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Abstract—Simpson inequalities for first-order differentiable
convex functions and various fractional integrals have been
studied extensively. However, Simpson type inequalities for
twice-differentiable functions are researched slightly. There-
fore, in the present paper, we endeavor to study fractional
inequalities of Simpson type for twice-differentiable convex
functions. To achieve this goal, we establish a new twice-
differentiable Simpson’s identity by using tempered fractional
integral operators. Based upon it, we prove several fractional
Simpson type inequalities whose second derivatives in absolute
value are convex. Finally, we give some examples to illustrate
the correctness of the obtained results.

Index Terms—Convex functions; Simpson type inequalities;
Riemann–Liouville fractional integrals; tempered fractional
integrals

I. INTRODUCTION AND PRELIMINARIES

THE Simpson type inequality is one of the classic
inequalities in analysis, which has intuitive geometric

meanings and a wide range of application values in the field
of engineering mathematics. Let us state it as the following
theorem.

Theorem 1.1: Let F : [a, b] → R denotes a four
times continuously differentiable mapping on (a, b), and let∥∥F (4)

∥∥
∞ = sup

x∈(a,b)

∣∣F (4)(x)
∣∣ < ∞. Then, the following

inequality holds:∣∣∣∣16
[
F (a) + 4F

(
a+ b

2

)
+ F (b)

]
− 1

b− a

∫ b

a

F (x)dx

∣∣∣∣∣ ≤ 1

2880

∥∥∥F (4)
∥∥∥
∞

(b− a)4.

(1)

Due to the fact that the convex theory is an available way
to solve many problems in various branches of mathematics,
a lot of authors have investigated the Simpson type inequali-
ties via different differentiable convex functions. Hereby, we
enumerate several existing results concerning with different
classes of functions, such as ϕ-convex functions [1], geo-
metrically relative convex functions [2], strongly s-convex
functions [3], h-convex functions [4], harmonically-preinvex
functions [5] and so on. More recent results with respect to
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(1) and other related outcomes, we refer the reader to Refs.
[6], [7], [8], [9], [10], [11], [12] and the references cited
therein.

In order to meet the need of the later exploration, let us
look back some mathematical preliminaries about fractional
calculus theory as below.

Definition 1.1: Let [a, b] be a real interval and α > 0.
Then, for a function F ∈ L1([a, b]), the left-sided and right-
sided Riemann–Liouville fractional integrals are respectively
defined by

Iαa+F (x) =
1

Γ(α)

∫ x

a

(x− t)α−1
F (t)dt, x > a, (2)

and

Iαb−F (x) =
1

Γ(α)

∫ b

x

(t− x)
α−1

F (t)dt, x < b. (3)

Using the Riemann–Liouville fractional integrals above,
Sarikaya et al. extended the classical Hermite–Hadamard’s
integral inequality to the form of fractional integrals as below.

Theorem 1.2: [13] Suppose that F : [a, b] → R is a
positive function with 0 ≤ a < b as well as F ∈ L1([a, b]). If
the function F is convex defined on [a, b] and α > 0, then one
acquires the undermentioned fractional integral inequalities

F

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[Iαa+F (x) + Iαb−F (x)]

≤ F (a) + F (b)

2
.

(4)

It is undeniable that the fractional integral operators has a
great influence on realizing the differentiation and integration
of real order and complex order. Moreover, it emerged
rapidly due to it is widely used in mathematical model-
ing of engineering problems, such as dynamic modeling
for dealing with complex systems, decision modeling for
structural engineering, as well as stochastic modeling and
so on. For example, Li et al. in Ref. [14] studied the
fractional order Chebyshev cardinal function and presented
solutions for two different forms of fractional order delay
differential equations. In Ref. [15], the author considered
the oscillation of a class fractional differential equations
and established some oscillatory criteria for the equations.
Moreover, Alomari and Massoun [16] investigated time-
fractional coupled Korteweg-de Vries differential equations
and proposed an efficient solution method based on Caputo
definition. For more applications with regard to this issue, see
the published articles [17], [18], [19], [20] and the references
cited in them.

Besides, there are many results of the integral inequalities,
especially Simpson-type inequalities considering different
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types of fractional integrals. For example, some authors
developed Riemann–Liouville fractional integrals to develop
Simpson-type inequalities for various of differentiable func-
tions, as for convex functions [21], h-convex functions [22]
and (s,m)-convex functions [23]. Furthermore, Kermausuor
[24] utilized the Katugampola fractional integrals, as a ex-
tension of the Riemann–Liouville and Hadamard fractional
integrals, to investigate Simpson-type inequalities for s-
convex functions in the second sense. The authors in Ref.
[25] deduced the parameterized Simpson-type inequalities in
accordance with differentiable convex functions via gener-
alized fractional integrals. And Şanlı [26] offered a couple
of Simpson-type integral inequalities taking advantage of
the conformable fractional integrals and exhibited several
applications relating to special means. For more Simpson-
type inequalities acquired by virtue of fractional integrals
involving first-order differentiable functions, one can refer
to the literatures [27], [28], [29], [30], [31], [32] and their
bibliographies.

Fractional versions of Simpson inequalities for first-order
differentiable convex functions are extensively researched.
However, Simpson type inequalities for twice-differentiable
functions are investigated slightly. In the literature, several
papers were focused on Simpson-type inequalities for twice-
differentiable convex functions. For example, Hezenci et
al. in [33] gave certain error bounds of Simpson-type for
Riemann–Liouville fractional integrals, in which the absolute
value of the second derivatives of the functions belongs
to convex functions. Furthermore, the authors in Ref. [34]
established some generalized Simpson-type integral inequal-
ities involving the convexity of twice-differentiable function,
and they mentioned several special cases of the obtained
integral inequalities. Recent interesting studies for twice-
differentiable functions, considering with fractional Simpson-
type integral inequalities and others, can be found in the
articles [35], [36], [37], [38], [39], [40] and the references
cited therein.

Recently, Sabzikar et al. introduced the notion of the
tempered fractional integrals.

Definition 1.2: [41] Let [a, b] be a real interval and λ ≥ 0,
α > 0. Then for a function F ∈ L1([a, b]), the left-sided
and right-sided tempered fractional integrals are respectively
defined by

Iα,λa+ F (x)

=
1

Γ(α)

∫ x

a

(x− t)α−1
e−λ(x−t)F (t)dt, x > a,

(5)

and

Iα,λb− F (x)

=
1

Γ(α)

∫ b

x

(t− x)
α−1

e−λ(t−x)F (t)dt, x < b.
(6)

The most significant feature of tempered fractional inte-
grals is that they generalize some types of fractional integrals
such as Riemann–Liouville fractional integrals, Riemann
integrals etc. These important special cases of the integral
operators (5) and (6) are mentioned as follows:

(i) If we let λ = 0, then the operators (5) and (6) reduce
to Riemann–Liouville fractional integrals.

(ii) If we choose λ = 0 and α = 1, then the operators (5)
and (6) reduce to Riemann integrals.

For related development pertaining to the tempered frac-
tional integrals, see the published articles [42], [43], [44],
[45], [46], [47] and the references therein.

Enlightened by the above-referenced works, particularly
the results displayed in the papers [38] and [33], the current
paper focuses on investigating Simpson-type inequalities in
relation with the discovered tempered fractional integral
identity. The obtained results here can be transferred to the
Riemann–Liouville fractional integral inequalities for λ = 0,
and the Riemann integral inequalities for α = 1 together
with λ = 0.

The general structure of the paper consists of four
sections including an introduction. In Sec. II, after giving a
general literature survey and definition of some fractional
integral operators, we present a Simpson equality for
twice-differentiable functions using tempered fractional
integrals. In Sec. III, by taking advantage of the equality,
and considering the functions whose second derivatives are
convex, we establish several Simpson type inequalities. In
Sec. IV, we give some special examples to illustrate the
results we obtained in Sec. III.

II. SOME LEMMAS

In this section, we firstly give an identity on twice-
differentiable functions for establishing the main results.

Lemma 2.1: Suppose that F : [a, b]→ R is an absolutely
continuous mapping on (a, b) satisfying that F ′′ ∈ L1([a, b]).
Then, for α > 0 and λ ≥ 0, we the have the coming equality

1

6

[
F (a) + 4F

(
a+ b

2

)
+ F (b)

]
− 2α−1Γ(α)

(b− a)αγλ( b−a2 )
(
α, 1

)
×
[
Iα,λa+ F

(
a+ b

2

)
+ Iα,λb− F

(
a+ b

2

)]
=

(b− a)2

8γλ( b−a2 )(α, 1)

×
∫ 1

0

(
h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

)
×
[
F ′′
(

1− t
2

a+
1 + t

2
b

)
+F ′′

(
1 + t

2
a+

1− t
2

b

)]
dt,

(7)

where

h(t) =

∫ t

0

γλ( b−a2 )(α, s)ds, (8)

and

γλ( b−a2 )(α, s) =

∫ s

0

uα−1e−λ
b−a
2 udu. (9)
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Proof: By using integration by parts, we obtain that

K1 =

∫ 1

0

(
h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

)
× F ′′

(
1− t

2
a+

1 + t

2
b

)
dt

= −
2
[
h(1)− 2

3γλ( b−a2 )(α, 1)
]

b− a
F ′
(
a+ b

2

)
− 2

b− a

∫ 1

0

(
2

3
γλ( b−a2 )(α, 1)− γλ( b−a2 )(α, t)

)
× F ′

(
1− t

2
a+

1 + t

2
b

)
dt

= −
2
[
h(1)− 2

3γλ( b−a2 )(α, 1)
]

b− a
F ′
(
a+ b

2

)
+

4F (b)

3(b− a)2
· γλ( b−a2 )(α, 1)

+
8F
(
a+b

2

)
3(b− a)2

· γλ( b−a2 )(α, 1)

− 4

(b− a)2

∫ 1

0

tα−1e−λ
b−a
2 tF

(
1− t

2
a+

1 + t

2
b

)
dt.

Using the change of the variable x = 1−t
2 a + 1+t

2 b for
t ∈ [0, 1], it can be rewritten as follows

K1 = −
2
[
h(1)− 2

3γλ( b−a2 )(α, 1)
]

b− a
F ′
(
a+ b

2

)
+

4F (b)

3(b− a)2
· γλ( b−a2 )(α, 1)

+
8F
(
a+b

2

)
3(b− a)2

· γλ( b−a2 )(α, 1)

−
(

2

b− a

)α+2

Γ(α)Iα,λa+ F

(
a+ b

2

)
.

(10)

Similarly, we get that

K2 =

∫ 1

0

(
h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

)
× F ′′

(
1 + t

2
a+

1− t
2

b

)
dt

=
2
[
h(1)− 2

3γλ( b−a2 )(α, 1)
]

b− a
F ′
(
a+ b

2

)
− 2

b− a

∫ 1

0

(
2

3
γλ( b−a2 )(α, 1)− γλ( b−a2 )(α, t)

)
× F ′

(
1 + t

2
a+

1− t
2

b

)
dt

=
2
[
h(1)− 2

3γλ( b−a2 )(α, 1)
]

b− a
F ′
(
a+ b

2

)
+

4F (a)

3(b− a)2
· γλ( b−a2 )(α, 1)

+
8F
(
a+b

2

)
3(b− a)2

· γλ( b−a2 )(α, 1)

− 4

(b− a)2

∫ 1

0

tα−1e−λ
b−a
2 tF

(
1 + t

2
a+

1− t
2

b

)
dt

=
2
[
h(1)− 2

3γλ( b−a2 )(α, 1)
]

b− a
F ′
(
a+ b

2

)
+

4F (a)

3(b− a)2
· γλ( b−a2 )(α, 1)

+
8F
(
a+b

2

)
3(b− a)2

· γλ( b−a2 )(α, 1)

−
(

2

b− a

)α+2

Γ(α)Iα,λb− F

(
a+ b

2

)
.

(11)

From Eqs. (10) and (11), we have that

K1 +K2

=
4(F (a) + F (b))

3(b− a)2
· γλ( b−a2 )(α, 1)

+
16F

(
a+b

2

)
3(b− a)2

· γλ( b−a2 )(α, 1)

−
(

2

b− a

)α+2

Γ(α)

×
[
Iα,λa+ F

(
a+ b

2

)
+ Iα,λb− F

(
a+ b

2

)]
.

(12)

Multiplying the both sides of (12) by (b−a)2

8γ
λ( b−a2 )

(
α,1
) , we

obtain the desired identity. This ends the proof.
Remark 2.1: If we consider taking λ = 0, then we have

Lemma 1 established by Hezenci et al. in [33]
Let us mention the definition of λ-incomplete gamma

function.
Definition 2.1: [44] The λ-incomplete gamma function is

defined as follows:

γλ(α, s) =

∫ s

0

tα−1e−λtdt, α > 0, s, λ ≥ 0.

If we consider taking λ = 1, then the λ-incomplete gamma
function reduces to the incomplete gamma function [48].

γ(α, s) =

∫ s

0

tα−1e−tdt, α > 0, s > 0.

The following facts will be required in establishing the
following lemma.

Remark 2.2: For the real numbers α > 0 and s, λ ≥ 0,
the following identities hold:

(i)

∫ 1

0

γλ( b−a2 )(α, s)ds

= γλ( b−a2 )(α, 1)− γλ( b−a2 )(α+ 1, 1),
(13)

(ii)

∫ t

0

γλ( b−a2 )(α, s)ds

= tγλ( b−a2 )(α, t)− γλ( b−a2 )(α+ 1, t).
(14)

Proof: (i) From the Definition of λ-incomplete gamma
function, we have that∫ 1

0

γλ( b−a2 )(α, s)ds =

∫ 1

0

∫ s

0

uα−1e−λ(
b−a
2 )ududs.
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By changing the order of the integration, we get that

∫ 1

0

γλ( b−a2 )(α, s)ds

=

∫ 1

0

∫ 1

u

uα−1e−λ(
b−a
2 )udsdu

=

∫ 1

0

(1− u)uα−1e−λ(
b−a
2 )udu

=

∫ 1

0

uα−1e−λ(
b−a
2 )udu−

∫ 1

0

uαe−λ(
b−a
2 )udu

= γλ( b−a2 )(α, 1)− γλ( b−a2 )(α+ 1, 1).

We obtain the result (13).

(ii) From the definition of λ-incomplete gamma function,
we have that∫ t

0

γλ( b−a2 )(α, s)ds

=

∫ t

0

∫ s

0

uα−1e−λ(
b−a
2 )ududs.

By changing the order of the integration, we get that

∫ t

0

γλ( b−a2 )(α, s)ds

=

∫ t

0

∫ t

u

uα−1e−λ(
b−a
2 )udsdu

=

∫ t

0

(t− u)uα−1e−λ(
b−a
2 )udu

= t

∫ t

0

uα−1e−λ(
b−a
2 )udu−

∫ t

0

uαe−λ(
b−a
2 )udu

= tγλ( b−a2 )(α, t)− γλ( b−a2 )(α+ 1, t).

We obtain the result (14). This ends the proof.
Lemma 2.2: Let us consider the function ∆ : [0, 1]→ R

by ∆(λ, α; t) = h(1)−h(t)− 2
3γλ( b−a2 )(α, 1)(1− t) for the

parameters α > 0 and λ ≥ 0, where h(t) and γλ( b−a2 )(α, s)

are defined in Lemma 2.1. Then, for λ = 0, we have that

∆(0, α; t)

=
2t(α+ 1)− 2α+ 1− 3tα+1

3α(α+ 1)
.

(15)

Proof: From the parts (i) and (ii) in Remark 2.2, we
have that

∆(λ, α; t)

= γλ( b−a2 )(α, 1)− γλ( b−a2 )(α+ 1, 1)

− tγλ( b−a2 )(α, t) + γλ( b−a2 )(α+ 1, t)

− 2

3
γλ( b−a2 )(α, 1)(1− t).

(16)

If we take λ = 0 in (16), then we can get the desired result.
This ends the proof.

III. SIMPSON’S TYPE INEQUALITIES FOR
TWICE-DIFFERENTIABLE FUNCTIONS

For the sake of simplicity, we will use the following
notation in the sequel:

TF (α, λ; a, b)

:=
1

6

[
F (a) + 4F

(
a+ b

2

)
+ F (b)

]
− 2α−1Γ(α)

(b− a)αγλ( b−a2 )(α, 1)

×
[
Iα,λa+ F

(
a+ b

2

)
+ Iα,λb− F

(
a+ b

2

)]
.

Especially, for λ = 0, we have that

TF (α, 0; a, b)

:=
1

6

[
F (a) + 4F

(
a+ b

2

)
+ F (b)

]
− 2α−1Γ(α+ 1)

(b− a)α

×
[
Iαa+F

(
a+ b

2

)
+ Iαb−F

(
a+ b

2

)]
.

For functions whose second derivatives are convex, Simp-
son’s type inequalities will be established by using the
lemmas given in Sec. II.

Theorem 3.1: Let us consider that assumptions of
Lemma 2.1 are valid. And suppose that the mapping |F ′′|
is convex on the interval [a, b]. Then, for α > 0 and λ ≥ 0,
we get the following inequality

|TF (α, λ; a, b)|

6
(b− a)2

8γλ( b−a2 )(α, 1)
Ψ1(λ, α; t) [|F ′′(a)|+ |F ′′(b)|] , (17)

where Ψ1(λ, α; t) is defined by

Ψ1(λ, α; t)

=

∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣dt. (18)

Proof: By taking modulus for the identity in Lemma
2.1, we have that

|TF (α, λ; a, b)|

6
(b− a)2

8γλ( b−a2 )(α, 1)

×
∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣
×
[∣∣∣∣F ′′(1− t

2
a+

1 + t

2
b

)∣∣∣∣
+

∣∣∣∣F ′′(1 + t

2
a+

1− t
2

b

)∣∣∣∣]dt.

Using convexity of the mapping |F ′′| defined on the interval
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[a, b], we obtain that

|TF (α, λ; a, b)|

6
(b− a)2

8γλ( b−a2 )(α, 1)

×
{∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣
×
[

1 + t

2
|F ′′(b)|+ 1− t

2
|F ′′(a)|

+
1 + t

2
|F ′′(a)|+ 1− t

2
|F ′′(b)|

]
dt

}
=

(b− a)2

8γλ( b−a2 )(α, 1)
[|F ′′(a)|+ |F ′′(b)|]

×
∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣dt.
This ends the proof.

Corollary 3.1: In Theorem 3.1, if we take λ = 0, then
we have the following result.

|TF (α, 0; a, b)|

6
(b− a)2α

8
Θ1(α)

[
|F ′′(a)|+ |F ′′(b)|

]
,

(19)

where Θ1(α) is defined by

Θ1(α) =



1− α
3α(α+ 2)

, if 0 < α 6
1

2
,

2

[
(ξα)α+2

α(α+ 1)(α+ 2)
− (ξα)2

3α

+
2ξα

3(α+ 2)
+

ξα(2α− 1)

3(α+ 1)(α+ 2)

]
+

1− α
3α(α+ 2)

, if α >
1

2
, ξα ∈ [0, 1].

(20)

Proof: (i) Let us consider the function ∆(0, α; t)→ R
by ∆(0, α; t) = 2t(α+1)−2α+1−3tα+1

3α(α+1) with 0 < α ≤ 1
2 . Then,

∆(0, α; t) ≥ 0 for all t ∈ [0, 1]. Thus, it can be easily seen
that

Ψ1(0, α; t) =

∫ 1

0

|∆(0, α; t)|dt

=
1− α

3α(α+ 2)
.

(ii) if α > 1
2 , then there exists a real number ξα ∈ [0, 1]

such that ∆(0, α; t) ≤ 0 for 0 ≤ t ≤ ξα and ∆(0, α; t) ≥ 0
for ξα ≤ t ≤ 1. Therefore, we obtain that

Ψ1(0, α; t)

=

∫ 1

0

|∆(0, α; t)|dt

=

∫ ξα

0

(−∆(0, α; t))dt+

∫ 1

ξα

∆(0, α; t)dt

= 2

[
(ξα)α+2

α(α+ 1)(α+ 2)
− (ξα)2

3α
+

2ξα
3(α+ 2)

+
ξα(2α− 1)

3(α+ 1)(α+ 2)

]
+

1− α
3α(α+ 2)

.

This ends the proof.

Remark 3.1: The result given in Corollary 3.1 is
consistent with the result in Theorem 3 established by
Hezenci et al. [33]. However, the function

∆(0, α; t) =
2t(α+ 1)− 2α+ 1− 3tα+1

3α(α+ 1)

defined in Lemma 2.2 is different from the function

$(τ) =
1− 2α

3
+

2(α+ 1)

3
τ − τα+1

considered in Lemma 2 by Hezenci et al. [33]. Especially,
if we choose α = 1 in Corollary 3.1, then, for ξα = 1

3 , we
have the following inequality

∣∣∣∣∣16
[
F (a) + 4F

(
a+ b

2

)
+ F (b)

]
− 1

b− a

∫ b

a

F (t)dt

∣∣∣∣∣
6

(b− a)2

162

[
|F ′′(a)|+ |F ′′(b)|

]
,

which is proved by Sarikaya et al. in [49].
Theorem 3.2: Let us note that assumptions of Lemma 2.1

hold. If the mapping |F ′′|q is convex on [a, b] with q > 1,
then we have the following inequality

|TF (α, λ; a, b)|

6
(b− a)2Ψ2(λ, α; t)

8γλ( b−a2 )(α, 1)

[
|F ′′(a)|q + |F ′′(b)|q

] 1
q ,

(21)

where 1
p + 1

q = 1 and Ψ2(λ, α; t) is defined by

Ψ2(λ, α; t)

=

(∫ 1

0

∣∣∣∣∣ h(1)− h(t)

− 2
3γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣∣
p

dt

) 1
p

.
(22)

Proof: By using the Hölder inequality, we obtain that

|TF (α, λ; a, b)|

6
(b− a)2

8γλ( b−a2 )(α, 1)

×

{(∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣p dt

) 1
p

×
(∫ 1

0

∣∣∣∣F ′′(1− t
2

a+
1 + t

2
b

)∣∣∣∣q dt

) 1
q

+

(∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣p dt

) 1
p

×
(∫ 1

0

∣∣∣∣F ′′(1 + t

2
a+

1− t
2

b

)∣∣∣∣q dt

) 1
q

}
.
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By using the convexity of |F ′′|, we get that

|TF (α, λ; a, b)|

6
(b− a)2

8γλ( b−a2 )(α, 1)

×
(∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣p dt

) 1
p

×

{[∫ 1

0

(
1− t

2
|F ′′(a)|q +

1 + t

2
|F ′′(b)|q

)
dt

] 1
q

+

[∫ 1

0

(
1 + t

2
|F ′′(a)|q +

1− t
2
|F ′′(b)|q

)
dt

] 1
q

}

=
(b− a)2

8γλ( b−a2 )(α, 1)

[
|F ′′(a)|q + |F ′′(b)|q

] 1
q

×
(∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣p dt

) 1
p

=
(b− a)2

8γλ( b−a2 )(α, 1)
Ψ2(λ, α; t)

[
|F ′′(a)|q + |F ′′(b)|q

] 1
q .

This completes the proof of Theorem 3.2.

Theorem 3.3: Let us note that assumptions of Lemma 2.1
hold. If the mapping |F ′′|q is convex on [a, b] with q > 1,
then we have the following inequality

|TF (α, λ; a, b)|

6
(b− a)2

8γλ( b−a2 )(α, 1)
(Ψ1(λ, α; t))

1− 1
q

×
(

(Ψ1(λ, α; t)−Ψ3(λ, α; t)) |F ′′(a)|q

2

+
(Ψ1(λ, α; t) + Ψ3(λ, α; t)) |F ′′(b)|q

2

) 1
q

+
(b− a)2

8γλ( b−a2 )(α, 1)
(Ψ1(λ, α; t))

1− 1
q

×
(

(Ψ1(λ, α; t) + Ψ3(λ, α; t)) |F ′′(a)|q

2

+
(Ψ1(λ, α; t)−Ψ3(λ, α; t)) |F ′′(b)|q

2

) 1
q

,

(23)

where Ψ1(λ, α; t) is defined in Theorem 3.1, and Ψ3(λ, α; t)
is defined by

Ψ3(λ, α; t)

=

∫ 1

0

t

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣dt. (24)

Proof: By applying the power-mean inequality, we

obtain that

|TF (α, λ; a, b)|

6
(b− a)2

8γλ( b−a2 )(α, 1)

×

(∫ 1

0

∣∣∣∣∣ h(1)− h(t)

− 2
3γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣∣dt
)1− 1

q

×
[(∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣
×
∣∣∣∣F ′′(1− t

2
a+

1 + t

2
b

)∣∣∣∣q dt

) 1
q

+

(∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣
×
∣∣∣∣F ′′(1 + t

2
a+

1− t
2

b

)∣∣∣∣q dt

) 1
q

]
.

(25)

Using convexity of the mapping |F ′′|q defined on the interval
[a, b], we obtain that

∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣
×
∣∣∣∣F ′′(1− t

2
a+

1 + t

2
b

)∣∣∣∣q dt

6
∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣
×
[

1− t
2
|F ′′(a)|q +

1 + t

2
|F ′′(b)|q

]
dt

=
(Ψ1(λ, α; t) + Ψ3(λ, α; t)) |F ′′(b)|q

2

+
(Ψ1(λ, α; t)−Ψ3(λ, α; t)) |F ′′(a)|q

2
.

(26)

Similarly, we have that

∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣
×
∣∣∣∣F ′′(1 + t

2
a+

1− t
2

b

)∣∣∣∣q dt

6
∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣
×
[

1 + t

2
|F ′′(a)|q +

1− t
2
|F ′′(b)|q

]
dt

=
(Ψ1(λ, α; t) + Ψ3(λ, α; t)) |F ′′(a)|q

2

+
(Ψ1(λ, α; t)−Ψ3(λ, α; t)) |F ′′(b)|q

2
.

(27)

Applying (26) and (27) to (25), we obtain the desired result
of Theorem 3.3. This ends the proof.

Corollary 3.2: In Theorem 3.3, if we take λ = 0, then
we have the following inequality:
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|TF (α, 0; a, b)|

6
(b− a)2α

8
(Θ1(α))

1− 1
q

×
(

(Θ1(α)−Θ2(α)) |F ′′(a)|q

2

+
(Θ1(α) + Θ2(α)) |F ′′(b)|q

2

) 1
q

+
(b− a)2α

8
(Θ1(α))

1− 1
q

×
(

(Θ1(α) + Θ2(α)) |F ′′(a)|q

2

+
(Θ1(α)−Θ2(α)) |F ′′(b)|q

2

) 1
q

,

(28)

where Θ1(α) is defined in Corollary 3.1, and Θ2(α) is
defined by

Θ2(α) =



3− 2α

18α(α+ 3)
, if 0 < α 6

1

2
,

4(ξα)α+3

α(α+ 1)(α+ 3)
+

2(ξα)α+3

α(α+ 3)

− 4(ξα)3

9α
+

2(ξα)2

3(α+ 3)
− (ξα)2

3α(α+ 3)

+
2(ξα)2(2α− 1)

3α(α+ 1)(α+ 3)

+
3− 2α

18α(α+ 3)
, if α >

1

2
, ξα ∈ [0, 1].

(29)

Proof: (i) Let us consider the function ∆(0, α; t)→ R
by

∆(0, α; t) =
2t(α+ 1)− 2α+ 1− 3tα+1

3α(α+ 1)

with 0 < α ≤ 1
2 . Then, ∆(0, α; t) ≥ 0 for all t ∈ [0, 1].

Thus, it can be easily seen that

Ψ3(0, α; t)

=

∫ 1

0

t|∆(0, α; t)|dt

=
3− 2α

18α(α+ 3)
.

(ii) if α > 1
2 , then there exists a real number ξα ∈ [0, 1]

such that ∆(0, α; t) ≤ 0 for 0 ≤ t ≤ ξα and ∆(0, α; t) ≥ 0
for ξα ≤ t ≤ 1. Therefore, we obtain that

Ψ3(0, α; t)

=

∫ 1

0

t|∆(0, α; t)|dt

=

∫ ξα

0

t(−∆(0, α; t))dt+

∫ 1

ξα

t(∆(0, α; t))dt

=
4(ξα)α+3

α(α+ 1)(α+ 3)
+

2(ξα)α+3

α(α+ 3)
− 4(ξα)3

9α

+
2(ξα)2

3(α+ 3)
− (ξα)2

3α(α+ 3)

+
2(ξα)2(2α− 1)

3α(α+ 1)(α+ 3)
+

3− 2α

18α(α+ 3)
.

This ends the proof.
Remark 3.2: The result given in Corollary 3.2 is

consistent with the result in Theorem 5 established by
Hezenci et al. [33]. However, the function

∆(0, α; t) =
2t(α+ 1)− 2α+ 1− 3tα+1

3α(α+ 1)

defined in Lemma 2.2 is different from the function

$(τ) =
1− 2α

3
+

2(α+ 1)

3
τ − τα+1

considered in Lemma 2 by Hezenci et al. [33].

IV. EXAMPLES

In this section, we provide some examples to illustrate our
main results.

Example 4.1: Let the function F (x) be defined by
F (x) = x2, x ∈ [0, 1]. If we take a = 0, b = 1, α = 1 and
λ = 2, then all assumptions in Theorem 3.1 are satisfied.

The left-hand side term of the inequality established in
Theorem 3.1 is

|TF (α, λ; a, b)|

=

∣∣∣∣16
[
F (0) + 4F

(
1

2

)
+ F (1)

]
− Γ(1)∫ 1

0
e−udu

[
1

Γ(1)

∫ 1

1
2

e−2(t− 1
2 )t2dt

+
1

Γ(1)

∫ 1
2

0

e−2( 1
2−t)t2dt

]∣∣∣∣∣
≈ 0.0198.

(30)

The right-hand side term of the inequality established in
Theorem 3.1 is

(b− a)2

8γλ( b−a2 )(α, 1)
Ψ1 [|F ′′(a)|+ |F ′′(b)|]

=
(b− a)2

8γλ( b−a2 )(α, 1)
[|F ′′(a)|+ |F ′′(b)|]

×
∫ 1

0

∣∣∣∣h(1)− h(t)− 2

3
γλ( b−a2 )(α, 1)(1− t)

∣∣∣∣dt
=

1

8
∫ 1

0
e−udu

[|F ′′(0)|+ |F ′′(1)|]

×
∫ 1

0

∣∣∣∣∫ 1

0

γλ( 1
2 )(α, s)ds

−
∫ t

0

γλ( 1
2 )(α, s)ds− 2(1− t)

3

∫ 1

0

e−udu

∣∣∣∣dt
=

1

8
∫ 1

0
e−udu

[|F ′′(0)|+ |F ′′(1)|]

×
∫ 1

0

∣∣∣∣∫ 1

0

∫ s

0

e−ududs

−
∫ t

0

∫ s

0

e−ududs− 2(1− t)
3

∫ 1

0

e−udu

∣∣∣∣dt
≈ 1.1664.

(31)

It is clear that 0.0198 < 1.1664, which is consistent with
the theoretical result described in Theorem 3.1.
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Example 4.2: In Corollary 3.1, let us define the function
F : [0, 1]→ R as F (x) = 2x4 + 3 for all 0 < α < 1. Then,
we have the following results, see TABLE I.

TABLE I: Numerical estimations of
Corollary 3.1 for F (x) = 2x4 + 3, a = 0
and b = 1.

values of α values of the
left term

values of the
right term

0.1 0.2529 0.4286
0.2 0.2175 0.3636
0.3 0.1851 0.3043
0.4 0.1553 0.2500
0.5 0.1278 0.2000
0.6 0.1023 1.8569
0.7 0.0786 1.5973
0.8 0.0565 1.3152
0.9 0.0359 1.0061

Fig. 1 shows the visual analysis of Corollary 3.1.
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Fig. 1: The graphical representation of Corollary 3.1 for
F (x) = 2x4 + 3, a = 0, b = 1 and 0 < α < 0.5

From TABLE I and Fig. 1, we can intuitively observe that
the value on the left part is less than the value on the right
part, which is consistent with the theoretical result described
in Corollary 3.1.

Example 4.3: In Corollary 3.2, let us define the function
F : [0, 1]→ R as F (x) = 3x5 + 4 for α = 0.1 and q = 1.5,
then we have the following result.

The left-hand side term of the inequality established in
Corollary 3.2 is

|TF (α, 0; a, b)|

=

∣∣∣∣∣∣∣∣∣∣∣∣

1
6

[
F (0) + 4F

(
1
2

)
+ F (1)

]
− 2−0.9Γ(1.1)

×


1

Γ(0.1)

∫ 1
2

0

(
t− 1

2

)−0.9

(3t5 + 4)dt

+ 1
Γ(0.1)

∫ 1

1
2

(
1

2
− t
)−0.9

(3t5 + 4)dt



∣∣∣∣∣∣∣∣∣∣∣∣
≈ 0.4127.

The right-hand side term of the inequality established in

Corollary 3.2 is

(b− a)2α

8
(Θ1(α))

1− 1
q

×

 (Θ1(α)−Θ2(α))|F ′′(a)|q
2

+
(Θ1(α)+Θ2(α))|F ′′(b)|q

2


1

+
(b− a)2α

8
(Θ1(α))

1− 1
q

×

 (Θ1(α)+Θ2(α))|F ′′(a)|q
2

+
(Θ1(α)−Θ2(α))|F ′′(b)|q

2


1
q

≈ 1.1921.

It is clear that 0.4127 < 1.1921, which is consistent with
the theoretical result presented in Corollary 3.2.

When 0 < α < 0.5, the correctness of the results given in
Corollary 3.2 is shown in Fig. 2.
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Fig. 2: The graphical representation of Corollary 3.2 for
F (x) = 3x5 + 4, a = 0, b = 1, q = 1.2 and 0 < α < 0.5

From Fig. 2, we can intuitively observe that the value on
the left part is less than the value on the right part, which is
consistent with the theoretical result established in Corollary
3.2.

V. CONCLUSIONS

In the current study, we apply the λ-incomplete gamma
functions to generalize a series of results, which involve the
Simpson-type inequalities with respect to twice-differentiable
functions. To obtain the novel results in the investigation,
we develop a twice-differentiable Simpson-type identity by
virtue of the tempered fractional integrals. Here, we would
like to emphasize that the results obtained in the paper
generalize the inequalities given by Hezenci et al. [33].
With these contributions, we believe that the approaches of
the present study could be a source of enlightenment for
researchers working in the Simpson-type inequalities field.
In future studies, researchers can try to generalize our results
by using other kinds of convex functions or different types
fractional integral operators.
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[30] F. Ertuǧral, M. Z. Sarikaya, “Simpson type integral inequalities for
generalized fractional integral,” Rev. R. Acad. Cienc. Exactas Fı́s. Nat.
Ser. A Mat. RACSAM, vol. 2019, no. 113, pp. 3115–3124, 2019.

[31] F. Hezenci, H. Budak, “A note on fractional Simpson-like type
inequalities for functions whose third derivatives are convex,” Filomat,
vol. 37, no. 12, pp. 3715–3724, 2023.

[32] H. Lei, G. Hu, J. L. Nie, T. S. Du, “Generalized Simpson-type inequal-
ities considering first derivatives through the k-fractional integrals,”
IAENG Int. J. Appl. Math., vol. 50, no. 3, pp. 628–635, 2020.

[33] F. Hezenci, H. Budak, H. Kara, “New version of fractional Simpson
type inequalities for twice differentiable functions,” Adv. Difference
Equ., vol. 2021, Art. ID 460, 11 pages, 2021.

[34] M. A. Ali, H. Kara, J. Tariboon, S. Asawasamrit, H. Budak, F. Hezenci,
“Some new Simpson’s-formula-type inequalities for twice-differentiable
convex functions via generalized fractional operators,” Symmetry, vol.
13, no. 12, Art. ID 2249, 13 pages, 2021.

[35] H. Budak, S. K. Yıldırım, M. Z. Sarıkaya, H. Yıldırım, “Some
parameterized Simpson-, midpoint and trapezoid-type inequalities for
generalized fractional integrals,” J. Inequal. Appl., vol. 2022, Art. ID
40, 23 pages, 2022.

[36] H. Budak, H. Kara, F. Hezenci, “Fractional Simpson type inequalities
for twice differentiable functions,” Sahand Commun. Math. Anal., vol.
20, no. 3, pp. 97–108, 2023.

[37] F. Hezenci, M.Bohner, H. Budak, “Fractional midpoint-type inequal-
ities for twice-differentiable functions,” Filomat, vol. 37, no. 24, pp.
8131–8144, 2023.

[38] X. X. You, F. Hezenci, H. Budak, H. Kara, “New Simpson type
inequalities for twice differentiable functions via generalized fractional
integrals,” AIMS Math., vol. 7, no. 3, pp. 3959–3971, 2021.

[39] X. M. Yuan, L. Xu, T. S. Du, “Simpson-like inequalities for twice
differentiable (s, p)-convex mappings involving with AB-fractional
integrals and their applications,” Fractals, vol. 31, no. 3, Art. ID
2350024, 31 pages, 2023.

[40] Y. X. Zhou, T. S. Du, “The Simpson-type integral inequalities involv-
ing twice local fractional differentiable generalized (s, p)-convexity and
their applications,” Fractals, vol. 31, no. 5, Art. ID 2350038, 32 pages,
2023.

[41] F. Sabzikar, M. M. Meerschaert, J. H. Chen, “Tempered fractiononal
calculus,” J. Comput. Phys. vol. 293, pp. 14–28, 2015.

[42] Y. Cao, J. F. Cao, P. Z. Tan, T. S. Du, “Some parameterized inequalities
arising from the tempered fractional integrals involving the (µ, n)-
incomplete gamma functions,” J. Math. Inequal., vol. 16, no. 3, pp.
1091–1121, 2022.

[43] A. Fernandez, C. Ustaoğlu, “On some analytic properties of tempered
fractional calculus,” J. Comput. Appl. Math, vol. 366, Art. ID 112400,
14 pages, 2020.

[44] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, “On the generalized
Hermite–Hadamard inequalities via the tempered fractional integrals,”
Symmetry, vol. 12, no. 4, Art. ID 595, 17 pages, 2020.

[45] P. Z. Tan, T. S. Du, “On the multi-parameterized inequalities involving
the tempered fractional integral operators,” Filomat, vol. 37, no. 15, pp.
4919–4941, 2023.

[46] G. Rahman, K. S. Nisar, T. Abdeljawad, “Tempered fractional integral
inequalities for convex functions,” Mathematics, vol. 2020, no. 8, Art.
ID 500, 12 pages, 2020.

[47] G. Rahman, K. S. Nisar, S. Rashid, T. Abdeljawad, “Certain Grüss-
type inequalities via tempered fractional integrals concerning another
function,” J. Inequal. Appl., vol. 2020, no. 1, Art. ID 147, 18 pages,
2020.

[48] M. A. Chaudhry, S. M. Zubair, “Generalized incomplete gamma
functions with applications,” J. Comput. Appl. Math., vol. 55, pp. 99–
124, 1994.

[49] M. Z. Sarikaya, E. Set, M. E. Ozdemir, “On new inequalities of
Simpson’s type for functions whose second derivatives absolute values
are convex,” J. Appl. Math. Stat. Inform, vol. 9, no. 1, pp. 37–45, 2013.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 5, May 2024, Pages 831-839

 
______________________________________________________________________________________ 


	Introduction and preliminaries
	Some lemmas
	Simpson's type inequalities for twice-differentiable functions
	Examples
	Conclusions



