent model. To save the precious space 
of this journal, we directly quote the numerical example of 
Roy et al. [6] to illustrate their procedure. 
The price rates of transportation costs in each route are listed 
below: 
xଵଵ routes either 10 or 11 or 12 required admissible costs in 

Rupees. 
xଵଶ routes either 15 or16 required admissible costs in Rupees. 
xଵଷ routes either 20 or 21 or 22 or 23 required admissible 

costs in Rupees. 
xଵସ routes either 15 or 16 or 17 required admissible costs in 

Rupees. 
xଶଵ  routes either 12 or 13 or 14 or 15 or 16 required 

admissible costs in Rupees. 
xଶଶ routes either 10 or 11 or 12 or 13 or 14 or 15 required 

admissible costs in Rupees. 
xଶଷ routes either 9 or 10 or 11 required admissible costs in 

Rupees. 
xଶସ routes either 18 or 19 required admissible costs in Rupees. 
xଷଵ routes either 20 or 21 or 22 or 23 or 24 or 25 or 26 

required admissible costs in Rupees. 
xଷଶ routes either 9 or 10 or 11 or 12 or 13 or 14 or 15 or 17 

required admissible costs in Rupees. 
xଷଷ routes either 24 or 25 or 26 required admissible costs in 

Rupees. 
xଷସ routes either 27 or 28 required admissible costs in Rupees. 

For  example,  the  cost  coefficients  of  the  objective 
function with  xଷଵ have seven choices as 

 20, 21, 22, 23,34, 25, 26 ,                 (2.6) 

out of which one is to be selected. We may abstractly denote 

them as  1 2 7
31 31 31, ,...,C C C . Owing to 2 32 7 2  , Roy et 

al. [6] will use three binary variables 1
31z , 2

31z  and 3
31z  to 

represent the seven possible choice for 31x  as follows: 

       1 1 2 3 2 1 2 3
31 31 31 31 31 31 31 311 1 1 1 1C z z z C z z z     

      3 1 2 3 4 1 2 3
31 31 31 31 31 31 31 311 1 1 1C z z z C z z z       
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ହ ሺ1 െ zଷଵ

ଵ ሻzଷଵ
ଶ zଷଵ

ଷ ൅ Cଷଵ
଺ zଷଵ

ଵ ሺ1 െ zଷଵ
ଶ ሻzଷଵ

ଷ  

൅Cଷଵ
଻ zଷଵ

ଵ zଷଵ
ଶ ሺ1 െ zଷଵ

ଷ ሻሽxଷଵ,                   (2.7) 

with 31 0 /1tz   for 1, 2,3t  . 

III. OUR IMPROVEMENT FOR MULTIPLE CHOICE 

If  the  decision maker  has  the  freedom  to  select  the 
possible cost in a minimum problem, then automatically 
he  will  select  the  minimum  among  those  possible 
multiple choice costs. Owing to 

 min 20, 21, 22, 23,34, 25, 26 20 ,      (3.1) 

we will directly assume the coefficient of xଷଵ  is 20. 
Consequently, the tedious procedure in Roy et al. [6] for 
multiple choice cost formulation becomes redundant. 
Similarly, for other x୧୨, we can directly take  

 1 2min , ,..., k
ij ij ijC C C                      (3.2) 

as the cost for x୧୨. 
We  will  apply  an  intuitive  approach  to  solve  their 

minimum  problem without  referring  the  any  computer 
programming  package.  To  illustrate  our  approach,  we 
reconsider the same numerical example in Roy et al. ሾ6ሿ. 
Based  on  our  simplification  of  Equation  ሺ3.2ሻ,  we  will 
solve  the  following  minimum  problem  for  a  stochastic 
transformation model: 

222114131211 101215201510:min xxxxxxz 
 

      343332312423 2724920189 xxxxxx  ,  (3.3) 

subject to  

040541464.414131211  xxxx ,         (3.4) 

   137762245.924232221  xxxx ,        (3.5) 

32879781.1634333231  xxxx ,        (3.6) 

25364287.11312111  xxx ,            (3.7) 

977780111.7322212  xxx ,             (3.8) 

051457289.5332313  xxx ,             (3.9) 

and 

40794509.2342414  xxx ,            (3.10) 

where the constraints of Equations (3.4-3.10) are quoted from 
Roy et al. [6]. 

We compare the coefficients of jix  for 3,2,1i  and 

4,3,2,1j  to find that 23x  and 32x  both have the lowest 

coefficient 9 so we will assume that 

051457289.523 x ,                      (3.11) 

with 013 x , and 033 x .  

On the other hand, we obtain that 

977780111.732 x ,                     (3.12) 

with 012 x , and 022 x . 

Up to now, we plug our results into constraints, Equations 
(3.4-3.7) and (3.10), to imply that 

040541464.41411  xx ,                    (3.13) 

   086304956.42421  xx ,                   (3.14) 

351017699.83431  xx ,                   (3.15) 
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25364287.11312111  xxx ,                (3.16) 

and 

40794509.2342414  xxx .                (3.17) 

Next, we compare the coefficients of jix  for 3,2,1i  and 

4,1j  to find that 34x  had the highest coefficient 27  and 

then we compare the coefficient of 14x  and 24x  to decide 

034 x , 024 x  and 40794509.214 x .  

Consequently, we can further simplify constraints as follows 

632596354.111 x ,                    (3.18) 

   086304956.421 x ,                   (3.19) 

351017699.831 x ,                     (3.20) 

and 

25364287.11312111  xxx ,          (3.21) 

Finally, we compare the coefficients of 11x , 21x  and 31x  to 

claim that 

632596354.111 x ,                     (3.22) 

086304956.421 x ,                    (3.23) 

and  

53474156.531 x .                      (3.24) 

Based on our approach, without using any complex computer 
programming, we obtain the same findings as Roy et al. [6]. 

IV. TWO RELATED OPEN QUESTIONS 

    After Tung [7] published a paper to discuss inventory 
models with ramp type demand under different probability 
distributions, there are six articles that had cited Tung [7] in 
their references. We provide a brief reviewing for these six 
articles. Chao et al. [8] solved the open question proposed by 
Tung [7] to show that the optimal solution is independent of 
the demand such that different demand can derive the same 
optimal solution. Pal et al. [9] studied inventory systems with 
crisp or fuzzy parameters, Weibull distribution of decay, and 
time value of money. Chuang et al. [10] provided a detailed 
numerical analysis to support Chao et al. [8] to show that 
some derivations of Tung [7] contained questionable findings. 
Luo [11] examined inventory models with ramp type demand 
and presented revisions for Mandal and Pal [12] and Wu and 
Ouyang [13]. Based on Chao et al. [8], Luo [14] improved 
Deng et al. [15] by two approaches: (a) Analytic method with 
calculus, and (B) Operational research point of view without 
deriving the explicit objective function. Lin and Schaeffer 
[16] studied similarity measures under intuitionistic fuzzy 
sets environment to amend Li and Cheng [17]. 
Based on our brief literature reviewing, we can assert that the 
open question proposed by Tung [7] is an interesting research 
topic that deserves further examinations. 
On the other hand, we recall Acharya and Biswal [18] that 

considered to solve probabilistic programming problems 
under the restriction of multiple choice parameters.  In the 
next section, we will present our improvement for Acharya 
and Biswal [18] that will help practitioners to realize those 
probabilistic programming problems with multiple choice 
parameters. 

V. OUR EXAMINATION  

We examine the probabilistic programming problem 
proposed by Acharya and Biswal [18] as follows, 

1 2 3 4min 24.83 28.5 43.5 45.21x x x x   ,     (5.1) 

subject to  

1 2 3 42.3 5.6 11.1 1.3 5x x x x    ,          (5.2) 

1 2 3 412 11.9 41.8 52.1x x x x   െ1.645√∆ ൒ 21,   (5.3) 

with a abbreviation, 
∆ൌ ሺ0.53xଵሻଶ ൅ ሺ0.44xଶሻଶ ൅ ሺ4.5xଷሻଶ ൅ ሺ0.79xସሻଶ,  (5.4) 

and several restrictions, 

1 2 3 4+ =1x x x x  ,                       (5.5) 

and 1 0x  , 2 0.0100x  , 3 0x  , with 4 0x  . 

First we recall that Acharya and Biswal [18] derived that 

1 0.6127x  ,                              (5.6) 

2 0.0100x  ,                              (5.7) 

3 0.3106x  ,                              (5.8) 

and  

4 0.0667x  .                              (5.9) 

We examine to find that at the optimal solution proposed 
by Acharya and Biswal [18] listed as Equations (5.6-5.9) to 
find out that 

1 2 3 42.3 5.6 11.1 1.3 4.99958 5x x x x     .   (5.10) 

Based on our result of Equation (5.10), we know that the 
solution proposed by Acharya and Biswal [18] that violated 
the restriction of Equation (5.2) such that researchers should 
not accept the findings of Equations (5.6-5.9) as derived by 
Acharya and Biswal [18]. 

For completeness, we also compute that 

1 2 3 412 11.9 41.8 52.1x x x x   െ1.645√∆ 

ൌ 22.493649 ൐ 21,                       (5.11) 

such that the condition of Equation (5.3) is satisfied. 
Based on our above examination, we will provide our 

revision for Acharya and Biswal [18] in the nest section. 

VI. OUR IMPROVEMENT  

We begin to solve the probabilistic programming problem by 
an approximated method, such that we will locate an upper 
bound and a lower bound in the following. 
We derive that 

1 2 3 412 11.9 41.8 52.1x x x x   െ1.645√∆ 

1 2 3 412 11.9 41.8 52.1x x x x     

െ1.645 ቀඥሺ0.53xଵሻଶ ൅ ඥሺ0.44xଶሻଶ 

ඥሺ4.5xଷሻଶ ൅ ඥሺ0.79xସሻଶቁ,                    (6.1) 

such that the solution of 

1 2 3 42.3 5.6 11.1 1.3 5x x x x    ,          (6.2) 
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and 
ሺ12 െ 1.645 ൈ 0.53ሻxଵ ൅ ሺ11.9 െ 1.645 ൈ 0.44ሻxଶ 

൅ሺ41.8 െ 1.645 ൈ 4.5ሻxଷ 
൅ሺ52.1 െ 1.645 ൈ 0.79ሻxସ ൌ 21,                (6.3) 

that will provide a lower bound for the optimal solution. 
On the other hand, we consider the dominate coefficient in 
the square root as 4.5 and then we derive that 

1 2 3 412 11.9 41.8 52.1x x x x    2

31.645 4.5x  

1 2 3 412 11.9 41.8 52.1x x x x    െ1.645√∆,    (6.4) 

such that  

1 2 3 42.3 5.6 11.1 1.3 5x x x x    ,          (6.5) 

and 

1 212 11.9x x  

  3 441.8 1.645 4.5 52.1 21x x     ,      (6.6) 

that will provide an approximated upper bound. 
We believe that with our lower bound and upper bound, 

researchers can shrink the search domain for the optimal 
solution for the probabilistic programming problem of 
Equation (5.1) under the conditions of Equations (5.2-5.5). 

Moreover, we point out the following analytic approach 
with Lagrange multiple,  

 1 2 3 4 1 2 2 3 4min , , , , , 24.83 3.67 18.67 20.38f x x x x x x x       

൅λଵሺxଵ ൅ 4.3xଶ ൅ 9.8xଷ െ 3.7ሻ, 
൅λଶሺ0.1xଵ ൅ 29.9xଷ ൅ 40.2xସ െ 9.1 െ 1.645√∆ሻ,  (6.7) 

that will be an interesting research approach for future study. 

VII. NUMERICAL EXAMPLE 

In this section, we run an example for our studied 
programming problem proposed by Acharya and Biswal [18]. 
We apply Mathcad program to solve the problem, and then 
we find that 

x1 ൌ 0.600000,                            (7.1) 

x2 ൌ 0.040000,                            (7.2) 

x3 ൌ 0.300000,                            (7.3) 
and 

x4 ൌ 0.060000.                             (7.4) 
Next, we begin to check the restrictions of Equations (5.2-5.5) 
in the following. 
We examine that 

2.3xଵ ൅ 5.6xଶ ൅ 11.1xଷ ൅ 1.3xସ ൌ 5.0120,        (7.5) 
which satisfies the condition of Equation (5.2). 
We derive that 

12xଵ ൅ 11.9xଶ ൅ 41.8xଷ ൅ 52.1xସ 
െ1.645√∆ൌ 21.0590,                        (7.6) 

where ∆  is defined by Equation (5.4), that satisfies the 
condition of Equation (5.3). 
We find that 

xଵ ൅ xଶ ൅ xଷ ൅ xସ ൌ 1,                       (7.7) 
which satisfies the condition of Equation (5.5). 
At last, we evaluate that  

24.83xଵ ൅ 28.5xଶ ൅ 43.5xଷ ൅ 45.21xସ 
ൌ 31.800600.                                (7.8) 

We cannot compare our findings with that of Acharya and 
Biswal [18], because the results of Acharya and Biswal [18] 
as we cite as Equations (5.6-5.9) which violate the restriction 
of Equation (5.2). 

VIII. A RELATED PROBLEM 

We study the inventory system proposed by Arcelus and 
Srinivasan [19] with a temporary price reduction. Arcelus 
and Srinivasan [19] modified the inventory model developed 
by Martin [20] such that the ordering cost is computed 
actually for the last partial order cycle. The purpose of our 
examination is twofold. First, we prove that there exist 
closed-form solutions for the supreme gain of the inventory 
system constructed by Arcelus and Srinivasan [19]. Second, 
sometimes this inventory system does not have the optimal 
solution for the special order quantity. Hence, this inventory 
system sometimes cannot help decision makers to decide the 
optimal special order quantity. We will advise decision 
makers more carefully to adopt the inventory system 
proposed by Arcelus and Srinivasan [19] as an alternative for 
the inventory model developed by Martin [20]. Numerical 
examples illustrate our findings.  
For the inventory model with a temporary price reduction, 
Tersine [21] maximized the benefit between a special order 
under reduced purchase price and the normal EOQ ordering 
policy where the holding cost is proportional to time. Martin 
[20] revised Tersine’s model to compute the actual holding 
cost for the last partial order cycle. Arcelus and Srinivasan 
[19] extended the inventory models of Tersine [21] and 
Martin [20] to five models such that (1) the AVCT model that 
is the inventory system of Tersine [21], where the inventory 
level is assumed as a constant of one half the economic 
ordering quantity, and the ordering cost is proportional to 
time, (2) the AVCM model that is the inventory model of 
Martin [20] where the holding cost is computed actually and 
the ordering cost is proportional to time, (3) the AVCI model 
that is a version of the AVCM model such that the ordering 
cost is revised to compute actually, (4) the AVCII model that 
is another revision of the AVCM model where the ordering 
cost is assumed to be equal to the holding cost, and (5) the 
NPV model that considered the present value for the ordering 
cost and the purchasing cost for the infinite time horizon. 
Since the objective function of AVCM, AVCI and AVCII 
models containing the greatest integer function, Arcelus and 
Srinivasan [19] claimed that “no closed-form solution for the 

resulting optimal order quantity, *
sQ , ,2s  3, 4. exists and 

thus its optimal value must be obtained iteratively”. 
In this study, first we will show that the closed-form solution 
for the objective function of the AVCI model exists. Second, 
we will demonstrate that sometimes the maximum solution 
for the special order quantity does not exist. Consequently, 
for the AVCI model, sometimes decision makers cannot find 
the optimal special order quantity from the AVCI model. 
Therefore, the AVCI model seems not a very applicable 
model to replace for the AVCM model which is the Martin 
[20]. In the first numerical example, we will find the 
maximum gain and the optimal special order quantity, then it 
shows that the iterative solution of Arcelus and Srinivasan 
[19] is not accurate. In the second numerical example, we 
will demonstrate that the supreme gain still exists but the 
optimal special order quantity does not exist. We use the 
same notation as Martin [20] and Arcelus and Srinivasan [19] 
with some terminologies to specify our expressions as 
follows: 

 $AVCIg  is the maximum value for  Qg AVCI . 
*Q is  the maximum point for  Qg AVCI . 
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B    is the set for those m where  mQAVCI  is in the interval 

  ** 1, QmmQ  . 

 mQAVCI  is the solution for   0AVCI 


Qg
Qd

d
, when 

m is given. 
*Q  is the optimal solution for  regular economic ordering 

quantity. 
C    is the ordering cost per order. 
R    is the annual demand. 
F    is the annual holding cost fraction. 
Q    denotes the special order quantity. 

d    is the unit price discount. 
P    is the regular price. 

We will use    to indicate (i) the closed interval, and (ii) the 

greatest integer function, interchangeably. From the content 
of related descriptions, no vagueness will happen. 

IX. OUR MATHEMATICAL RESULTS 

In Arcelus and Srinivasan [19], they only wrote down the 
holding cost for the last partial cycle. Hence, we recall the 
objective function of Martin [20], then we have the gain of 

the AVCM model, say  Qg AVCM  as follows, 

     1**
AVCM  QQCQQdQg  

   22*

2
QQ

R

Fdp 


  









































 








 


2

*
*

2*
*

1
2

Q
Q

Q
QQ

Q

Q

R

Fp
,  (9.1) 

where the ordering cost is computed proportional to time. If 
we consider the AVCI model of Arcelus and Srinivasan [19] 
then the ordering cost is computed actually so we will change 

the ordering cost from   1*  QQC  to (a) 

  1*  QQC  for *QQ  is an integer, or (b) 

 *QQC   for *QQ  is not an integer. Hence, we write 

down the gain for AVCI model as follows, 

      1**
AVCI  QQCQQdQg  

   22*

2
QQ

R

Fdp 


  









































 








 


2

*
*

2*
*

1
2

Q
Q

Q
QQ

Q

Q

R

Fp
,  (9.2) 

when *QQ  is an integer, or  

     **
AVCI QQCQQdQg   

   22*

2
QQ

R

Fdp 


  




















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



















 








 


2

*
*

2*
*

1
2

Q
Q

Q
QQ

Q

Q

R

Fp
,  (9.3) 

when *QQ  is not an integer. 

From Equation (9.3), we know that  Qg AVCI  is a 

continuous function in the open interval   ** 1, QmmQ   

for every non-negative integer value of m. Next, we will 

show that  Qg AVCI  is discontinuous at *mQ  such that 

the left hand limit and the right hand limit are different as 

   *
AVCIAVCI*

lim mQgQg
mQQ




,            (9.4) 

and 

    CmQgQg
mQQ




*
AVCIAVCI*

lim .         (9.5) 

Based on the above discussion, we will divide the domain of 

 Qg AVCI  into sub-intervals as   ** 1, QmmQ   for 

2,1,0m  such that for each subinterval we will try to 

find the criterion to determine the local supreme value in each 
subinterval then compare those local supreme value to locate 
the global supreme value. 

For   ** 1 QmQmQ  , we rewrite Equation (9.3) as 

    22
AVCI 2

2
Cm

p

Cd
Q

R

Fdp
Qg 

  

  **1 dQQdQm
R

pF







  .         (9.6) 

It yields that  

  


Qg
Qd

d
AVCI

 
Q

R

Fdp 


2
. 

  





  dQm

R

pF *1 .                  (9.7) 

If we assume that the solution for   0AVCI 


Qg
Qd

d
, say 

 mQAVCI , then 

     Fdp

dR
Qm

dp

p
mQ







2
1

2
*

AVCI .  (9.8) 

In the following, we will derive the criterion for  mQAVCI  

being in the interior point of the truncated sub-domain, 

  ** 1, QmmQ  . From Equation (9.8), it is a direct 

calculation for inequalities, so we omit its proof. 
Lemma 1. For each m, the sufficient and necessary condition 

for  mQAVCI  being in the truncated sub-domain 

  ** 1, QmmQ   is  

E
dp

p
mE 


1 ,                   (9.9) 

with  

  *FQdp

dR
E


 .                      (9.10) 

According to Lemma 1, we assume that Sm  (starting) is 

the least integer and em  (ending) is the last integer in 

   EdppE  ,1  such that sm , ,1 sm , 

1em , em  are in    EdppE  ,1 . To simplify 

the expression, we assume that 
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 es mmmmB  :AVCI .           (9.11) 

For each m in AVCIB , we find that 

     
dp

dmpdQ
mQg





2

1*

AVCIAVCI  
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 


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
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
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


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
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d
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dp
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C

Fdp

Rd 2
22

2

1

22
.    (9.12) 

For each emm  , we have 

    **
AVCI 1 QmdCmQg   

  







 mmm

p

d
C 21 22 .             (9.13) 

Now, we will derive the main theorem for this note. 

Theorem 1. The supreme value for  Qg AVCI  equals to the 

superior value of  

   AVCIAVCIAVCI : BmmQg   

  emmCmQg  :*
AVCI .           (9.14) 

Proof of Theorem 1. Recalled Equations (9.4) and (9.5) that 
we already show that when Bm , the maximum point for 

 Qg   on the sub-interval   ** 1, QmmQ   will be 

equal to (a)   *1 Qmg   when  Qg   is on the left slope 

of a concave down function or (b)   CmQg *  when 

 Qg   is on the right slope of a concave down function, for 

each m, respectively. Therefore, we need to compare the 

value of   CmQg *  for emm   with those local 

maximum values of   mQg AVCIAVCI  for AVCIBm . 

Theorem 1 point out that  Qg   may have the supreme 

value but may not have maximum value or maximum point. 
We will demonstrate this phenomenon in the second 
numerical example. 

X. NUMERICAL EXAMPLES 

We will first consider the same numerical example in 
Arcelus and Srinivasan [19] with the following data: 
p ൌ $10 per unit, d ൌ $1 per unit, R ൌ 8000 units per year, 
C=$30 per order, F ൌ 0.3  per year, to locate the optimal 

special order quantity, *Q  and the maximum value of 

 Qg AVCI , say  $AVCIg . We find that  

  4.7
*





FQdp

dR
E ,                 (10.1) 

such that 4.61 E  and  

5.8


E
dp

p
,                        (10.2) 

Based on our results of Equations (10.1) and (10.2), we 

derive that 7Sm , 8em , and  8,7AVCI B .  

We compare   mQg AVCIAVCI  for 7m , and 8m . 

We also evaluate   CmQg *  for 8m  then list the 

results in the above Table 1. Since in Arcelus and Srinivasan 

[19], they claimed that 3289*
AVCI Q  so we also compute 

the value of )3289(AVCIg  to put it inside Table 1. 

Based on Table 1, it yields that the maximum solution of 

ordering quantity,  25.3298*
AVCI Q , and the maximum 

value,   4386.1552$AVCI g .  

Moreover, for this numerical example, we find the 
formulated solutions for the special order quantity and the 
maximum gain as 

)8(AVCI
*

AVCI QQ   

 Fdp

dR
Q

dp

p







22

9 * ,                (10.3) 

and 

     *
AVCIAVCIAVCI 2

7
8$ dQ

dp

dp
Qgg




  

  













 64

2

81

22

2

p

d

dp

p
C

Fdp

Rd
.      (10.4) 

Arcelus and Srinivasan [19] mentioned that 

3289*
AVCI Q ,                         (10.5) 

and  

  91.1944$AVCI g .                    (10.6) 

Our results indicate that their iterative solutions of Arcelus 
and Srinivasan [19] are not as accurate as our analytical 
solutions. 

We point out that (a) there are local maximum point in 

  ** 1, QmmQ   for  7m , and  8m , and (b) at 
*mQ  for 9m , or 7m , there are jump. 

To indicate that the AVCI model sometimes does not 
have maximum solution for the special order quantity, we 
change the value of ordering cost from 30C  to 10C , 

then we have   83.12
2 *3 




FQdp

dR
A , to imply that 

83.1113 A ,                         (10.7) 

and  

94.133 


A
dp

p
,                     (10.8) 

so 12Sm , 13em  and  13,12AVCI B . We 

compare   mQg AVCIAVCI  for 12m , and 13m , 

and we also evaluate   CmQg *  for 13m  then list 

the results in the above Table 2. 
Based on Table 2, we know that the supreme gain equals 

to 

   *
AVCIAVCI 14$ QgCg  =1517.22.     (10.9) 

However, we do not have the optimal solution for the special 

order quantity, 
*

AVCIQ  such that can attain the supreme 

value. The theoretical solution for 
*

AVCIQ  is  

  *14*
AVCI QQ ,                    (10.10) 

 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2832-2841

 
______________________________________________________________________________________ 



 

Table 1. Comparison among   mQg AVCIAVCI  for AVCIBm  and   CmQg *
AVCI  for emm   with 30C . 

 )(AVCI mQ   )(AVCIAVCI mQg    *
AVCI mQgC 

7m  3087.72 1523.4912 9m  1550 

8m  3298.25 1552.4386 10m  1497 

   11m  1390 

4081.1552)3289(AVCI g  12m  1229 

 

Table 2. Comparison among   mQg AVCIAVCI  for AVCIBm  and   CmQg *
AVCI  for emm   with 10C . 

 )(AVCI mQ   )(AVCIAVCI mQg    *
AVCI mQgC 

12m  2983.63 1499.40 14m  1517.22 

13m  3105.17 1513.06 15m  1507.16 

   16m  1479.10 

 

where  *14Q  means the left hand limit point for *14Q , 

but in the real word situation, we cannot choice a point to 

represent  *14Q . Hence, The AVCI model of Arcelus 

and Srinivasan [19], sometimes does not have optimal 

solution for 
*

AVCIQ , even we can find the closed-form 

solution for the supreme gain. Consequently, by the 
numerical method mentioned in Arcelus and Srinivasan [19] 
to derive the maximum gain iteratively will not attain this 
supreme value. By our analytical method, we still can derive 
the closed-form solution for the supreme gain as 

     *
AVCIAVCI 14$ QgCg  

  16819513 *  pdCdQ =1517.22.    (10.11) 

This phenomenon indicates that the AVCI model of Arcelus 
and Srinivasan [19], does not serve as a good revision for the 
AVCM model which is the inventory model of  Martin [20]. 

XI. SECOND NUMERICAL TEST 

With the help of a colleague, we rerun the numerical 
example that was proposed in section VII by Maple computer 
programming. We obtain that 

x1 ൌ 0.603000,                            (11.1) 

x2 ൌ 0.037000,                            (11.2) 

x3 ൌ 0.300000,                            (11.3) 
and 

x4 ൌ 0.060000.                           (11.4) 
Next, we begin to check the restrictions of Equations (5.2-5.5) 
in the following. 
We examine that 

2.3xଵ ൅ 5.6xଶ ൅ 11.1xଷ ൅ 1.3xସ ൌ 5.0021,        (11.5) 
which satisfies the condition of Equation (5.2). 
We derive that 

12xଵ ൅ 11.9xଶ ൅ 41.8xଷ ൅ 52.1xସ 
െ1.645√∆ൌ 21.0587,                        (11.6) 

where ∆  is defined by Equation (5.4), that satisfies the 
condition of Equation (5.3). 
We find that 

xଵ ൅ xଶ ൅ xଷ ൅ xସ ൌ 1,                       (11.7) 
which satisfies the condition of Equation (5.5). 
At last, we evaluate that  

24.83xଵ ൅ 28.5xଶ ൅ 43.5xଷ ൅ 45.21xସ 
ൌ 31.7896.                                (11.8) 

Next, we compare our findings of Equations (7.8) and (11.8) 
to find the Maple programming is superior to that of Mathcad 
programming. 

XII. SOME RELATED PROBLEMS 

Wang et al. [22] studied Ardajan [23], Aull-Hyde [24], 
and Chu et al. [25] to present further revisions. Hence, Wu 
and Hung [26] examined another related paper of Aull-Hyde 
et al. [27] to consider consistent test in analytic hierarchy 
process. In this section, we follow Wu and Hung [26] to 
provide a further examination for Aull-Hyde et al. [27].  
If we consider an analytic hierarchy process problem with 
three alternatives, Bଵ , Bଶ  and Bଷ , and there are many 
decision makers, E୨, with j א ሼ1,2, … ,mሽ. In Saaty [28], each 
decision maker, say E୨, by pairwise comparison to decide the 
relative weight for the 1-9 scale then the individual 
comparison matrix, denoted as M୨ ൌ ൣmୱ୲୨൧ଷൈଷ , that satisfies 

mୱ୲୨ א ሼ1 9, 1 8, … ,1,2, … ,9⁄⁄ ሽ,               (12.1) 
and the reciprocal property, 

mୱ୲୨m୲ୱ୨ ൌ 1,                           (12.2) 
for s, t א ሼ1,2,3ሽ. 
On the other hand, in Aull-Hyde [27], she arbitrarily 
developed a group of ninety persons, and then randomly 
assign a reciprocal comparison matrix, say  

N୩ ൌ ሾnୱ୲୩ሿଷൈଷ,                         (12.3) 
with k א ሼ1,2, … ,90ሽ such that nୱ୲୩  is randomly picked up 
from the permissible set, ሼ1 9, 1 8, … ,1,2, … ,9⁄⁄ ሽ.  
The group comparison matrix, say  

G ൌ ሾgୱ୲ሿଷൈଷ,                              (12.4) 
such that 

gୱ୲ ൌ ሺ∏ nୱ୲୩
ଽ଴
୩ୀଵ ሻଵ ଽ଴⁄ .                     (12.5) 

Based on the simulation test of Aull-Hyde [27], the group 
comparison matrix of Equation (12.4) will pass the consistent 
examination. If we follow this trend to further extend the 
group from ninety peoples to nine hundred peoples, and then 
further extend to nine thousand peoples such that  our 
simulation results will all pass the consistency test as 
proposed by Aull-Hyde [27]. From our three proposed tests, 
it demonstrates that if we (a) extend the individual group to a 
sufficient large group, and (b) randomly assign the individual 
comparison matrix, then the normalized group priority vector 
will converge to ሺ1 3⁄ , 1 3⁄ , 1 3⁄ ሻT, where T indicates the 
transpose operator. Since the group comparison matrix passes 
the consistency test, then the equally weight results will be 
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derived. It reveals that by the approach proposed by 
Aull-Hyde [29], then we will derive that every alternative has 
the same weight. It is not a reasonable conclusion for group 
decision environment. Hence, we can conclude that 
something must be wrong in the geometric mean average 
algorithm proposed by Aull-Hyde [29]. 
Owing to 

lim୩՜∞ሺnୱ୲୩ሻଵ ୩⁄ ൌ 1,                   (12.6) 
if nୱ୲୩ is randomly selected from the set of Equation (12.1). 
There is a threshold, say δ, from the arithmetic mean point of 
view, or denoted as W, from the geometric mean point of 
view, and a natural number, expressed as P, such that when 
k ൒ P,  then 

1 ൅ δ ൒ ሺnୱ୲୩ሻଵ ୩⁄ ൒ 1 െ δ,                  (12.7) 
or  

W ൒ ሺnୱ୲୩ሻଵ ୩⁄ ൒ ሺ1 W⁄ ሻ.                 (12.8) 
Based on our above discussion of Equations (12.7) and (12.8), 
researchers will develop new estimation theorem for 
consistent test. 

XIII. A RELATED EXAMINATION 

We recall that in Chang et al. [29] and Gallego and Moon 

[30],  QG  has a lower bound as 











m

d
mmdm


 1 , 

   QQ GSG   .                      (13.1) 

If the lower bound is negative. It is too underestimated then 
Gallego and Moon [15] recalled that 

  00 QG ,                          (13.2) 

so the minimum problem  QGmax  cannot be estimated 

by the lower bound, 











m

d
mmdm


 1 , 

  0 SG Q .                             (13.3) 

Gallego and Moon [30] claimed that  

(i) if 2

2





d

m
, and then SS QQ ˆ , 

(ii) if 
2

2





d

m
, and then 0ˆ SQ . 

We observe the solution procedure of Gallego and Moon 
[30]: if the lower bound is underestimated to imply a negative 
lower bound, then Gallego give up the lower bound, directly 

take 0* Q  with   00* QG . 

We raise the following problems, 

(1) Why the relation between  0g  and  SQg  can be 

decided as follows, 

     



2/122

2
0

dm
g , 

  mddQg S   ?                 (13.4) 

(2) if 
2

2





d

m
, then 0SQ  

(3) if 2

2





d

m
, then there should be a point, say Q

~
, that 

satisfies 

     0
~
 Qgdm  ,                   (13.5) 

where the objective function,  Qg  is denoted as follows, 

  





 


2

dm
dQQg , 

       QQ
2/122 .             (13.6) 

XIV. DIRECTION FOR FUTURE STUDY 

We provide a brief literature reviewing for related 
problems. Under the restriction of demand expressed in a 
linear formation, Ouyang and Rau [31] constructed a simple 
procedure for production strategies. Referring to nearest 
feature character, Chen et al. [32] studied machine 
intelligence and pattern analysis for facial cognition. With 
two competing retailers, Li and Mao [33] developed 
inventory systems with respect to decay product. To establish 
a component patterns database, Hsiao et al. [34] examined a 
new procedure to execute character recognition under an 
internet environment. With a fuzzy and changeable 
conditions, Yan [35] generated inventory models under 
arbitrary supply chain to decide the optimal price and 
replenishment policy. On the other hand, some recently 
published articles aroused our attention. With respect to 
fifteen major crowded United States city region, Matloub, 
and Kostanic [36] examined individual travel freedom 
variables through proportional analysis. Referring to 
exponential essence, Yuan, and Du [37] studied Hermite and 
Hadamard inequality by partial integration. To trace breast 
cancer, Ashilla et al. [38] applied several variable control 
diagram. To learn automobile fire in subway, Bai et al. [39] 
considered serious speed and film span for battery. Related to 
complex coefficient, Al-Shorman et al. [40] derived algebraic 
formulas for Newton-Raphson approach. To realize bug 
killers in rice field with Tungro infection, Amelia et al. [41] 
constructed organized system. Based on distributed message, 
Li, and Zhang [42] analyzed presentation. According to 
chaos method, Song et al. [43] developed Cauchy 
transformation. Under time and space web structure, Zhang 
et al. [44] acquired fast shipment under fewer carbon transfer 
design. With respect to various forms of smash wave, 
Unyapoti and Pochai [45] obtained two types of peak wave 
systems. For tour question, Xu and Zhang [46] employed a 
novel grey approach. Considering incident judgment diagram, 
Li et al. [47] gained evolutionary judgment for municipal 
crisis. Through interaction with individual, Kusuma, and 
Prasasti [48] found out a heuristic procedure to merge huge 
information. Owing to novel intellectual systems, Zihan et al. 
[49] got forecast for earthquake. Owing to involvement 
regulations, Arboleda et al. [50] took plans for superstore 
assignment. Researchers can find interesting study topic and 
hot academic current through our literature reviewing. 

XV. CONCLUSION 

We examine stochastic transportation models with 
multiple choice costs to point out that for a minimum 
problem, and then we can directly use the minimum among 
the possible choice costs to dramatically simplify the 
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transportation model. Moreover, we propose an intuitive 
approach to observe the global minimum or maximum in 
constraints and then examine the maximum and minimum in 
each constraint to simplify the model iteratively to obtain the 
optimal solution. Our proposed approach will be useful to 
solve transportation models in the future. We studied the 
AVCI model of Arcelus and Srinivasan [19] that is a 
modification of the AVCM model of Martin [20]. We found 
the criterion to derive those local maximum points inside the 
truncated sub-intervals and then compared with the gain 
value at those jumps. We can derive the exact formulated 
solution of supreme gain for each numerical example. 
However, sometimes, we pointed out that the optimal special 
order quantity did not exist. It indicates that we may advise 
decision makers not to treat the AVCI model as a revision of 
the AVCM model of Martin [20]. 

REFERENCES 
[1] J. K. J. Wu, H. L. Lei, S. T. Jung, P. Chu, “Newton method for 

determining the optimal replenishment policy for EPQ model with 
present value,” Yugoslav Journal of Operations Research, vol. 18, pp. 
53-61, 2008. 

[2] K. C. Hung, “Continuous review inventory models under time value of 
money and crashable lead time consideration,” Yugoslav Journal of 
Operations Research, vol. 21, no. 2, pp. 293-306, 2011. 

[3] J. Lin, H. Chao, P. Julian, “A demand independent inventory model,” 
Yugoslav Journal of Operations Research, vol. 23, no. 1. pp. 129-135, 
2013. 

[4] R. Lin, “Note on fuzzy sets,” Yugoslav Journal of Operations Research, 
vol.  24, no. 2, pp. 299-303, 2013. 

[5] J. P. C. Chuang, P. Chu, “Improving the public transit system for routes 
with scheduled headways,” Yugoslav Journal of Operations Research, 
vol. 24, no. 2,  pp. 237-248, 2014. 

[6] S. K. Roy, D. R. Mahapatra, M. P. Bistwal, “Multi-choice Stochastic 
Transportation Problem with Exponential Distribution,” Journal of 
Uncertain Systems, vol. 6, no. 3, pp. 200-213, 2012. 

[7] C. T. Tung, "A note on the inventory models with ramp type demand of 
negative exponentially distributed changing point," Journal of 
Industrial and Production Engineering, vol. 30, no. 1, 2013, pp. 15-19. 

[8] H. C. J. Chao, S. C. Lin, J. Lin. "Reply to a note on the inventory 
models with ramp-type demand of negative exponentially distributed 
changing point," Journal of Industrial and Production Engineering, 
vol. 31, no. 6, pp. 359-362, 2014.  

[9] S. Pal, G. S. Mahapatra, G. P. Samanta, "An EPQ model of ramp type 
demand with Weibull deterioration under inflation and finite horizon in 
crisp and fuzzy environment," International Journal of Production 

Economics, vol. 156, pp. 159-166, 2014. 
[10]  J. P. C. Chuang, W. S. Chou, P. Julianne, "Inventory models with 

stochastic ramp type demand," Journal of Interdisciplinary 
Mathematics, vol. 19, no. 1, pp. 55-64, 2016. 

[11] X. R. Luo, "Analysis of inventory models with ramp type demand," 
Journal of Interdisciplinary Mathematics, vol. 20, no. 2, pp. 543-554, 
2017. 

[12] B. Mandal. A. K. Pal, "Order level inventory system with ramp type 
demand rate for deteriorating items," Journal of Interdisciplinary 
Mathematics, vol. 1, pp. 49-66, 1998.  

[13] K. S. Wu, L. Y. Ouyang, "A replenishment policy for deteriorating 
items with ramp type demand rate," Proceeding of National Science 
Council ROC (A), vol. 24, pp. 279-286, 2000. 

[14] X. R. Luo, "Inventory models solved with hybrid approaches," 
International Journal of Computer Science and Engineering, vol. 7, no. 
4, pp. 1-10, 2018. 

[15] P. S. Deng, R. Lin, P. Chu, "A note on the inventory models for 
deteriorating items with ramp type demand rate," European Journal of 
Operational Research, vol. 178, pp. 112-120, 2007.  

[16] E. Lin, D. Schaeffer, "Discussion on Weighted Similarity Measure 
under Intuitionistic Fuzzy Sets Environment," International Journal of 
Engineering Research & Science, vol. 5, no. 9, pp. 48-56, 2019. 

[17] D. Li, C. Cheng, “New similarity measure of intuitionistic fuzzy sets 
and application to pattern recognitions," Pattern Recognition Letters, 
vol. 23, pp. 221-225, 2002. 

[18] S. Acharya, M. P. Biswal, "Solving probabilistic programming 
problems involving multi-choice parameters," Opsearch, vol. 48, no. 3, 
pp. 217-235, 2011. 

[19] F. J. Arcelus, G. Srinivasan, “Costing partial order cycles in the 
temporary sale price problem,” International Journal of Production 
Economics, vol. 56-57, pp. 21-27, 1998. 

[20] G. E. Martin, , “Note on an EOQ model with a temporary sale price,” 
International Journal of Production Economics, vol. 37, pp. 241-243, 
1994. 

[21] R. J. Tersine, , Principles of Inventory and Materials Management, 4th 
ed., Prentice-Hall, Englewood Cliffs, N.J., 1994. 

[22] C. M. Wang, Y. L. Wang, M. L. Chen, "Discussion for Consistency 
Test in Analytic Hierarchy Process," IAENG International Journal of 
Applied Mathematics, vol. 53, no.3, pp. 1123-1131, 2023. 

[23] A. Ardajan, "Optimal ordering policies in response to a sale," IIE 
Transactions, vol. 20, pp. 292-294, 1988. 

[24] R. L. Aull-Hyde, "Evaluation of supplier-restricted purchasing options 
under temporary price discounts," IIE Transactions, vol. 24, pp. 
184-186, 1992. 

[25] P. Chu, P. S. Chen, T. Niu, "Note on supplier-restricted order quantity 
under temporary price discounts," Mathematical Methods of 
Operations Research, vol. 58, pp. 141-147, 2003. 

[26] L. C. Wu, C. F. Hung, "Further study for individual consistency control 
in consensus building," IAENG International Journal of Computer 
Science, vol. 51, no. 7, pp. 868-875, 2024. 

[27] R. Aull-Hyde, S. Erdogan, J. M. Duke, "An experiment on the 
consistency of aggregated comparison matrices in AHP," European 
Journal of Operational Research, vol. 171, pp. 290–295, 2006. 

[28] T. L. Saaty, The analytic hierarchy process, New York: McGraw-Hill, 
1980. 

[29] S. K. J. Chang, J. P. C. Chuang, H. J. Chen, Short comments on 
technical note—The EOQ and EPQ models with shortages derived 
without derivatives, International Journal of Production Economics, 
vol. 97, pp. 241–243, 2005. 

[30] G. Gallego, I. Moon, "The Distribution-free newsboy problem- review 
and extensions," Journal of the Operational Research Society, vol. 44, 
pp. 825-834, 1993. 

[31] B. Ouyang, H. Rau, "A simple algorithm for production policies with a 
linear trend in demand," Journal of the Chinese Institute of Industrial 
Engineers, vol. 25, no. 3, pp. 229-236, 2008.   

[32]   Y. Chen, C. Han, C. Wang, K. Fan, "Face recognition using nearest 
feature space embedding," IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 33, no. 6, pp. 1073-1086, 2011. 

[33] J. Li, J. Mao, "An inventory model of perishable item with two types of 
retailers," Journal of the Chinese Institute of Industrial Engineers, vol. 
26, no. 3, pp. 176-183, 2009.     

[34] S. Hsiao, K. Fan, W. Sung, S. Ou, "Innovative algorithms for running a 
web-based pattern recognition search system for a component patterns 
database," Malaysian Journal of Computer Science, vol. 15, no. 2, pp. 
78-93, 2002. 

[35] X. Yan, "Replenishment and pricing decisions for inventory systems 
with random supply in a fluctuated environment," Journal of the 
Chinese Institute of Industrial Engineers, vol. 28, no. 1, pp. 45-54, 
2010. 

[36] Zaid Matloub, and Ivica Kostanic, "Comparative Analysis of Spatial 
Human Mobility Parameters in 15 Most Populous U.S. Metropolitan 
Statistical Areas," IAENG International Journal of Applied 
Mathematics, vol. 54, no. 6, pp. 997-1012, 2024.  

[37] Zhengrong Yuan, and Tingsong Du, "The Multipoint-based 
Hermite-Hadamard Inequalities for Fractional Integrals with 
Exponential Kernels," IAENG International Journal of Applied 
Mathematics, vol. 54, no. 6, pp1013-1025, 2024.  

[38] AurellFaza Ashilla, Awang Putra Sembada R, I Melda Puspita Loka, 
Sukma Adi Perdana, and Muhammad Ahsan, "Kernel PCA based on 
Hotelling Multivariate Control Chart for Monitoring Breast Cancer 
Diagnostic," IAENG International Journal of Applied Mathematics, 
vol. 54, no. 6, pp. 1026-1032, 2024.  

[39] Zhenpeng Bai, Xiaohan Zhao, Huaitao Song, Yang Zhang, Haowei 
Yao, and Jin Zhang, "Prediction of Back-layering Length and Critical 
Velocity with Lithium-ion Battery Car Fires in Tunnel," IAENG 
International Journal of Applied Mathematics, vol. 54, no. 6, pp. 
1033-1037, 2024.  

[40] Ammar Al-Shorman, Mahmood Shareef Ajeel, and Kamel Al-Khaled, 
"Analyzing Newton's Method for Solving Algebraic Equations with 
Complex Variables: Theory and Computational Analysis," IAENG 
International Journal of Applied Mathematics, vol. 54, no. 6, pp. 
1038-1047, 2024.  

[41] Rika Amelia, Nursanti Anggriani, Asep K. Supriatna, and Noor 
Istifadah, "Optimal Control Model for The Spread of Tungro Disease 
in Rice Plants by Controlling Using Pesticides," Engineering Letters, 
vol. 32, no. 6, pp. 1097-1106, 2024.  

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2832-2841

 
______________________________________________________________________________________ 



 

[42] Xinying Li, and Lijun Zhang, "Performance Analysis of NOMA-Based 
Symbiotic Ambient Backscatter Communication," Engineering Letters, 
vol. 32, no. 6, pp. 1107-1113, 2024.  

[43] Yu-Wei Song, Wei-Zhong Sun, Jie-Sheng Wang, Yu-Liang Qi, Xun 
Liu, and Yuan-Zheng Gao, "Cauchy Mutation Chaotic Coati 
Optimization Algorithm," Engineering Letters, vol. 32, no. 6, pp. 
1114-1131, 2024.  

[44] Yuzhao Zhang, Zhenjiang Zhang, Zhimo Jiang, Xiaorong Wang, and 
Muchen Ye, "Study on Low-carbon Transport Scheme of Express 
Freight Based on Space-time Network," Engineering Letters, vol. 32, 
no. 6, pp. 1132-1145, 2024.  

[45] Pidok Unyapoti, and Nopparat Pochai, "A Shoreline Evolution Model 
with Wave Crest Model on I-Head and T-Head Groin Structures with 
Different Types of Breaking Wave," Engineering Letters, vol. 32, no. 6, 
pp. 1146-1162, 2024. 

[46] Zhinan Xu, and Xiaoxia Zhang, "An Improve Grey Wolf Optimizer 
Algorithm for Traveling Salesman Problems," IAENG International 
Journal of Computer Science, vol. 51, no. 6, pp. 602-612, 2024. 

[47] Shiyong Li, Ruijun Wang, and Wei Sun, "Evolutionary Logic of Public 
Emergencies Based on Event Logic Graph," IAENG International 
Journal of Computer Science, vol. 51, no. 6, pp. 613-625, 2024. 

[48] Purba Daru Kusuma, and Anggunmeka Luhur Prasasti, "Best-Other 
Algorithm: A Metaheuristic Combining Best Member with Other 
Entities," IAENG International Journal of Computer Science, vol. 51, 
no. 6, pp. 626-633, 2024. 

[49] Zhang Zihan, Liu Xiaosheng, Wu Lijun, and Hu Guangqiu, "Prediction 
of Blast-induced Ground Vibration using Eight New Intelligent 
Models," IAENG International Journal of Computer Science, vol. 51, 
no. 6, pp. 642-649, 2024. 

[50] Francisco Javier Moreno Arboleda, Georgia Garani, and Andres Felipe 
Arboleda Correa, "Supermarket Product Placement Strategies Based 
on Association Rules," IAENG International Journal of Computer 
Science, vol. 51, no. 6, pp. 650-662, 2024. 
 

Yu-Lan Wang received her Ph.D. degree from Tianjin Nankai University in 
2014 and is currently a Professor at the School of Education, Qingdao 
Huanghai University, Shandong, China. The main research directions are 
Preschool Education, Creative Flipped Education, Educational Management, 
Fuzzy Set Theorem, and Educational Psychology. 
 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 12, December 2024, Pages 2832-2841

 
______________________________________________________________________________________ 




