
Solution of Diffusion Equations Involved in
Drying Fruit Slice using Reduced Differential

Transform Method
Saroj R. Yadav and Parth T. Parmar

Abstract—Drying is a complicated process that requires
the simultaneous transfer of heat and mass. Mathematical
modeling of the drying process in agro-products is important to
encapsulate the original flavor and maintain nutritional value
in dried food product. Models involving PDEs are solved that
can be used to maintain the moisture and temperature within a
fruit slice by drying it. A new initiative is to produce dried fruit
product due to increasing demand of dry fruits for easy storage.
The aim of this work is to solve diffusion equations involving
moisture and temperature that can be used to maintain the
moisture and temperature within a fruit slice by drying it.
The results are obtained analytically by solving the diffusion
equations in 1D, 2D and 3D using the reduced differential
transform method. The results are then analyzed by changing
the input parameters, such as moisture diffusivity and thermal
diffusivity. Graphical plots of moisture and temperature distri-
bution are analyzed for agreement between the results obtained
and published numerical and experimental results.

Index Terms—diffusion; moisture and temperature; drying
fruit slice; mathematical model; reduced differential transform
method.

I. INTRODUCTION

THE process of removing water or other liquids from
a solution, suspension, or other solid-liquid mixture to

generate a dry solid is known as drying. It is a challenging
procedure that requires the simultaneous transmission of
heat and mass. Fruits have intricate and diverse biological
structures making it necessary to use unique drying models
for each fruit type to maintain quality. This poses inher-
ent challenges, which is where modeling and simulation
techniques prove valuable. The standard approach involves
creating a mathematical model based on heat and mass
transfer principles. This model accounts for assumptions
related to mass transfer parameters including material prop-
erties, transport equations, initial and boundary conditions
and the analytical or numerical solution of partial differential
equations (PDEs). These models are then applied for the
computational simulation of the drying process. Direct (con-
vection), indirect or contact (conduction), radiant (radiation)
and dielectric or microwave (radio frequency) drying are the
four types of drying. Throughout the years, much research
has been conducted on the drying of fruits such as apples,
grapes, berries, bananas, pears and so on.

Sherwood and Lewis are widely considered the founders
of drying models in mathematics. In 1920, Lewis proposed
the theory of liquid diffusion on the basis of migration
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of moisture content in the form of liquid diffusion during
drying of solid materials. The driving force of this migration
was the internal moisture content gradient [1]. Sherwood
proposed theory of drying diffusion in solid material similar
to theory of Lewis in 1929[1]. Since then many papers
are published on experimental and mathematical study of
drying of various fruits and vegetables. Many mathematical
models are proposed considering various aspects like models
involving empirical relations valid under specific conditions,
models given on heat and moisture diffusion giving sys-
tem of simultaneous PDEs, few models considered energy,
mass and momentum transport equations[2], [3]. Lemuel
N. Diamante et al.[4] developed a model for drying fruits
with a thin layer. Many researchers has done experimental
studies to mathematically model drying of various fruit
slices. They tested two types of fruits, kiwifruit and apricot
at three different temperatures (60 ◦C, 80 ◦C, 100 ◦C). Irci
Turk Toglun and Dursun Pehlivan [5] conducted an open-air
drying experiment to examine the behavior of fruits apricots
pre-sulphured with SO2 or NaHSO3, grapes, peaches, figs,
and plums while drying under natural conditions. Multiple
regression analysis was used to investigate the impact of the
surface temperature of the fruits and the relative humidity
just above their surface on the constants and coefficients of
the chosen models. Shahpouri Jahedi Rad et al. [6] studied
the white mulberry, which was experimentally dried out
under thin layer convective-infrared conditions at infrared
power levels of 500W, 1000W, and 1500W, drying air
temperatures of 40 ◦C, 55 ◦C, and 70 ◦C, and input drying
air velocity of 0.4, 1 and 1.6 ms−1. J.A Esfahani et al.[7]
considered moist slab cut pieces of apple with the length
of 8 centimeter, L = 8 cm and height of 2 centimeter, H
= 2 cm, analyzed the external flow and temperature with
three different inlet velocities. They obtained the average
convective heat and mass transfer coefficients and solved
2D heat and mass transfer equations using the separation of
variables method in the form of a multiple of two separated
one-dimensional solution. They also validated the analytical
solution with the numerical drying data.

A.M. Castro et al.[8] have given detailed review on math-
ematical modelling of convective drying of fruit. They have
listed representative macroscale mathematical models (heat
transport equations, mass transport equations and momen-
tum equations) and microscale mathematical models (heat
transfer equations, mass transfer equations, air equations for
conjugated models and equations for hybrid technologies)
of transport phenomena during convective drying of fruit
considered by researchers. Many numerical and analytical
techniques can be utilized to solve the complicated partial
differential equations of coupled heat, mass, and momentum
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transport that must be solved for the modeling [8]. In this
review A.M. Castro et al.[8] have also included various
numerical and analytical methods used by researchers to
solve governing PDEs.

In the present study, the coupled PDE of the diffusion
equations is considered which provides the physical equa-
tions that regulate the simultaneous transmission of moisture
M(t) and temperature T(t) in an isotropic fruit without inter-
nal moisture sources [3], [9]. In this model, the coupled PDE
of the diffusion equations has been solved by the Reduced
Differential Transform Method(RDTM).The coupled PDEs
of the diffusion equations are considered as;

∂M

∂t
= ∇ · (D∇M), (1)

ρcp
∂T

∂t
= ∇ · (κ∇T ). (2)

The diffusion coefficient, density, specific heat capacity,
and thermal conductivity are taken as D, ρ, cp, and κ,
respectively. The temperature in the example above is cal-
culated using a common heat conduction formulation, and
the conductive temperature flux is q = −κ∇T . Equation(1)
represents the movement of moisture inside the slice during
drying, while equation(2) reflects the evolution of tempera-
ture inside the slice.

II. CALCULATION METHOD

The ‘Differential Transform Method’ (DTM) is a semi-
analytical technique for generating analytical and numerical
solutions to a wide variety of differential equations. The
differential transform was first proposed by Zhou [10], and
it is primarily used in circuit analysis to solve both linear as
well as nonlinear IVPs. This approach yields an analytical
solution based on polynomials. It differs from the usual Tay-
lor series approach, which requires a symbolic calculation
of the required output of another data function. Taylor’s
technique is highly time-consuming for larger orders. Similar
to a Taylor series of several mathematical equations, DTM
creates a sequence of iterations.

This method constructs an analytical solution in the form
of a polynomial and uses it as the approximation to exact
solutions which are sufficiently differentiable [11], [12],
[13], [14]. Moreover, This method neither requires any
condition for the convergence of solution nor does rely on
grids or mesh. This can be advantageous when dealing with
irregular domains or when traditional grid-based methods
are challenging to apply. Later on, this method was modi-
fied to a new method called reduced differential transform
method(RDTM) and this method became more popular as it
improved the speed of computation.

A. Reduced differential transform method

The RDTM was first proposed by the Turkish mathemati-
cian Keskin [[15],[16],[17]] in 2009. It has received much
attention since it has been applied to solve a wide variety of
problems by many authors[18]. In RDTM, the differentiation
is taken with resepct to time variable only.

Assume that a function of two variables u(x, t), can be
written as the product of two functions u(x, t) = f(x)g(t).

The function u(x, t) may be expressed as follow based on the
characteristics of the one-dimensional differential transform:

u(x, t) =

( ∞∑
i=0

F (i)xi

) ∞∑
j=0

G(j)tj

 =
∞∑
k=0

Uk(x)t
k,

The t-dimensional spectrum of function u(x, t) is termed
as Uk(x). The basic definitions of RDTM have been dis-
cussed in [[15],[16],[17]] as given below.

Definition 1. Let u(x, t) be an analytic and continuously
differentiable function with respect to time t and space x in
the domain of interest, then

Uk(x) =
1

k!

[
∂k

∂xk
u(x, t)

]
t=0

,

where the t−dimensional spectrum function Uk(x) is the
transformed function. In this study, the original function
is denoted by the lowercase letter u(x, t), while the trans-
formed function is denoted by the uppercase letter Uk(x).

Definition 2. The following definition applies to the differ-
ential inverse transform of Uk(x):

u(x, t) =
∞∑
k=0

Uk(x)t
k.

When we combine both equations, we get the result

u(x, t) =
∞∑
k=0

1

k!

[
∂k

∂xk
u(x, t)

]
t=0

tk.

The basic mathematical operations of one-dimensional
differential transform are given in Table (I).

Table I: Fundamental operation of RDTM w.r.t variable t

Original function Transformed function

u1(x, t)± u2(x, t) U1(x)± U2(x)

λu1(x, t) λU1(x)

∂

∂x
u(x, t)

∂

∂x
Uk(x)

∂r

∂tr
u(x, t)

(k + r)!

k!
Uk+r(x)

u(x, t) · v(x, t)
∑k

r=0 Ur(x)Vk−r(x)

xatb xaδ(h− b) where

δ(h− b) =

{
1, h = b

0, h ̸= b

Theorem 1. If z(x, t) =
∂m

∂xm
u(x, t), then Zk(x) =

∂m

∂xm
Uk(x).

Theorem 2. If z(x, t) =
∂m

∂tm
u(x), then Zk(x) =

(k +m)!

k!
Uk+m(x).

B. Implementation of RDTM
To illustrate the implementation of RDTM to solve non-

linear pde, let’s consider the non-linear PDE:

∂r

∂tr
w(x, t) + Lw(x, t) +Nw(x, t) = h(x, t), t > 0, (3)
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with initial conditions

w(k)(x, 0) = gk(x), k = 0, 1, ..., (r − 1), (4)

where r ∈ N, L is a linear operator, N is a non linear
operator and h(x, t) is in inhomogeneous term.

The fundamental operation of RDTM from Table 1 con-
verts Eqs (3) and (4) to recursive formula given by:

(k + r)!

k!
Wk+r(x) + LWk(x) +NWk(x) = Hk(x), (5)

and the transformed initial condition is

W (k)(x) = Gk(x), k = 0, 1, 2, ..., (r − 1), (6)

where Wk(x) and Hk(x) are transformed form of the origi-
nal function w(x, t) and h(x, t) obtained by applying RDTM
in the kth iteration. Substituting the value of Wk+r(x) for
k = 0, 1, 2, ..., (r−1) in definition of inverse reduced differ-
ential transform, the approximate analytical series solution
of (3) with initial condition (4) is given by

w(x, t) =
∞∑
k=0

Wk(x)t
k. (7)

C. Convergence and error analysis of RDTM
RDTM gives the approximate analytical series solution

(7) of the non-linear pde given in (3), the principal aim of
this section is to discuss the sufficient conditions for con-
vergence of this solution. For this purpose, some theorems
for convergence of the method and the error computation
are addressed in [21]. To get the solution of the considered
problem includes ascertaining power series expansion in (7)
with the initial time t = 0:

w(x, t) =
∞∑
k=0

ak(x)t
k, t ∈ l, (8)

where l = (0, r), r > 0. The important results on conver-
gence and error estimation are given in the the theorems
below [21].

Theorem 3. If ϕk(x, t) = ak(x)t
k, then the series solution∑∞

k=0 ak(x)t
k, stated in (8), ∀k ∈ N ∪ {0}.

(i) It is convergent if ∃ 0 < λ < 1 such that ∥ϕk+1∥ ≤
λ∥ϕk∥.
(ii) It is divergent if λ > 1 such that ∥ϕk+1∥ ≥ λ∥ϕk∥.

Theorem 4. Suppose that the series solution
∑∞

k=0 ϕk(x, t),
where ϕk(x, t) = ak(x)t

k, converges to the solution
w(x, t). If the truncated series

∑m
k=0 ϕk(x, t) is used as an

approximation to the solution u(x, t), then the maximum
absolute truncated error is estimated as∥∥∥∥∥w(x, t)−

m∑
k=0

ϕk(x, t)

∥∥∥∥∥ ≤ 1

1− λ
λm+1∥ϕ0∥ (9)

III. MATHEMATICAL MODELS

In this section mathematical models for simultaneous
transmission of heat and moisture in drying fruit slice are
considered for 1D, 2D and 3D cases. Moisture content and
temperature profile inside the fruit slice are obtained for all
three cases from solution of governing pdes by RDTM.

A. One Dimensional fruit drying model
In this part, we use the general heat and mass transfer

formulation to create a simple model of moisture and heat
distribution during fruit drying. The physical model com-
prises of a single slice of fruit having thickness 2L, with non-
uniform initial temperature T0 − T1 cos

(
πx
2L

)
and moisture

content M0(1+ cos
(
πx
2L

)
). As shown in figure (1), x = 0 is

the mid-plane of the fruit slice and drying is assumed to be
effective only at out surfaces x = ±L.

Figure 1: Schematic diagram of 1D model of drying fruit
slice

As illustrated in figure (1), the problem under consider-
ation is symmetric about the midplane x = 0 of the fruit
slice.

At the time of the drying process, most of the heat is
carried through convection from the air to the fruit slice’s
outside surface, then by conduction to the inside. Evapo-
ration is the process by which moisture is released into the
atmosphere as it moves towards the surface. A model for the
simultaneous transmission of heat and moisture is developed
to explain such a coordinated process [19],

ρs
∂M

∂t
=

∂

∂x

(
Dρs

∂M

∂x

)
; 0 < x < Lx, (10)

ρsCp
∂T

∂t
=

∂

∂x

(
κ
∂T

∂x

)
; 0 < x < Lx. (11)

The coefficient of diffusion, density of the solid, specific
heat capacity, and thermal conductivity are denoted by
D, ρs, Cp, and κ respectively. For this 1D model, we are
considering the outer surfaces at L = Lx for variable x.
Due to symmetry, the solution is examined from x = 0 to
x = Lx. For constant thermal diffusivity α0 =

κ

ρsCp
and

constant diffusion coefficient D = D0 equation (10) and
(11) results into;

∂M

∂t
= D0

∂2M

∂x2
; 0 < x < Lx, (12)

∂T

∂t
= α0

∂2T

∂x2
; 0 < x < Lx. (13)

Both, the amount of moisture present and the temperature
are considered to be non-uniform throughout the drying pro-
cess, whereas neglecting the shrinkage effect the thickness
of the slice is taken as uniform. At t = 0 non-uniform
distribution of moisture content and the temperature profile
is considered as initial conditions taken in (14);

M(x, 0) = M0

[
1 + cos

(
πx

2Lx

)]
,

T (x, 0) = T0 − T1 cos

(
πx

2Lx

)
.

(14)
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The center of the slice at x = 0 has no temperature
or moisture gradients; hence, the following conditions hold
[19];

∂M

∂x
= 0,

∂T

∂x
= 0 at x = 0. (15)

At the surface boundary, heat transmission is caused by
convection to the dry air above, and this phenomenon is
often represented by a heat transfer coefficient h. The surface
boundary condition is determined by the amount of heat that
is absorbed by moisture when it changes from the liquid to
the gaseous phase [19],

κ
∂M

∂x
− λD0ρs

∂T

∂x
= −h(Tsur − Tair) at x = Lx, (16)

where λ is the latent heat.

When establishing a drying surface boundary condition,
we must consider a driving gradient. Temperature and pres-
sure make up this gradient. The difference between Cair and
Csur is what makes water vapor move from a wet surface
into the air [19], therefore

−D0ρs
∂M

∂x
= hm(Csur − Cair) at x = Lx. (17)

The above (12) and (13) along with the initial condition
(14) and boundary conditions (15), (16) and (17) gives
partial differential equation model to describe the moisture
distribution and temperature distribution in the fruit slices.

Applying reduced differential transform on (12) and (13),
we get

(k + 1)!

k!
M∗

k+1(x) = D0
∂2

∂x2
M∗

k (x), (18)

(k + 1)!

k!
T ∗
k+1(x) = α0

∂2

∂x2
T ∗
k (x), (19)

where M∗
i and T ∗

i are the transformed functions, i ∈ Z+.
On applying the transformation to the initial conditions (14),
we have

M∗
0 (x) = M0

[
1 + cos

(
πx

2Lx

)]
,

T ∗
0 (x) = T0 − T1 cos

(
πx

2Lx

)
.

(20)

On using (20) in (18), we get

1!

0!
M∗

1 (x) = D0
∂2

∂x2
M∗

0 (x)

= D0
∂2

∂x2

[
M0

{
1 + cos

(
πx

2Lx

)}]
= −D0M0

( π

2L

)2
cos

(
πx

2Lx

)
.

Similarly, on taking k = 1, we get

2!

1!
M∗

2 (x) = D0
∂2

∂x2
M∗

1 (x)

M∗
2 (x) =

1

2
D0

∂2

∂x2

[
−D0M0(

π

2Lx
)2 cos

(
πx

2Lx

)]
=

1

2
D2

0M0

(
π

2Lx

)4

cos

(
πx

2Lx

)
.

Thus, the general term can be defined as

M∗
k (x) =

M0

k!

[(
−D0

π2

4L2
x

)k

cos

(
πx

2Lx

)]
; k > 0.

Using the reverse transformation on M∗
k (x), we get

M(x, t) =
∞∑
k=0

M∗
k (x)t

k

= M0

[
1 +

∞∑
k=0

1

k!

(
−D0π

2t

4L2
x

)k

cos

(
πx

2Lx

)]

= M0

[
1 + exp

{(
−D0tπ

2

4L2
x

)}
cos

(
πx

2Lx

)]
.

(21)
The above (21) shows the moisture content for the fruit

slice for any layer in 0 < x < Lx at any time t.
Now, we will solve (13) to obtain the temperature inside the
fruit slice for any layer at any time t.

So, we substitute (20) in (19) at k = 0 to get

1!

0!
T ∗
1 (x) = α0

∂2

∂x2
T ∗
0 (x)

= α0
∂2

∂x2

[
T0 − T1 cos

(
πx

2Lx

)]
= −α0T1

(
π

2Lx

)2

cos

(
πx

2Lx

)
.

Similarly,

2!

1!
T ∗
2 (x) = α0

∂2

∂x2
T ∗
1 (x)

T ∗
2 =

1

2
α0

∂2

∂x2

[
−α0T1

(
π

2Lx

)2

cos

(
πx

2Lx

)]

=
1

2
α2
0T1

(
π2

4L2
x

)2

cos

(
πx

2Lx

)
.

Thus, the general term can be defined as

T ∗
k (x) =

T1

k!

(
−α0π

2

4L2
x

)k

cos

(
πx

2Lx

)
; k > 0.

Using the inverse transformation on T ∗
k (x), we get the

temperature T (x, t) in the fruit slice as;

T (x, t) =

∞∑
k=0

T ∗
k (x)t

k

= T0 − T1

∞∑
k=0

1

k!

(
−α0tπ

2

4L2

)k

cos
(πx
2L

)
= T0 − T1 exp

{(
−α0π

2t

4L2

)}
cos
(πx
2L

)
. (22)

Eq. (21) and (22) are the solutions to the diffusion equations
describing moisture content and temperature content in the
fruit slice.

B. Two Dimensional fruit drying slice
In the two-dimensional model, we suppose that there is a

fruit slice of infinite length, and the moisture and temperature
are spread unevenly over the thickness and width of the fruit.
We are now considering the possibility of drying a piece
of fruit slice in the form of a rectangle: x = ±Lx, y =
±Ly . The initial moisture and temperature content of the
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fruit slice are assumed to be non-uniform such that moisture
in the centre is maximum and temperature on outer surface is
maximum. So, the initial moisture content and temperature
content are taken as;

M(x, y, 0) = M0

{
1 + cos

(
πx

2Lx

)
· cos

(
πy

2Ly

)}
, (23)

and

T (x, y, 0) = T0 − T1

{
cos

(
πx

2Lx

)
· cos

(
πy

2Ly

)}
, (24)

From diffusion equations (1) and (2), generalising pde model
from (10) and (11), we have 2-dimensional model to describe
simultaneous transmission of heat and moisture in the fruit
slice as (25) and (26);

ρs
∂M

∂t
=

∂

∂x

(
Dρs

∂M

∂x

)
+

∂

∂y

(
Dρs

∂M

∂y

)
;

0 < x < Lx, 0 < y < Ly,

(25)

ρsCp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
;

0 < x < Lx, 0 < y < Ly.

(26)

The coefficient of diffusion, density of the solid, specific
heat capacity, and thermal conductivity are denoted by
D, ρs, Cp and κ respectively. Due to symmetry, the so-
lution is examined from x = 0 to x = Lx and y = 0

to y = Ly . Thermal diffusivity α0 =
κ

ρsCp
and diffusion

coefficient D = D0 are taken as constants. Hence,

∂M

∂t
= D0

(
∂2M

∂x2
+

∂2M

∂y2

)
;

0 < x < Lx, 0 < y < Ly

(27)

∂T

∂t
= α0

(
∂2T

∂x2
+

∂2T

∂y2

)
;

0 < x < Lx, 0 < y < Ly

(28)

with initial condition from (23) and (24) as

M(x, y, 0) = M0 {1 + cos px · cos qy} , (29)

T (x, y, 0) = T0 − T1 {cos px · cos qy} , (30)

where p =
π

2Lx
and q =

π

2Ly
.

Assuming symmetry, there are no temperature gradients
or moisture concentration gradients at the center of slice,
and as a result the following conditions hold [19];

∂M

∂x
= 0 &

∂T

∂x
= 0, at x = 0 (31)

∂M

∂y
= 0 &

∂T

∂y
= 0, at y = 0 (32)

At the surface, boundary conditions become[19];

κ
∂M

∂x
− λD0ρs

∂T

∂x
= −h(Tsur − Tair)

−D0ρs
∂M

∂x
= hm(Csur − Cair) at x = Lx

(33)

Figure 2: Schematic diagram of 2D model of drying fruit
slice process

κ
∂M

∂y
− λD0ρs

∂T

∂y
= −h(Tsur − Tair)

−D0ρs
∂M

∂y
= hm(Csur − Cair) at y = Ly

(34)

figure(2) illustrates a two-dimensional isotropic fruit slice
for symmetric drying circumstances.

Now, we will use the RDTM to derive moisture and
temperature in the fruit slice from (27) and (28), applying
RDTM we have;

(k + 1)!

k!
M∗

k+1(x, y) = D0

{
∂2

∂x2
+

∂2

∂y2

}
M∗

k (x, y),

(35)
(k + 1)!

k!
T ∗
k+1(x, y) = α0

{
∂2

∂x2
+

∂2

∂y2

}
T ∗
k (x, y). (36)

On applying RDTM on the initial condition (29) and (30)
we get

M∗
0 (x, y) = M0 {1 + cos px · cos qy} , (37)

T ∗
0 (x, y) = T0 − T1 {cos px · cos qy} . (38)

By taking k = 0 and substituting (37) in (35) and (38) in
(36), we obtain

1!

0!
M∗

1 (x, y) = D0

{
∂2

∂x2
M∗

0 (x, y) +
∂2

∂y2
M∗

0 (x, y)

}
= M0(−D0) cos px · cos qy

{
p2 + q2

}
.

(39)

1!

0!
T ∗
1 (x, y) = α0

{
∂2

∂x2
T ∗
0 (x, y) +

∂2

∂y2
T ∗
0 (x, y)

}
= T1 · α0 · cos px · cos qy

{
p2 + q2

}
.

(40)

By taking k = 1 and substituting (39) in (35) and (40) in
(36), we obtain

2!

1!
M∗

2 (x, y) = D0

{
∂2

∂x2
M∗

1 (x, y) +
∂2

∂y2
M∗

1 (x, y)

}
,

M∗
2 (x, y) =

1

2
M0D

2
0 cos px · cos qy

{
p2 + q2

}2
.

(41)
2!

1!
T ∗
2 (x, y) = α0

{
∂2

∂x2
T ∗
1 (x, y) +

∂2

∂y2
T ∗
1 (x, y)

}
,

T ∗
2 (x, y) =

−1

2
T1 · α2

0 · cos px · cos qy
{
p2 + q2

}2
.

(42)
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By taking k = 2 and substituting (39) in (35), we obtain

3!

2!
M∗

3 (x, y) = D0

{
∂2

∂x2
M∗

2 (x, y) +
∂2

∂y2
M∗

2 (x, y)

}
,

M∗
3 (x, y) =

1

6
M0 (−D0)

3
cos px · cos qy

{
p2 + q2

}3
.

(43)
3!

2!
T ∗
3 (x, y) = α0

{
∂2

∂x2
T ∗
2 (x, y) +

∂2

∂y2
T ∗
2 (x, y)

}
,

T ∗
3 (x, y) =

1

6
T1 · α3

0 · cos px · cos qy
{
p2 + q2

}3
.

(44)

Thus, using (37), (38), (39), (40), (41), (42) & (43), we get

M∗
k (x, y) = M0

−Dk
0

k!
cos px · cos qy

{
p2 + q2

}k
, (45)

T ∗
k (x, y) = −T1 ·

(−α0)
k

k!
· cos px · cos qy

{
p2 + q2

}k
,

(46)
where k ∈ N
using inverse transformation of M∗

k (x, y) and T ∗
k (x, y)

yields

M(x, y, t) =
∞∑
k=0

M∗
k (x, y)t

k

= M∗
0 (x, y) +

∞∑
k=1

M∗
k (x, y)t

k

= M0 {1 + cos px · cos qy}

+M0 cos px · cos qy
∞∑
k=1

−Dk
0

k!

{
p2 + q2

}k
tk.

M(x, y, t) = M0

[
1 + cos px · cos qy · e−D0(p

2+q2)t
]
.

(47)
and

T (x, y, t) =

∞∑
k=0

T ∗
k (x, y)t

k

= T ∗
0 (x, y) +

∞∑
k=1

T ∗
k (x, y)t

k

= T0 − T1 · cos px · cos qy

−
∞∑
k=1

T1 ·
(−α0)

k

k!
· cos px · cos qy

{
p2 + q2

}k
tk.

T (x, y, t) = T0 − T1 cos px · cos qy · e−α0(p
2+q2)t. (48)

C. Three Dimensional fruit drying slice
In our three-dimensional model, we introduce the concept

of finite dimensions for the fruit slice, considering its length,
width and height. This expansion allows us to account for
uneven distribution of both moisture and temperature across
the thickness, height and width of the fruit. We now look
into drying a portion of fruit slice that takes the shape of a
cuboid, defined by its boundaries as x = ±Lx, y = ±Ly ,
and z = ±Lz .

The initial moisture and temperature content of the fruit
slice are considered to be as follows:

M(x, y, z, 0) = M0 {1 + cos px · cos qy · cos rz} (49)

and

T (x, y, z, 0) = T0 − T1 {cos px · cos qy · cos rz} , (50)

where p =
π

2Lx
, q =

π

2Ly
and r =

π

2Lz
.

Considering diffusion equations (49) and (50) in 3-
dimensions as;

∂M

∂t
=

∂

∂x

(
D0

∂M

∂x

)
+

∂

∂y

(
D0

∂M

∂y

)
+

∂

∂z

(
D0

∂M

∂z

)
;

0 < x < Lx, 0 < y < Ly, 0 < z < Lz,
(51)

ρsCp
∂T

∂t
=

∂

∂x

(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂y

)
+

∂

∂z

(
κ
∂T

∂z

)
;

0 < x < Lx, 0 < y < Ly, 0 < z < Lz.
(52)

The coefficient of diffusion is represented as D0, the density
of solid as ρs, the specific heat capacity as Cp, and the ther-
mal conductivity as κ. To maintain simplicity, we examine
the solution within range from x = 0 to x = Lx, y = 0 to
y = Ly and z = 0 to z = Lz due to the inherent symmetry
of the problem.

Additionally, considering two fundamental constants: ther-
mal diffusivity, denoted as α0 and calculated as κ

ρsCp
, and

the diffusion coefficient, marked as D and kept at a constant
value of D0. (44) and (45) yield

∂M

∂t
= D0

(
∂2M

∂x2
+

∂2M

∂y2
+

∂2M

∂z2

)
;

0 < x < Lx, 0 < y < Ly, 0 < z < Lz,

(53)

∂T

∂t
= α0

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
;

0 < x < Lx, 0 < y < Ly, 0 < z < Lz.

(54)

figure(3) illustrates a three-dimensional isotropic fruit slice
for symmetric drying circumstances.
Assuming symmetry, there are no temperature gradients or
moisture concentration gradients in the slice’s center, and as
a result the following conditions hold [19]:,

∂M

∂x
= 0 &

∂T

∂x
= 0, at x = 0, (55)

∂M

∂y
= 0 &

∂T

∂y
= 0, at y = 0, (56)

∂M

∂z
= 0 &

∂T

∂z
= 0, at z = 0. (57)

At the outer surface, boundary conditions become[19]

κ
∂M

∂x
− λD0ρs

∂T

∂x
= −h(Tsur − Tair)

−D0ρs
∂M

∂x
= hm(Csur − Cair) at x = Lx,

(58)

κ
∂M

∂y
− λD0ρs

∂T

∂y
= −h(Tsur − Tair)

−D0ρs
∂M

∂y
= hm(Csur − Cair) at y = Ly,

(59)

κ
∂M

∂z
− λD0ρs

∂T

∂z
= −h(Tsur − Tair)

−D0ρs
∂M

∂z
= hm(Csur − Cair) at z = Lz.

(60)
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Figure 3: Schematic diagram of 3D model of drying fruit slice

Applying RDTM to (53) and (54), similar to 2D model,
we can get the desired expressions for moisture content and
temperature distribution in the fruit slice as below:

M(x, y, z, t) = M0 [1+

cos px · cos qy · cos rz · e−D0(p
2+q2+r2)t

]
,

(61)

T (x, y, z, t) = T0−
T1 cos px · cos qy · cos rz · e−α0(p

2+q2+r2)t.
(62)

IV. RESULTS AND DISCUSSION

Mathematical models involving diffusion equations to
describe moisture content and temperature distribution are
solved for fruit slice considering 1D, 2D & 3D cases, using
reduced differential transforms. For the analysis values of
the parameters are taken as in Table II.

Table II: Values of parameters involved in the problem

Parameters and Symbols Value Unit

Diffusivity(D0) 8× 10−10 m · s−1

Thickness(Lx) 5× 10−3 m

Width(Ly) 5× 10−2 m

Length(Lz) 5× 10−1 m

M0 0.8
kg.moist

kg.sample

T0 298 K

T1 3 K

Thermal diffusivity(α0) 1.31×10−7 m2·s−1

A. Analysis for 1D Model

Solution in (21) and (22) of the 1D fruit drying model is
obtained by solving two diffusion equations corresponding
moisture (12) and temperature (13) in drying fruit slice.

Table III: Predicted moisture content at different time t for
different layers in drying fruit slice

.

Time(sec) x = 0 x = Lx
3

x = Lx
2

x = 2Lx
3

x = Lx

t = 0 1.60 1.49 1.37 1.20 0.80

t = 1000 1.54 1.44 1.32 1.17 0.80

t = 2000 1.48 1.39 1.28 1.14 0.80

t = 3000 1.43 1.35 1.25 1.12 0.80

t = 4000 1.38 1.31 1.21 1.09 0.80

t = 5000 1.34 1.27 1.18 1.07 0.80

t = 6000 1.30 1.23 1.15 1.05 0.80

t = 7000 1.26 1.20 1.13 1.03 0.80

t = 8000 1.23 1.17 1.10 1.01 0.80
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Figure 4: Effect of D0 on moisture content inside the drying
fruit slice

The table (III) shows the moisture of different layers of the
fruit slice at different time intervals, predicted from this ana-
lytical solution. The graphical plot of the expression in (21)
as figure (4) shows predicted moisture content in the center
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of the slice over time for various diffusivity coefficients.
From the figure, moisture content decreases significantly in
the fruit slice with the increase in time t. This behavior of
moisture content vs drying time from the analytical solution
(21) is in close agreement with the findings shown in [22]
from experimental results. The chosen values of diffusivity
(D0), slice thickness (Lx), and initial moisture level (M0)
have a significant impact on reducing moisture across all
layers of the material. This effect is evident when examining
the data in the table (III) and figure (4), where we can see that
the moisture content drops significantly in all layers initially.
The fruit is initially more saturated with water on the surface,
and moisture is being removed at a faster rate. Moisture from
within will diffuse onto the surface as the amount of surface
moisture decreases. Diffusion takes place in the fruit from
its interior to its exterior. For higher diffusivity coefficient
D0 values, the moisture content in the inner layers begins
to significantly decrease as the drying process goes on.

Table IV: Predicted temperature at different time t for
different layers inside drying fruit slice

Time(sec) x = 0 x = Lx
3

x = Lx
2

x = 2Lx
3

x = Lx

t = 0 295 295.4 295.879 296.5 298

t = 50 296.43 296.64 296.89 297.22 298

t = 100 297.17 297.29 297.42 297.59 298

t = 150 297.57 297.63 297.7 297.79 298

t = 200 297.77 297.80 297.84 297.89 298

t = 250 297.88 297.9 297.92 297.94 298

t = 300 297.94 297.95 297.96 297.97 298

t = 350 297.97 297.97 297.98 297.98 298

t = 400 297.98 297.99 297.99 297.99 298

t = 450 297.99 297.99 297.99 297.99 298
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Figure 5: Effect of thermal diffusivity α0 on temperature in
the center of fruit slice at x = 0

Based on the figure (4), for the same time period the
drying process accelerate with increased values of diffusivity
coefficient and the lower the moisture content left inside the

fruit. This observation suggests that the diffusion process,
which involves the movement of moisture within the fruit
slice, can be significantly accelerated by adjusting the value
of D0. In reality, several factors like temperature, moisture
content, material composition, gradient concentration, etc.
can affect the value of D0. Predicted from (22), table
(IV) shows the temperature distribution within the fruit
slice at the different interior layers, and figure (5) shows
the temperature rise in the core of the slice. There is a
temperature differential between the slice’s surface and core.
The surface temperature must initially rise and the heat
transfer from the surface to the core must also rise in
order to signal that the temperature inside the fruit has
increased. There is a noticeable difference in the interior
temperature between now and previously, and the notable
rise suggests that the fruit slice’s outer layer is getting hotter.
This is in line with experimental findings by [11], which
found that temperature distributions are higher at the outer
surface and gradually decrease towards the interior portion
of the moist object. The rate at which heat or temperature
diffuses through a substance is measured by its thermal
diffusivity. A high thermal diffusivity score indicates a quick
change in temperature. It’s interesting to see how quickly
the fruit slice’s temperature changes in this situation. It
takes very little time to reach 298K, which is a steady
temperature. This stable temperature (Tsur = 298K) is
in line with the ambient temperature of 298K. In another
way, the temperature of the fruit slice quickly changes to
correspond with its environment. These findings indicate that
the fruit’s most exposed area tends to warm up more quickly.
Therefore, the temperature at the fruit’s core and surface will
rise with a longer drying period.

B. Analysis for 2D model

The moisture content and temperature inside the 2-
dimensional fruit slice is derived in (47) and (48) respec-
tively. The figure (6) shows how moisture is distributed in
the drying fruit slice and figure (7) shows the heat map for
temperature inside the slice.

Figure 6: Heatmap for predicted moisture content inside the
drying fruit slice(2D Model)

It’s clear that the center of the fruit slice has the highest
moisture, and it gradually decreases as we move away from
the center. What’s interesting is that in the 2D model, the
moisture goes down faster compare to previous model. This
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happens because the larger surface area in the 2D model
allows moisture to escape more quickly into the surrounding
environment. So, moisture decreases faster in the 2D model
compared to the 1D model. This highlights the importance

Figure 7: Heatmap for predicted temperature distribution
inside the drying fruit slice(2D model)

of surface area and dimensions in understanding moisture
behavior in the fruit slice. Investigating figure (7), it becomes
evident that the temperature distribution within the 2D fruit
slice exhibited a pronounced characteristic. The temperature
profile reached its peak at the edges and gradually decreased
as one moved towards the center. This intriguing behavior is
attributed to the influence of surface area, which accelerates
the rate of temperature rise. Prediction from the analytical
solution given in figure (6) and (7) have same profile as
in [19], the heat maps given in these figures show similar
layered distribution of moisture content and temperature
as discussed in [19] for 2D numerical study on drying
fruit slice. In these plots the greater temperature and lower
moisture content at the corners of the fruit slice are visible
similar to the plots given in [19].

C. Analysis for 3D model

Figure 8: Moisture content inside the drying 3D fruit slice
at initial point in time

The mathematical model for drying fruit slice is consid-
ered with three space variables in (53), (54) with extended
initial moisture content (49) and initial temperature (50).

Figure 9: Temperature content in the drying 3D fruit slice
at initial point in time

Figure 10: Transparent heat map for moisture content inside
the drying 3D fruit slice at t = 0.

Figure 11: Transparent heat map for temperature content
inside the drying 3D fruit slice at t = 0.

The analytical expressions derived in (61) and (62) give
moisture content and temperature profile in this rectangular
parallelopiped piece of fruit slice. The moisture content and
temperature in the slice at t = 0 are shown in figure (8) and
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figure (10) respectively. Figure (9) and (11) show the trans-
parent heatmap through which the initial moisture content
and initial temperature in the inner layers of the slice are
seen. The figures (8) to (15) are 3D scatter plots generated
by utilizing Matplotlib in Python. These visualizations help
us to delve into the complexity of three space dimensions
x, y, and z, representations are particularly insightful due to
the addition of a nuanced fourth dimension time t conveyed
through a color spectrum. This supplementary dimension
serves the purpose of enlightening the moisture content
at precise coordinates, enriching our comprehension of the
dataset.

Figure 12: Transparent heat map for predicted moisture con-
tent distribution inside the drying 3D fruit slice at t = 5000.

Figure 13: Transparent heat map for predicted moisture con-
tent distribution inside the drying 3D fruit slice at t = 8000.

Based on these analytical solutions (61) and (62) we have
predicted the moisture content and temperature in the slice
in figure (12), (13), (14) and (15). Figure (12) and (13)
shows a transparent heatmap through which the moisture
content in the inner part of the slice is visible at time
t = 5000 sec and t = 8000 sec respectively. The transparent
heatmaps in figures (14) and (15) portray temperature varia-
tions across different coordinates at time t=50 sec and t=500
sec respectively. Notably, the outer surface exhibits higher

temperatures than the inner surface, influenced by the heat
exchange with the surrounding atmosphere.

Figure 14: Transparent heat map for predicted temperature
profile inside the drying 3D fruit slice at t = 50.

Figure 15: Transparent heat map for predicted temperature
profile inside the drying 3D fruit slice at t = 500.

V. CONCLUSION

In order to investigate the behavior of moisture content
temperature during the drying of fruit slice, 1D, 2D and
3D analytical model for removal of moisture content and
temperature is developed. This model analytically repre-
sented the moisture removal and heat transmission during
the drying process by using 1D case: very thin fruit slice,
2D case: slightly thick fruit slice and 3D case: rectangular
parallelepiped shaped fruit slice to represent the drying fruit
slice. Inside the fruit slice, the conduction mechanism is
thought to happen as a heat transfer, whereas moisture
removal is controlled by only liquid diffusion. The pa-
rameters thermal diffusivity and diffusivity coefficient are
considered constant in all three models. Analytical solution
is obtained by solving two diffusion equations corresponding
to moisture and temperature in drying fruit slice using
reduced differential transform method (RDTM), and it is
analyzed by implementing the analytical model in Python
together with the beginning conditions.
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The results that we obtained in our study had critical
insights into the moisture and temperature distribution in
a fruit slice. One important observation is that a higher-
dimension model yields the desired moisture and temper-
ature faster than a lower-dimension model due to the effect
of high surface area. A very interesting pattern is found in
our models, moisture is highest at the center and lowest
on the surface, whereas on the other hand, temperature is
lowest at the center and highest on the surface. The surface
of fruit slice that is exposed to the surrounding air warms
up faster, reducing moisture content. The interconnection
between thermal diffusivity (α0) and moisture diffusivity
(D0) is responsible for such a pattern.

The suggested analytical model is able to offer informa-
tion regarding moisture and temperature at all times in good
agreement with the experimental and numerical studies per-
formed earlier. In the analytical model we haven’t considered
the shrinkage effect in fruit slices, so it predicts temperature
and moisture distribution throughout small span of time
in the beginning of drying process. However, considering
the shrinkage effect in fruit slices can make this model
more realistic. Also, the inclusion of dependency of moisture
diffusivity and thermal diffusivity on M and T respectively
will bring us one more step closer to a realistic situation
which can help us to understand the complexity of drying
fruits.
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