
 

  

Abstract— Vaccination does not guarantee that every 

individual is free from Omicron virus infection, so there is no 

guarantee that the spread of the Omicron virus will be reduced. 

This study aims to analyze the spread of the Omicron virus with 

various vaccination rates, namely 10%, 50%, and 100%, with 

the Next Generation Matrices method. The resulting basic 

reproductive number values are 𝕽𝟎 = 𝟎. 𝟖𝟒𝟏𝟔 < 𝟏, 𝕽𝟎 =
𝟎. 𝟔𝟐𝟓𝟐 < 𝟏, and  𝕽𝟎 = 𝟎. 𝟑𝟐𝟏𝟕 < 𝟏. Based on these numbers 

and the eigenvalue stability theorem, the types of disease-free 

equilibrium points for the three vaccination rates 𝝃𝟎 =
(𝟎. 𝟐𝟑𝟎𝟖; 𝟎. 𝟕𝟔𝟗𝟐; 𝟎; 𝟎),  𝝃𝟎 = (𝟎. 𝟎𝟓𝟔𝟕; 𝟎. 𝟗𝟒𝟑𝟒; 𝟎; 𝟎), and 

𝝃𝟎 = (𝟎. 𝟎𝟐𝟗𝟏; 𝟎. 𝟗𝟕𝟎𝟖; 𝟎; 𝟎) are locally asymptotically stable. 

Numerical simulation using the fourth-order Runge Kutta 

method was carried out using Maple software. The simulation 

results state that the greater the vaccination rate, the more the 

population is vaccinated. As a result, the number of infected 

individuals decreases and inhibits the spread of the Omicron 

virus. 

 

Index Terms— mathematical modelling, numerical 

simulation, Omicron, 𝐒𝐒𝐕𝐈𝐑 model, Vaccine, stability analysis, 

Next Generation Matrices, Fourth Order Runge Kutta 

 

I. INTRODUCTION 

MICRON (B.1.1.529) is a new COVID-19 variant 

that first appeared in South Africa, and its 

transmission was detected faster than other COVID-

19 variants [1]. According to WHO, the virus has the same 

symptoms as other COVID-19 types and can also cause 

severe illness or death [2]. Although the virus can attack 

individuals who have been vaccinated [3], vaccination 

remains essential to reduce the risk posed by the virus [4]. On 

November 26, 2021, an independent institution that aims to 

monitor the development of the COVID-19 virus, the 

Technical Advisory Group on Virus Evolution (TAG-VE), 
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suggested that WHO should designate the Omicron virus as a 

Variant of Concern (VOC) [2]. 

Mathematicians from different parts of the world have 

conducted studies on COVID-19, particularly on the Omicron 

variant [5]. They used Atalanga Balamu's derivative 

definition to come up with a fractional version of the Omicron 

mutation model in South Africa. This model was then 

transformed into a piecewise differential equation and 

simulated to estimate the effect of contact rate parameters on 

the infected compartment. Another group of researchers [6] 

constructed a model called 𝑆𝐸𝐼𝑎𝐼𝑞𝐼𝑠𝑅, which is also a 

fractional piecewise differential equation system. They used 

the Partial Rank Correlation Coefficient (PRCC) method to 

determine the influential parameters in reducing Omicron 

infection in the population in southern Africa. Later on, 

another study [7] discussed a higher-order nonlinear 

mathematical model that considered vaccinated individuals 

and asymptomatic individuals, as well as the progress of 

vaccination and the decline of immunity against Omicron in 

the US and worldwide. 

 An analysis was conducted by an Indonesian 

mathematician [8] to determine the stability of the SEIR 

COVID-19 model in Indonesia. The study also involved 

numerical simulations, which found that the healing of 

COVID-19 can be accelerated with vaccines and that 

maximum isolation can slow the spread of COVID-19 in 

Indonesia. Another study [9] utilized the Weighted Markov 

Chain (MWMC) model to predict the occurrence of Omicron 

in Indonesia and calculate the average time of new daily 

cases. The research indicated that there is a 40% possibility 

of many cases with an interval of 50-100 occurring every 2.5 

days and a 20% probability of the number of cases with an 

interval of 100-760 happening every five days. Finally, [10] 

conducted a study that investigated three vaccine distribution 

strategies: no vaccine, random distribution, and targeted 

distribution. The study was applied in five and eight districts 

in the West Java province of Indonesia. From the study, it was 

revealed that targeted vaccination can significantly reduce the 

number of infected cases, and it is necessary to increase the 

number of vaccines for individual protection to be more 

optimal. 

 We developed a mathematical model of 𝑆𝑆𝑉𝐼𝑅 to 

analyze the impact of vaccination on the spread and dynamics 

of Omicron cases in Indonesia, using actual Indonesian data. 

This model aims to examine how much vaccination can affect 

Local Stability Analysis and Simulation of 

Omicron Virus Spread Using the Omicron 

SSvIR Model 

Susila Bahri, Member, IAENG, Ainil Mardiyah, Member, IAENG, Ahmad Iqbal Baqi, Member, 

IAENG, and Abqorry Zakiyyah  

O 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 5, May 2024, Pages 797-803

 
______________________________________________________________________________________ 



 

the spread and dynamics of Omicron cases in Indonesia. We 

used this model to calculate the Basic Reproduction Number, 

which indicates the potential transmission of the virus from 

infected individuals to susceptible individuals. We conducted 

a stability analysis of the equilibrium point, which is the 

solution of the model or system of nonlinear equations, to 

identify disease-free and endemic conditions in the 

population. Additionally, we carried out simulations of 

several values of vaccination parameters using the model to 

estimate the spread of the Omicron virus that disappears or 

does not produce epidemics. 

 

II. METHOD 

The modelling of the Omicron epidemic, incorporating 

vaccination parameters, was applied to actual data from 

Indonesia. The basic reproduction number was calculated 

using the Next Generation Matrices method [11] under the 

assumption that the infected sub-compartment remains 

unchanged at the disease-free equilibrium point. 

Subsequently, this reproduction number was employed to 

establish the endemic equilibrium point. The stability of the 

disease-free equilibrium point was determined based on the 

eigenvalue theorem [12]. In contrast, the type of local 

stability of the endemic equilibrium point was determined 

through Routh's Theorem [13]. MAPLE software was used to 

simulate the effect of vaccination on Omicron virus 

transmission with various values of vaccination parameters. 

 

III. FINDINGS AND DISCUSSION 

A. Formulation of SSVIR Omicron Model 

 In this epidemiological context of Omicron, the human 

population is classified into four groups: the Susceptible 

without Vaccinated group, the Susceptible with Vaccinated 

group, the Infected group and the Recovered group. The 

model formulated assuming that vaccinated individuals are 

still susceptible to infection by the virus is presented in the 

schematic diagram shown in Figure 1. 

    The parameters used in Figure 1 𝛽, 𝛿, 𝜇, 𝑎, 𝑏, 𝑐, and 𝑒, 
respectively, represent the natural birth rate, the natural death 

rate, the mortality rate due to the Omicron virus, the 

vaccination rate of susceptible individuals without 

vaccination, the contact rate of susceptible individuals 

without vaccination with infected individuals, the contact rate 

of susceptible individuals with vaccination with infected 

individuals, and the recovery rate. 

 Based on Figure 1, the mathematical model of Omicron 

𝑆𝑆𝑉𝐼𝑅 can be expressed as a system of ordinary differential 

equations as follows: 

𝑑𝑆

𝑑𝑡
= 𝛽 − 𝛿𝑆 − 𝑎𝑆 − 𝑏𝑆𝐼 

𝑑𝑆𝑉

𝑑𝑡
= 𝑎𝑆 − 𝛿𝑆𝑉 − 𝑐𝑆𝐼 

𝑑𝐼

𝑑𝑡
= 𝑏𝑆𝐼 + 𝑐𝑆𝑉𝐼 − (𝛿 + 𝜇 + 𝑒)𝐼 

𝑑𝑅

𝑑𝑡
= 𝑒𝐼 − 𝛿𝑅 

(1) 

where 𝑁(𝑡)  =  𝑆(𝑡)  +  𝑆𝑣(𝑡)  +  𝐼(𝑡)  +  𝑅(𝑡) and the 

parameters 𝛽, 𝛿, 𝜇, 𝑎, 𝑏, 𝑐, 𝑒 are positive constants. 

 
Fig. 1.  SSvIR Model  

The population is not constant 
𝑑𝑁

𝑑𝑡
≠ 0 [14], which can be 

proven by the following: 

 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝑆𝑉

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 

                               =   𝛽 − 𝜇 𝐼 − 𝛿 (𝑆 + 𝑆𝑉 +  𝐼 +  𝑅) 

                                   = 𝛽 − 𝜇 𝐼 − 𝛿 𝑁. 
 

B. Equilibrium Point and Basic Reproduction Number 

(ℜ0) 

In a mathematical model describing the spread of a disease, 

there exist two categories of equilibrium points: the disease-

free equilibrium point (𝜉0) and the endemic equilibrium point 

(𝜉∗). The two equilibrium points can be identified by setting 

each equation within the system (1) equal to zero. It will result 

in the following system: 

 

𝛽 − 𝛿𝑆 − 𝑎𝑆 − 𝑏𝑆𝐼 = 0 

𝑎𝑆 − 𝛿𝑆𝑉 − 𝑐𝑆𝐼 = 0 

𝑏𝑆𝐼 + 𝑐𝑆𝑉𝐼 − (𝛿 + 𝜇 + 𝑒)𝐼 = 0 

𝑒𝐼 − 𝛿𝑅 = 0 

(2)  

(3)  

(4)  

(5)  

 

1)  Disease-Free Equilibrium Point (𝜉0 ) 

 The disease-free equilibrium point (𝜉0) is a fixed point 

that represents a condition where there is no disease in the 

population 𝐼 = 0 [15], thus obtaining the following 

expression:  

𝜉0 = (𝑆0, 𝑆𝑉
0, 𝐼0, 𝑅0) =  (

𝛽

𝛿 + 𝑎
,

𝑎𝛽

𝛿(𝛿 +  𝑎)
, 0, 0). (6) 

 

2)  Basic Reproduction Number (ℜ0) 

Based on [12], the Jacobian matrix of the infected 

subsystem 
𝑑𝐼

𝑑𝑡
  for the disease-free equilibrium point (𝜉0) is as 

follows: 

𝐽𝜉0  = [
𝑏𝛽

𝛿 + 𝑎
+

(𝑎𝑐𝛽)

𝛿(𝛿 + 𝑎)
− (𝛿 + 𝜇 + 𝑒)]. (7) 

 

The decomposition of matrix (7) yields: 

 

𝐽𝜉0  = [
𝑏𝛽

𝛿 + 𝑎
+

(𝑎𝑐𝛽)

𝛿(𝛿 + 𝑎)
] + [−(𝛿 + 𝜇 + 𝑒)],  

with 

𝑇 = [
𝑏𝛽

𝛿 + 𝑎
+

(𝑎𝑐𝛽)

𝛿(𝛿 + 𝑎)
], 

Σ = [−(𝛿 + 𝜇 + 𝑒)]. 

 

Furthermore, using the spectral radius [8], we obtain: 

ℜ0 = 𝜌(−𝑇Σ−1) 
 

(8) 

𝑆 𝑅 𝐼 

𝑆𝑣 

𝛽 

𝛼𝑆 

𝛿𝑆 

𝛿𝑆𝑣 
𝛽𝑆𝐼 

(𝛿 + 𝜇)𝐼 

𝑐𝑆𝑣𝐼 

𝜖𝐼 

𝛿𝑆 
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                           =
𝛽(𝑏𝛿 + 𝑎𝑐)

𝛿(𝑎 + 𝛿)(𝜇 + 𝛿 + 𝑒)
. 

 

3)  Endemic Equilibrium Point (𝜉∗) 

 The endemic equilibrium point 𝜉∗ = (𝑆∗, 𝑆𝑉
∗ , 𝐼∗, 𝑅∗) 

represents a point that indicates the occurrence of disease 

spread in a population where 𝑆 ≠ 0, 𝑆𝑉 ≠ 0, 𝐼 ≠ 0, 𝑅 ≠ 0 

[8]. By using equations (2)-(5), the endemic equilibrium point 

(𝜉∗)  is given by: 

 

𝜉∗ = (𝑆∗, 𝑆𝑉
∗ , 𝐼∗, 𝑅∗)     

=  (
𝛽

𝛿 + 𝑎 + 𝑏𝐼∗
,

𝑎𝛽

(𝛿 + 𝑎 + 𝑏𝐼∗)(𝛿 + 𝑐𝐼∗)
, 𝐼∗,

𝑒𝐼∗

𝛿
), 

(9) 

 

where 𝐼∗ is a positive root of 

  

𝐴1 (𝐼)
2  +  𝐴2 𝐼 +  𝐴3 (1 − ℜ0) = 0 (10) 

and  

𝐴1 = (𝛿 + 𝜇 + 𝑒)(𝑏𝑐) >  0, (11) 

𝐴2 = (𝛿 + 𝜇 + 𝑒)(𝑐𝛿 + 𝑎𝑐 + 𝑏𝛿) − 𝑏𝑐𝛽, (12) 

𝐴3 = 𝛿 (𝛿 +  𝑎)(𝛿 + 𝜇 + 𝑒)  >  0. (13) 

 

Then, in order to ensure that the root of equation 

(10)  

  

𝐼∗ =
−𝐴2 ± √(𝐴2)2 − 4𝐴1𝐴3(1 − ℜ0)

2𝐴1
, (14) 

If ℜ0 >  1, then 𝐴3 (1 − ℜ0) < 0 and equation (10) have 

two real roots, one positive and the other negative. When 

ℜ0 ≤ 1, equation (10) has two real roots, both of which are 

negative. Then, by using ℜ0 ≤ 1, the following result is 

obtained: 

ℜ0 ≤ 1 
                  𝛽(𝑏𝛿 + 𝑎𝑐) ≤ 𝛿(𝑎 + 𝛿)(𝜇 + 𝛿 + 𝑒) 

                                     𝛽 ≤
𝛿(𝑎+𝛿)(𝜇+𝛿+ 𝑒)

𝑏𝛿 + 𝑎𝑐
. 

 

 

(15) 

 

Next, by substituting equation (15) into equation (12), we 

obtain 

𝐴2 = (𝛿 + 𝜇 + 𝑒)(𝑐𝛿 + 𝑎𝑐 + 𝑏𝛿) −  𝑏𝑐𝛽 

      = (𝛿 + 𝜇 + 𝑒) (
𝑏𝛿2 + 𝑎𝑐2𝛿 + 𝑎𝑐2 + 𝑎𝑐𝑏𝛿

𝑏𝛿 +  𝑎𝑐
) > 0, 

 

 

(16) 

 

C. Stability Analysis of Equilibrium Point 

 In analyzing the stability of equilibrium points of the 

system (1), linearization is performed by using the Jacobian 

matrix [12].  

 

𝐽𝑆,𝑆𝑉,𝐼,𝑅 =  [

−𝛿 −  𝑎 −  𝑏𝐼 0 −𝑏𝑆 0
𝑎 −𝛿 −  𝑐𝐼 −𝑐𝑆𝑉 0
𝑏𝐼
0

𝑐𝐼
0

𝑏𝑆 +  𝑐𝑆𝑉 − (𝜇 +  𝛿 +  𝑒)
𝑒

0
−𝛿

]. 
 

(17) 

 

 

The type of stability for the two equilibrium points is 

obtained through the following analysis. 

 

1)  Disease-Free Equilibrium Point 

  Based on the value of the basic reproduction number 

ℜ0, the stability of the disease-free equilibrium point is 

determined by the following Theorem 1. 

 

Theorem 1: 

The disease-free equilibrium point 𝜉0 for equation (6) of 

the system (1) is asymptotically stable if ℜ0 < 1. 
Otherwise, this equilibrium point is considered unstable [8], 

[15]. 

Proof. 

Based on equation (17), the Jacobian matrix at the 

disease-free equilibrium point 𝜉0  is given by 

 

𝐽𝑆,𝑆𝑉,𝐼,𝑅 = [

−𝛿 −  𝑎 0 −𝑏𝑆0 0
𝑎 −𝛿 −𝑐𝑆𝑉

0 0

0
0

0
0

𝑏𝑆0  +  𝑐𝑆𝑉
0 − (𝜇 +  𝛿 +  𝑒)

𝑒
0

−𝛿

]. (18) 

 

Then, the characteristic equation of the matrix 𝐽𝜉0 using 

the identity matrix I is given by: 

 

det(𝐽𝜉0 − 𝜆 𝐼) = 0 

det (

−𝛿 −  𝑎 − 𝜆 0 −𝑏𝑆0 0
𝑎 −𝛿 −  𝜆 −𝑐𝑆𝑉

0 0

0
0

0
0

𝑏𝑆0 +  𝑐𝑆𝑉
0 − (𝜇 +  𝛿 +  𝑒) −  𝜆

𝑒
0

−𝛿 − 𝜆

 ) = 0  

(−𝛿 − 𝜆)(−𝛿 − 𝑎 − 𝜆)(−𝛿 − 𝜆)(𝑏𝑆0  +  𝑐𝑆𝑉
0  −  (𝜇 + 𝛿 +  𝑒) − 𝜆) = 0. 

 

(19) 

 

Therefore, the eigenvalues of the Jacobian matrix 𝐽𝜉0   are 

obtained as follows: 

 

𝜆1 = −𝛿 < 0,  
𝜆2 = −𝛿 − 𝑎 < 0, 
𝜆3 = −𝛿 < 0, 
𝜆4 = (𝜇 + 𝛿 + 𝑒)(ℜ0 − 1). 

(20) 

(21) 

(22) 

(23) 

 

The Stability Theorem of Eigenvalues plays an important 

role in understanding the stability of the disease-free 

equilibrium point 𝜉0. According to the theorem, the local 

asymptotic stability of this point is determined by the 

condition that 𝜆𝑗  <  0 for 𝑗 =  1,2,3,⋯ , 𝑛[12]. When we 

look at the equations (20)-(22), we can see that the 

eigenvalues 𝜆1, 𝜆2, 𝜆3 are all less than 0. To satisfy the 

stability criteria, we need 𝜆4 to be less than 0 as well. The 

stability of the disease-free equilibrium point 𝜉0 depends on 

the value of ℜ0. If ℜ0 is less than 1, then all eigenvalues of 

the Jacobian matrix 𝐽𝜉0 will exhibit negative real parts, 

resulting in the local asymptotic stability of the disease-free 

equilibrium point 𝜉0. However, if ℜ0 is greater than 1, 

certain eigenvalues of the Jacobian matrix 𝐽𝜉0 will have 

positive real parts, leading to the instability of the disease-

free equilibrium point 𝜉0. 

 

2) Endemic Equilibrium Point 

 Based on the value of basic reproduction number ℜ0, the 

stability of the endemic equilibrium point is determined 

according to the following Theorem 2. 

Theorem 2: 

If ℜ0 > 1, then the endemic equilibrium point 𝜉∗ for 

equation (9) of the system (1) is asymptotically stable. 

Otherwise, this equilibrium point is considered unstable 

[8]. 

Proof. 

Based on equation (17), the Jacobian matrix at the 

endemic equilibrium point 𝜉∗ [16] is given by: 
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𝐽𝑆,𝑆𝑉,𝐼,𝑅 = [

−𝛿 − 𝑎 − 𝑏𝐼∗ 0 −𝑏𝑆∗ 0
𝑎 −𝛿 − 𝑐𝐼∗ −𝑐𝑆𝑉

∗ 0
𝑏𝐼∗

0
𝑐𝐼∗

0
𝑏𝑆∗  +  𝑐𝑆𝑉

∗ − (𝜇 +  𝛿 +  𝑒)
𝑒

0
−𝛿

] 

          = 

[
 
 
 
 −

𝛽

𝑆∗ 0 −𝑏𝑆∗ 0

𝑎
𝑎𝑆∗

𝑆𝑉
∗ −𝑐𝑆𝑉

∗ 0 

𝑏𝐼∗

0
𝑐𝐼∗

0
0
𝑒

0
−𝛿 ]

 
 
 
 

,  

 

where  

 

 

 

 

(24) 

 

−(𝛿 + 𝑎 + 𝑏𝐼∗) =  −
𝛽

𝑆∗
, 

                       −(𝛿 + 𝑐𝐼∗) =  −
𝑎𝑆∗

𝑆𝑉
∗ , 

𝑏𝑆∗ + 𝑐𝑆𝑉
∗ − (𝜇 + 𝛿 + 𝑒) = 0.  

(25) 

 

(26) 

 

(27) 

 

Next, the characteristic equation of the matrix 𝐽𝜉∗ using 

the identity matrix I is as follows: 

 

det(𝐽𝜉∗ − 𝜆 𝐼) = 0 

det

(

 
 
 

−
𝛽

𝑆∗
− 𝜆 0 −𝑏𝑆∗ 0

𝑎 −
𝑎𝑆∗

𝑆𝑉
∗ − 𝜆 −𝑐𝑆𝑉

∗ 0

𝑏𝐼∗

0
𝑐𝐼∗

0
−𝜆
𝑒

0
−𝛿 − 𝜆

 

)

 
 
 

= 0 

 

(𝛿 + 𝜆) [𝜆3 + (
𝛽

𝑆∗
+

𝑎𝑆∗

𝑆𝑉
∗ ) 𝜆2 + (

𝛽

𝑆∗

𝑎𝑆∗

𝑆𝑉
∗ + 𝑏2𝑆∗ 𝐼∗ + 𝑐2𝑆𝑉

∗  𝐼∗)  𝜆 

+ 𝐼∗ (𝑎𝑏𝑐 𝑆∗ +
𝑎𝑆∗

𝑆𝑉
∗  𝑏2 𝑆∗ +

𝛽

𝑆∗
𝑐2 𝑆𝑉

∗)] = 0 

 

𝜆3 + 𝐶1𝜆
2  + 𝐶2𝜆 + 𝐼∗𝐶3 = 0, 

with 

 

 

 

 

 

 

 

 

(28) 

𝐶1 =
𝛽

𝑆∗
+

𝑎𝑆∗

𝑆𝑉
∗ , 

𝐶2 =
𝑎𝛽

𝑆𝑉
∗ + 𝑏2𝑆∗ 𝐼∗ + 𝑐2𝑆𝑉

∗𝐼∗, 

𝐶3 = (𝑎𝑏𝑐𝑆∗ +
𝑎𝑆∗

𝑆𝑉
∗ 𝑏2𝑆∗ +

𝛽

𝑆∗
𝑐2𝑆𝑉

∗ . 

(29) 

 

(30) 

 

(31) 

To determine whether all the roots of the polynomial 

equation (28) have negative real parts or not, the Routh 

criteria, as revealed by Routh's Theorem [13], are utilized, 

resulting in the Routh array as follows, 

 

𝜆3 1 𝐶2 

𝜆2 𝐶1 𝐼∗𝐶3 

𝜆1 𝑟 0 

𝜆0 𝑠 0 
 

Where 

 𝑟 = 𝐶1𝐶2 −
𝐼∗𝐶3

𝐶1
 

=

𝑎𝛽2

𝑆∗𝑆𝑉
∗ + (𝛿 + 𝑏𝐼∗)𝑏2𝑆∗𝐼∗ +

𝑎2𝛽𝑆∗

(𝑆𝑉
∗)2 + 𝑎𝑆∗𝐼∗((𝑏 − 𝑐)2 + 𝑏𝑐)

𝐶1

, 

 

 

 

(32) 

𝑠 =
𝑟𝐼∗𝐶3

𝑟
 

= 𝐼∗ (𝑎𝑏𝑐𝑆∗ +
𝑎𝑆∗

𝑆𝑉
∗ 𝑏2𝑆∗ +

𝛽

𝑆∗
 𝑐2𝑆𝑉

∗). 

 

(33) 

 

Both 𝑟 and 𝑠 must be positive to ensure that the roots of 

the polynomial equation (28) are negative. Additionally, if 

the endemic equilibrium point 𝐼∗ is positive, then 𝑟 and 𝑠 

should also be greater than 0. It is important because if the 

value of ℜ0 is greater than 1, which indicates an endemic 

equilibrium point 𝜉∗, then it is considered to be locally 

asymptotically stable. On the other hand, if either 𝑟 or 𝑠 is 

negative, then the roots of equation (28) will have positive 

real parts, which will lead to a negative value of 𝐼∗. As a 

result, if 𝑅0 is less than 1, indicating an endemic 

equilibrium point 𝜉∗, it is considered to be unstable. 

 

D. The solution of the 𝑆𝑆𝑉𝐼𝑅 model using the fourth-order 

Runge-Kutta method 

The system of equations (1) can be rewritten as follows, 

 
𝑑𝑆

𝑑𝑡
= 𝑓1(𝑡, 𝑆, 𝑆𝑉 , 𝐼, 𝑅 = 𝛽 − 𝛿 𝑆(𝑡)  −  𝑎 𝑆(𝑡)  −  𝑏 𝑆(𝑡) 𝐼(𝑡), 

(34) 

𝑑𝑆𝑉

𝑑𝑡
= 𝑓2(𝑡, 𝑆, 𝑆𝑉 , 𝐼, 𝑅) = 𝑎 𝑆(𝑡)  − 𝛿 𝑆𝑉(𝑡)  −  𝑐 𝑆𝑉(𝑡) 𝐼(𝑡) 

𝑑𝐼

𝑑𝑡
= 𝑓3(𝑡, 𝑆, 𝑆𝑉 , 𝐼, 𝑅) =  𝑏 𝑆(𝑡) 𝐼(𝑡)  +  𝑐 𝑆𝑉(𝑡) 𝐼(𝑡)  − (𝛿 

+ 𝜇 +  𝑒) 𝐼(𝑡), 
𝑑𝑅

𝑑𝑡
= 𝑓4(𝑡, 𝑆, 𝑆𝑉 , 𝐼, 𝑅) = 𝑒 𝐼(𝑡)  − 𝛿 𝑅(𝑡) 

 

Based on [17], the system of equations (34) can be 

transformed into fourth-order Runge-Kutta equations as 

follows, 

𝑆𝑛+1 = 𝑆𝑛 +
ℎ

6
(𝑘1𝑆 + 2𝑘2𝑆 + 2𝑘3𝑆 + 𝑘4𝑆), (35) 

(𝑆𝑉)𝑛+1 = (𝑆𝑉)𝑛 +
ℎ

6
(𝑘1𝑆𝑉

+ 2𝑘2𝑆𝑉
+ 2𝑘3𝑆𝑉

+ 𝑘4𝑆𝑉
), (36) 

𝐼𝑛+1 = 𝐼𝑛 +
ℎ

6
(𝑘1𝐼 + 2𝑘2𝐼 + 2𝑘3𝐼 + 𝑘4𝐼), (37) 

𝑅𝑛+1  =  𝑅𝑛 +
ℎ

6
(𝑘1𝑅 + 2𝑘2𝑅 + 2𝑘3𝑅 + 𝑘4𝑅), (38) 

with 

𝑘1𝑆 = 𝑓1(𝑡𝑛, 𝑆𝑛, (𝑆𝑉)𝑛, 𝐼𝑛, 𝑅𝑛), 
𝑘1𝑆𝑉

= 𝑓2(𝑡𝑛, 𝑆𝑛, (𝑆𝑉)𝑛, 𝐼𝑛, 𝑅𝑛), 

𝑘1𝐼 = 𝑓3(𝑡𝑛, 𝑆𝑛, (𝑆𝑉)𝑛, 𝐼𝑛, 𝑅𝑛), 
𝑘1𝑅 = 𝑓4(𝑡𝑛, 𝑆𝑛, (𝑆𝑉)𝑛, 𝐼𝑛, 𝑅𝑛), 

𝑘2𝑆 = 𝑓1 (𝑡𝑛 +
1

2
ℎ, 𝑆𝑛 +

1

2
𝑘1𝑆ℎ, 𝑆𝑉𝑛

+
1

2
𝑘1𝑆𝑉

ℎ, 𝐼𝑛 +
1

2
𝑘1𝐼ℎ, 𝑅𝑛 +

1

2
𝑘1𝑅ℎ) , 

𝑘2𝑆𝑉
= 𝑓2 (𝑡𝑛 +

1

2
ℎ, 𝑆𝑛 +

1

2
𝑘1𝑆ℎ, (𝑆𝑉)𝑛 +

1

2
𝑘1𝑆𝑉

ℎ, 𝐼𝑛 +
1

2
𝑘1𝐼ℎ, 𝑅𝑛 +

1

2
𝑘1𝑅ℎ), 

𝑘2𝐼 = 𝑓3 (𝑡𝑛 +
1

2
ℎ, 𝑆𝑛 +

1

2
𝑘1𝑆ℎ, (𝑆𝑉)𝑛 +

1

2
𝑘1𝑆𝑉

ℎ, 𝐼𝑛 +
1

2𝑘1𝐼ℎ
, 𝑅𝑛 +

1

2
𝑘1𝑅ℎ), 

𝑘2𝑅 = 𝑓4 (𝑡𝑛 +
1

2
ℎ, 𝑆𝑛 +

1

2
𝑘1𝑆ℎ, (𝑆𝑉)𝑛 +

1

2
𝑘1𝑆𝑉

ℎ, 𝐼𝑛 +
1

2
𝑘1𝐼ℎ, 𝑅𝑛 +

1

2
𝑘1𝑅ℎ),  

𝑘3𝑆 = 𝑓1 (𝑡𝑛 +
1

2
ℎ, 𝑆𝑛 +

1

2
𝑘2𝑆ℎ, 𝑆𝑉𝑛 +

1

2
𝑘2𝑆𝑉

ℎ, 𝐼𝑛 +
1

2
𝑘2𝐼ℎ, 𝑅𝑛 +

1

2
𝑘2𝑅ℎ) , 

𝑘3𝑆𝑉
= 𝑓2 (𝑡𝑛 +

1

2
ℎ, 𝑆𝑛 +

1

2
𝑘2𝑆ℎ, (𝑆𝑉)𝑛 +

1

2
𝑘2𝑆𝑉

ℎ, 𝐼𝑛 +
1

2
𝑘2𝐼ℎ, 𝑅𝑛 +

1

2
𝑘2𝑅ℎ), 

𝑘3𝐼 = 𝑓3 (𝑡𝑛 +
1

2
ℎ, 𝑆𝑛 +

1

2
𝑘2𝑆ℎ, (𝑆𝑉)𝑛 +

1

2
𝑘2𝑆𝑉

ℎ, 𝐼𝑛 +
1

2
𝑘2𝐼ℎ, 𝑅𝑛 +

1

2
𝑘2𝑅ℎ), 

𝑘3𝑅 = 𝑓4 (𝑡𝑛 +
1

2
ℎ, 𝑆𝑛 +

1

2
𝑘2𝑆ℎ, (𝑆𝑉)𝑛 +

1

2
𝑘2𝑆𝑉

ℎ, 𝐼𝑛 +
1

2
𝑘2𝐼ℎ, 𝑅𝑛 +

1

2
𝑘2𝑅ℎ) , 

𝑘4𝑆 = 𝑓1(𝑡𝑛 + ℎ, 𝑆𝑛 + 𝑘3𝑆ℎ, (𝑆𝑉)𝑛 + 𝑘3𝑆𝑉
ℎ, 𝐼𝑛 + 𝑘3𝐼ℎ, 𝑅𝑛 + 𝑘3𝑅ℎ), 

𝑘4𝑆𝑉
= 𝑓2(𝑡𝑛 + ℎ, 𝑆𝑛 + 𝑘3𝑆ℎ, (𝑆𝑉)𝑛 + 𝑘3𝑆𝑉

ℎ, 𝐼𝑛 + 𝑘3𝐼ℎ, 𝑅𝑛 + 𝑘3𝑅ℎ), 

𝑘4𝐼 = 𝑓3(𝑡𝑛 + ℎ, 𝑆𝑛 + 𝑘3𝑆ℎ, (𝑆𝑉)𝑛 + 𝑘3𝑆𝑉
 ℎ, 𝐼𝑛 + 𝑘3𝐼ℎ, 𝑅𝑛 + 𝑘3𝑅ℎ), 

𝑘4𝑅 = 𝑓4(𝑡𝑛 + ℎ, 𝑆𝑛 + 𝑘3𝑆ℎ, (𝑆𝑉)𝑛 + 𝑘3𝑆𝑉
ℎ, 𝐼𝑛 + 𝑘3𝐼ℎ, 𝑅𝑛 + 𝑘3𝑅ℎ), 

𝑡𝑛 represents time, and ℎ represents the step size. 

 

E. The solution of the 𝑆𝑆𝑉𝐼𝑅 model using the fourth-order 

Runge-Kutta method 

 The model is simulated using MAPLE software, 

utilizing the initial variable values provided in Table I and the 

corresponding parameter values outlined in Table II. 
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TABLE I 

VARIABLE VALUES 

Variable Estimated Value Source 

𝑁 1 [18] 

𝑆(0) 0.8401 [19] 

𝑆𝑉(0) 0.1599 [19],[20] 

𝐼(0) 0.00004 [21],[22] 

𝑅(0) 0.00002 Estimated 

 

TABLE II 

PARAMETER VALUES 

Parameter Estimated Value Source 

𝛽 0.03/𝑑𝑎𝑦 Estimated 

𝛿 0.03/𝑑𝑎𝑦 Estimated 

𝜇 0.0007/𝑑𝑎𝑦 Estimated 

𝑎(1) 10%/𝑑𝑎𝑦 Assumed 

𝑎(2) 50%/𝑑𝑎𝑦 Assumed 

𝑎(3) 100%/𝑑𝑎𝑦 Assumed 

𝑏 0.3/𝑑𝑎𝑦 Estimated 

𝑐(1) 0.6/𝑑𝑎𝑦 Estimated 

𝑐(2) 0.4/𝑑𝑎𝑦 Estimated 

𝑐(3) 0.2/𝑑𝑎𝑦 Estimated 

𝑒 0.6/𝑑𝑎𝑦 Estimated 

  

By substituting the parameter values from Table II into the 

system (1), the equilibrium points and the basic reproduction 

number of the 𝑆𝑆𝑉𝐼𝑅 model are determined as follows: 
𝑑𝑆

𝑑𝑡
= 0.03 − 0.03 𝑆(𝑡)  −  𝑎 𝑆(𝑡)  −  0.3 𝑆(𝑡) 𝐼(𝑡), 

(39) 

𝑑𝑆𝑉

𝑑𝑡
= 𝑎 𝑆(𝑡)  − 0.03 𝑆𝑉(𝑡)  −  𝑐 𝑆(𝑡) 𝐼(𝑡) 

𝑑𝐼

𝑑𝑡
=  0.3 𝑆(𝑡) 𝐼(𝑡)  +  𝑐 𝑆𝑉(𝑡) 𝐼(𝑡)  − (0.03 

+ 0.0007 +  0.6) 𝐼(𝑡), 
𝑑𝑅

𝑑𝑡
= 0.6 𝐼(𝑡)  − 0.03 𝑅(𝑡) 

 

The parameter values can be substituted with several 

simulation values, 𝑎(1), 𝑎(2), and 𝑎(3), along with the initial 

values 𝑆(0), 𝑆𝑉(0), 𝐼(0), 𝑎𝑛𝑑 𝑅(0) in Table I. Then, using 

equation (7), the basic reproduction number is obtained and 

presented in Table III. 

 

TABLE III 

SIMULATION RESULTS OF ℜ0 

Simulation 
Vaccination 

Parameter  

Contact rate 

of 𝑆𝑣 with 𝐼  
ℜ0 

1 𝑎(1) = 10% 𝑐(1) = 0.6 ℜ0 = 0.8416 < 1 

2 𝑎(2) = 50% 𝑐(2) = 0.4 ℜ0 = 0.6252 < 1 

3 𝑎(3) = 100% 𝑐(3) = 0.2 ℜ0 = 0.3217 < 1 

  

 After conducting three simulations, it was determined 

that the basic reproduction number (ℜ0) for each simulation 

was less than 1. As a result, it can be inferred that the disease-

free equilibrium point 𝜉0 is asymptotically stable [1]. Using 

the parameter values listed in Table II to solve equations (6) 

and (20) – (23), Table IV displays the equilibrium values for 

the disease-free state, as well as the eigenvalues associated 

with each simulation.  

A numerical simulation has been performed using the 

fourth-order Runge-Kutta method to investigate how 

vaccination affects population dynamics during the spread of 

the Omicron virus. The simulation used the initial values 

described in Table I and the parameters specified in Table II, 

with the parameter 𝑎 being assigned with various values. 

From Table III, it can be interpreted that an increase in the 

number of people vaccinated (𝑎) affects the ability of the 

virus to infect. In other words, the contact rate between sub-

individuals who have been vaccinated with infected sub-

individuals 𝑐 decreases. This condition means that the 

number of sub-individuals infected also decreases so that the 

spread of the virus is hampered. At the same time, the number 

of recovered sub-individuals increased. The results of the 

simulation for the Omicron virus transmission model are 

presented visually in Figures 2, 3, 4, and 5. 

The administration of 10% of vaccines exclusively to the 

susceptible subpopulation without prior vaccination, as 

depicted in Figure 2, exhibits an extended duration required 

to diminish the size of this subpopulation. Concurrently, this 

reduction leads to an escalation in the count of vaccinated 

susceptible subpopulations, reaching approximately 

214,744,174 individuals, as illustrated in Figure 3. The 

allocation of 50% of vaccines to the susceptible 

subpopulation without vaccination results in a relatively swift 

decrease in the number of susceptible subpopulations without 

vaccination, as portrayed in Figure 2. However, this approach 

also corresponds to an increase in the number of vaccinated 

susceptible subpopulations, reaching approximately 

263,333,883 individuals in Figure 3. Lastly, the 

administration of 100% of vaccines to the susceptible 

subpopulation without prior vaccination induces a rapid surge 

in the number of vaccinated susceptible subpopulations, 

reaching approximately 270,873,666 individuals, as indicated 

in Figure 3. In Figure 4, by administering 10% vaccine, the 

disease-free equilibrium point can be reached in 

approximately 60 days. Then, by administering 50% and 

100% vaccines, respectively, the equilibrium point can be 

reached within 36 and 22 days. In Figure 5, for administering 

10% vaccine, the maximum number of recovered 

subpopulation individuals was 25,691 on day 11. In 

comparison, with 50% vaccine administration, the maximum 

number of 23,178 recovered subpopulation individuals was 

attained in approximately nine days. Moreover, the complete 

distribution of vaccines resulted in the highest recovery 

number of individuals in the subpopulation, reaching 16,755 

within around six days. 

The results of this study highlight the effectiveness of 

administering the vaccine in reducing individuals infected 

with Omicron. It emphasizes the crucial role of COVID-19 

vaccination in controlling the rapid spread of the Omicron 

variant. These simulation findings are essential in enhancing 

strategies aimed at managing and controlling the number of 

COVID-19 cases in Indonesia, with a particular focus on 

reducing the impact of the Omicron variant. 

 

IV. CONCLUSION 

Comprehensive results were obtained after an extensive 
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research study analyzing the 𝑆𝑆𝑉𝐼𝑅 model under various 

vaccination conditions, indicating that Indonesia is not 

experiencing an epidemic caused by the Omicron virus. 

Moreover, the present vaccination initiative has been 

successfully achieved in impeding the transmission of the 

virus. Consequently, it is essential to prioritize individual 

vaccination as a proactive approach to avoid and mitigate the 

risk of exposure to the virus. 

 

TABLE IV 

VALUES OF DISEASE-FREE EQUILIBRIUM AND EIGENVALUES FOR EACH SIMULATION 

Simulation 𝑆0 𝑆𝑉
0 𝐼0 𝑅0 𝜆1 𝜆2 𝜆3 𝜆4 ℜ0 

1 0.2307 0.7692 0 0 −0.03 −0.13 −0.03 −0.0999 ℜ0 = 0.8416 < 1 

2 0.0566 0.9434 0 0 −0.03 −0.53 −0.03 −0.2364 ℜ0 = 0.6252 < 1 

3 0.0291 0.9708 0 0 −0.03 −1.03 −0.03 −0.4278 ℜ0 = 0.3217 < 1 

 
Fig. 2.  Variation in the number of Susceptible without 

Vaccine (S) populations for different values of 𝑎  

 

 
Fig. 3.  Variation in the number of Susceptible with Vaccine 

(SV) population for different values of 𝑎  

  
Fig. 4.  Variation in the number of Infected (I) population for different values of 𝑎 
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Fig. 5.  Variation in the number of Recovered (R) population for different values of 𝑎 
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