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Abstract—In this paper, we advocate a new technique to
determine inner bounds for the extreme eigenvalues of real
symmetric matrices. Our method involves the matrix elements
and compares favourably with existing methods. We also show
how the bounds can be optimized.

Index Terms—positive definite matrix, eigenvalues, bounds.

I. INTRODUCTION

KNowledge of eigenvalues and eigenvectors are crucial
in almost all spheres of engineering and science. The

determination of the eigenvalues by solving the characteristic
nth degree polynomial equation det(λI − A) = 0 is chal-
lenging, especially for large values of the matrix dimension
n. Thus several methods have evolved that determine the
eigenvalues together with the eigenvectors. However, in
some cases only bounds for the extremal eigenvalues may
suffice. These are particulary important in approximation
theory, especially the spread sp(A), spectral radius ρ(A) and
condition number | λ1

λn
|, where λ1 and λn are the dominant

and least dominant eigenvalues of a symmetric matrix A,
in the absolute sense. For symmetric matrices especially
A ∈ Rn×n, the existence of real eigenvalues and real
eigenvectors simplify the eigenvalue problem tremendously.
However, the task is still daunting for large n. Weinstein
bounds [3] depend on an approximate eigenpair and bounds
a portion of the spectrum. Kato bounds [7] is an improvement
of the latter. It is well known that the Temple quotient [14]
provides a lower bound for the smallest eigenvalue, and is
a special case of Lehmann’s method [8]. Brauer bounds
[1], using the interlacing property for Hermitian matrices
and Rayleigh’s quotient [6] give better results. For positive
definite symmetric matrices Dembo bounds [4] arise by
examining the characteristic equation of A and depends on
bounds of a principal submatrix. Sun [13] bounded the min-
imal eigenvalue of positive definite matrices, improving on
Dembo bounds. However, we stress that the prior mentioned
methods all require some additional information regarding
σ(A). The following methods rely only on the entries of
the matrix, though they can be very effective. Some crude
methods of this type are based on Gerschgorin disks and the
ovals of Cassini [2]. The latter two methods are particularly
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useful for sparse matrices, say tridiagonal, especially when a
disk or oval is disjoint from the rest. Mirskey [9], Brauer and
Mewbom [1] used traces to bound sp(A). Wolcowicz and
Styan [15] used a statistical approach for the extremal bounds
which resulted in the employment of trace bounds. Sharma
et al. [10] extended and improved the work of Wolcowiz and
Styan. Singh et al. [11], [12] generalized the work of Sharma,
and Wolcowicz and Styan, by employing functions of the
matrix A. Trace bounds are elegant as they are functions
only of the diagonal entries of a matrix and its associated
powers. Here we shall utilize more information from all
the matrix entries. Whilst here we discuss real symmetric
matrices, we must bear in mind that these are important in
bounding certain forms of block 2×2 matrices. For example
in [16], the spectral bounds of a preconditioned block matrix,
depends on the bounds of each of the component matrices.
Here the first matrix on the diagonal is real positive definite,
while the second matrix on the diagonal is real positive semi-
definite.

II. THEORY

Let A = (aij) ∈ Rn×n be a symmetric matrix, with
spectrum σ(A) = {λi}ni=1 and associated normalized eigen-
vectors denoted by {ui}n1 . It is well known that A is
unitarily diagonalizable [6]. Thus it follows from the spectral
theorem that

I =

n∑
i=1

Gi

A =
n∑

i=1

λiGi. (1)

Here Gi is the orthogonal projector onto the nullspace
N(A − λiI) along the range R(A − λiI), Gi = uiu

t
i and

satisfies GiGj = δijI, where δij denotes the well known
Kronecker delta symbol. Assume that the eigenvalues are
arranged in the order

λn ≤ λn−1 ≤ · · ·λ2 ≤ λ1. (2)

Let ⟨·, ·⟩ denote the standard innerproduct in Rn .
Theorem 2.1: Let A ∈ Rn×n be symmetric with the

eigenvalues arranged as in (2). We have for x ∈ Rn,
∥x∥2 = 1 that

λn ≤ ⟨Ax,x⟩ ≤ λ1

Proof:

⟨Ax,x⟩ =

〈
n∑

i=1

λiGix,x

〉
=

n∑
i=1

λi⟨Gix,x⟩ (3)
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Since λn ≤ λi ≤ λ1, for all i, it follows from (3) that

λn ≤ λn

〈
n∑

i=1

Gix,x

〉
≤ ⟨Ax,x⟩ ≤ λ1

〈
n∑

i=1

Gix,x

〉
≤ λ1.

Let u,v ∈ Rn be orthonormal vectors and consider the two
dimensional subspace span{u,v}. Let

x =
u+ αv√
1 + α2

, (4)

where α ∈ R is a parameter, then ∥x∥2 = 1. We shall
optimize the quantity λ(α) given by

λ(α) = ⟨Ax,x⟩

=
⟨A(u+ αv),u+ αv⟩

1 + α2
(5)

From (5) we have

(1 + α2)λ(α) = ⟨A(u+ αv),u+ αv⟩ (6)

Differentiate (6) with respect to α and set λ′(α) = 0 to
obtain

αλ(α) = ⟨Av,u+ αv⟩ (7)

⟨A(u+ αv),u+ αv⟩ = (1 + α2)⟨Av,u+ αv⟩
α2⟨Au,v⟩+ α[⟨Au,u⟩ − ⟨Av,v⟩]− ⟨Au,v⟩ = 0

α2D + αC −D = 0, (8)

where D = ⟨Au,v⟩ and C = ⟨Au,u⟩ − ⟨Av,v⟩. Hence

α =
−C ±

√
C2 + 4D2

2D
. (9)

From (7)

λ(α) = ⟨Av,v⟩+ ⟨Av,u⟩
α

(10)

= ⟨Av,v⟩+ D

α
(11)

From (9)

1

α
=

C ±
√
C2 + 4D2

2D
, (12)

so that (11) simplifies to

λ± = ⟨Av,v⟩+ 1

2

[
C ±

√
C2 + 4D2

]
=

1

2
[⟨Au,u⟩+ ⟨Av,v⟩

±
√
(⟨Au,u⟩ − ⟨Av,v⟩)2 + 4⟨Au,v⟩2

]
(13)

Here λ+ and λ− correspond to the plus and minus signs
in (13), respectively. Clearly λ− is an upper bound for λn

while λ+ is a lower bound for λ1. The magnitude δ± of the
corresponding residual is given by

δ2± = ∥Ax− λ±x∥22
= ⟨Ax− λ±x,Ax− λ±x⟩
= ∥Ax∥22 − λ2

±. (14)

Thus

δ± =
√
∥Ax∥22 − λ2

±.

III. RESULTS

IV. CASE DIMENSION N EVEN

For this case we choose

u =
1√
n

n∑
i=1

ei,

v =
1√
n

 n
2∑

i=1

ei −
n∑

i=n
2 +1

ei

 , (15)

where ei are the standard basis vectors in Rn. The matrix
A is partitioned as follows:

A =

[
A11 A12

A21 A22

]

Let Sij be the sum of the elements of Aij where i, j ∈ {1, 2}
or explicitly

S11 =

n
2∑

i=1

n
2∑

j=1

aij

S12 =

n
2∑

i=1

n∑
j=n

2 +1

aij

S21 = S12

S22 =

n∑
i=n

2 +1

n∑
j=n

2 +1

aij

and S = S11 + 2S12 + S22. Then

⟨Au,u⟩ = S

n

=
S11 + 2S12 + S22

n
,

⟨Av,v⟩ = S11 + S22 − 2S12

n
,

⟨Au,v⟩ = S11 − S22

n
.

Thus from (13) we have that

λ± =
1

2n

[
2S11 + 2S22 ±

√
16S2

12 + 4 (S11 − S22)
2

]
λ± =

1

n

[
S11 + S22 ±

√
4S2

12 + (S11 − S22)
2

]

V. CASE DIMENSION N ODD

For this case we choose u as before and

v =
1√
n− 1

n−1
2∑

i=1

ei −
n∑

i=n+3
2

ei

 , (16)

and partition A as follows:

A =

 A11 b A12

bt β ct

A21 c A22,


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where Aij are order n−1
2 matrices and b, c ∈ R

n−1
2 , with

β = an+1
2 ,n+1

2
. Explicitly

S11 =

n−1
2∑

i=1

n−1
2∑

j=1

aij

S12 =

n−1
2∑

i=1

n∑
j=n+3

2

aij

S21 = S12

S22 =
n∑

i=n+3
2

n∑
j=n+3

2

aij

Then

⟨Au,u⟩ = S

n
(17)

=
S11 + 2S12 + S22 + 2(Sb + Sc +

β
2 )

n
,

⟨Av,v⟩ = S11 + S22 − 2S12

n− 1
, (18)

⟨Au,v⟩ = S11 − S22 + Sb − Sc√
n(n− 1)

, (19)

where Sb and Sc are the sum of the elements of b and c
respectively. Thus from (17) and (18) we have that

⟨Au,u⟩+ ⟨Av,v⟩

=
(2n− 1)(S11 + S22)− 2S12 + 2(n− 1)(Sb + Sc +

β
2 )

n(n− 1)

⟨Au,u⟩ − ⟨Av,v⟩

=
2(2n− 1)S12 − (S11 + S22) + 2(n− 1)(Sb + Sc +

β
2 )

n(n− 1)

=
2
[
(2n− 1)S12 − S11+S22

2 + (n− 1)
(
Sb + Sc +

β
2

)]
n(n− 1)

.

Thus from (13) we have that

λ± =
1

n(n− 1)

[(
n− 1

2

)
(S11 + S22)− S12

+(n− 1)
(
Sb + Sc +

β
2

)
±
√
∆
]

where

∆ =
[
(2n− 1)S12 − S11+S22

2 + (n− 1)
(
Sb + Sc +

β
2

)]2
+ n(n− 1) [S11 − S22 + Sb − Sc]

2
.

VI. FURTHER OPTIMIZATION

We shall refer to the choice of v in equations (15) and (16)
as vs. It is obvious that any permutation of the elements of
v will suffice in (4) and (13) as u and v will still maintain
orthogonality.

Theorem 6.1: For any u,v ∈ Rn we have that

(a) λ− ≤ ⟨Au,u⟩ ≤ λ+ (20)
(b) λ− ≤ ⟨Av,v⟩ ≤ λ+

Proof: We shall only prove (a) as (b) is proved in a
similar manner. From

⟨Au,u⟩−⟨Av,v⟩ ≤
√

(⟨Au,u⟩−⟨Av,v⟩)2+4⟨Au,v⟩2

⟨Au,u⟩ ≤ ⟨Av,v⟩+
√
(⟨Au,u⟩−⟨Av,v⟩)2+4⟨Au,v⟩2

2⟨Au,u⟩ ≤ ⟨Au,u⟩
+ ⟨Av,v⟩+

√
(⟨Au,u⟩ − ⟨Av,v⟩)2 + 4⟨Au,v⟩2

from which the upper bound in (20) follows. The lower
bound is proved by considering

−⟨Au,u⟩+⟨Av,v⟩≤
√
(⟨Au,u⟩−⟨Av,v⟩)2+4⟨Au,v⟩2

In the limit when ⟨Au,v⟩ → 0 in (13) we would have either
⟨Au,u⟩ or ⟨Av,v⟩ as inner bounds (from a one dimensional
subspace). Thus from theorem 6.1 it is only natural to
increase the value of |⟨Au,v⟩| in order to further optimize
the inner bounds. We may choose to make ⟨Au,v⟩ large
negative or positive, however, we choose the latter approach.
Let ri =

∑n
j=1 aij be the row sums of A and note that

ri = (Au)i. Arrange the set {|ri|}ni=1 in descending order,
say |rσ1

| ≥ |rσ2
| ≥ · · · |rσn

|, where σi ∈ {1, 2, · · · , n}.
Choose

vσ1
=

{
+1√
n

if rσ1
> 0

−1√
n

if rσ1
< 0

Continue in this manner for rσ2
, rσ3

, · · · until n
2 (assuming

n is even) entries are +1√
n

or −1√
n

, whichever comes first. Then
fill the remaining entries of v by elements of the opposite
sign. For the case of odd n, we repeat the procedure for the
even case. However, say we have first assigned n2 = n−1

2
elements as −1√

n−1
and p < n2 as +1√

n−1
. We are still left with

the position of the 0 element and n2−p elements +1√
n−1

. We
then examine rσn2+p+k

, k = 1, 2, · · · , n2+1− p. Let k = q
be the first index where rσn2+p+k

< 0, then set vσn2+p+q
= 0

and fill the remaining positions with +1√
n−1

. If rσn2+p+k
> 0

for all k, then set vn = 0 and fill the remaining positions
with +1√

n−1
. For now let us designate the vector from this

procedure by v′ It is obvious that there is a permutation
matrix P such that v′ = Pv, where the original v = vs is
from (15) or (16). Now

⟨Au,v′⟩ = ⟨Au,Ptv⟩
= ⟨PAPtu,v⟩
= ⟨A′u,v⟩,

where A′ = PAPt and obviously Ptu = u. Similarly

⟨Au,u⟩ = ⟨A′u,u⟩
⟨Av,v⟩ = ⟨A′v,v⟩

Thus using u, A and v′ in (13) is equivalent to using u,
A′ and v in (13). Thus an alternative, though equivalent,
approach is to permute the rows and columns of A and use
the original v = vs. It is obvious that there are many other
choices for v. Thus we shall refer to v′ as vopt for reasons
that will be clear later on. The one other choice of v that
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interests us is given by

valt =
1√
n

n∑
i=1

(−1)iei, n even

valt =
1√
n− 1

n−1
2∑

i=1

(−1)iei +
n∑

i=n+3
2

(−1)iei

 , n odd.

For comparison with our results we summarize the bounds
of [15].

λ− = m− Sd√
n− 1

, (21)

λ+ = m+
Sd√
n− 1

, (22)

where

m =
tr(A)

n
,

Sd =

√
tr(A2)

n
−m2,

are the average of the eigenvalues and the corresponding
standard deviation. We shall refer to these bounds as tr1
bounds. Singh etal. [11] have shown that if f(λ) is continu-
ous on the spectrum σ(A), and B = f(A)−mI, then

f(λ1) ≥ m+
tr(B2)

n

[
1 + (n− 1)2r−1

(n− 1)2r−1tr(B2r)

] 1
2r

(23)

f(λn) ≤ m− tr(B2)

n

[
1 + (n− 1)2r−1

(n− 1)2r−1tr(B2r)

] 1
2r

(24)

Here, r ≥ 1 is an integer. When f(x) = x, then equations
(23)-(24) reduce to (21)-(22). We shall choose r = 2 and
f(x) = x for comparison with our newly advocated method.
We shall refer to these bounds as tr2 bounds. It must be
noted that with f(x) = xk, k ≥ 2 better bounds are obtained
from (23)-(24), however this is computationally much more
expensive. We next present few examples, all matrices are
taken from [5]. We shall summarize the choices for vs, vopt

and valt as well as the row sums of the matrices which is
denoted by the vector r.

Example 6.2: Consider the test matrix

A =



5 1 −2 0 −2 5

1 6 −3 2 0 6

−2 −3 8 −5 −6 0

0 2 −5 5 1 −2

−2 0 −6 1 6 −3

5 6 0 −2 −3 8


.

Here the parameters are summarized in Table I. Note how
|⟨Au,v⟩| has been optimized by suitable choice of vopt

TABLE I
PARAMETERS:EXAMPLE 6.2

√
6vs r

√
6vopt

√
6valt

1 7 1 −1

1 12 1 1

1 −8 −1 −1

−1 1 −1 1

−1 −4 −1 −1

−1 14 1 1

The corresponding bounds are summarized in Table II

TABLE II
BOUNDS:EXAMPLE 6.2

Method λ− λ+

tr1 3.040243 9.626424

tr2 2.073495 10.593172

vs 3.666667 3.666667

vopt −1.055364 15.055364

valt −0.497474 10.497474

exact −1.598734 16.142745

Example 6.3: For the matrix given below of odd order,
the parameters are summarized in Table III and the results
are summarized in Table IV

A =



7 6 5 4 3 2 1

6 6 5 4 3 2 1

5 5 5 4 3 2 1

4 4 4 4 3 2 1

3 3 3 3 3 2 1

2 2 2 2 2 2 1

1 1 1 1 1 1 1



TABLE III
PARAMETERS:EXAMPLE 6.3

√
6vs r

√
6vopt

√
6valt

1 28 1 −1

1 27 1 1

1 25 1 −1

0 22 0 0

−1 18 −1 1

−1 13 −1 −1

−1 7 −1 1

TABLE IV
BOUNDS:EXAMPLE 6.3

Method λ− λ+

tr1 0.837722 7.162278

tr2 0.823352 7.176648

vs 2.29452 22.372147

vopt 2.29452 22.372147

valt 0.428228 20.238439

exact 0.261295 22.880783

Example 6.4: For the following pentadiagonal matrix of
odd order the parameters are summarized in Table V and the
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results are summarized in Table VI.

A =



5 2 1 1

2 6 3 1 1

1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1

1 1 3 6 2

1 1 2 5


.

TABLE V
PARAMETERS:EXAMPLE 6.4

√
8vs r

√
8vopt

√
8valt

1 9 −1 −1

1 13 −1 1

1 15 1 −1

1 16 1 1

0 16 1 0

−1 16 1 −1

−1 15 0 1

−1 13 −1 −1

−1 9 −1 1

TABLE VI
BOUNDS:EXAMPLE 6.4

Method λ− λ+

tr1 4.326937 7.228618

tr2 3.953128 7.602428

vs 10.500000 13.555556

vopt 6.535751 14.269805

valt 2.5 13.555556

exact 0.736124 14.499944

Example 6.5: This example is for the matrix as in
Example 6.4, except that we add another row of
[· · · 1 1 3 6 3 1 1 · · · ], to increase the order to even. Corre-
sponding parameters and results are summarized in Table
VII and Table VIII.

TABLE VII
PARAMETERS:EXAMPLE 6.5

√
10vs r

√
10vopt

√
10valt

1 9 −1 −1

1 13 −1 1

1 15 1 −1

1 16 1 1

1 16 1 −1

−1 16 1 1

−1 16 1 −1

−1 15 −1 1

−1 13 −1 −1

−1 9 −1 1

TABLE VIII
BOUNDS:EXAMPLE 6.5

Method λ− λ+

tr1 4.411156 7.188844

tr2 3.993205 7.606795

vs 10.500000 13.555556

vopt 7.194449 14.405551

valt 1.000000 13.800000

exact 0.615828 14.749186

Example 6.6: The following matrix has 3 eigenvalues,
each of algebraic multiplicity 2. Parameters are summarized
in Table IX and the results are summarized in Table X.

A =



1 2 3 0 1 2

2 4 5 −1 0 3

3 5 6 −2 −3 0

0 −1 −2 1 2 3

1 0 −3 2 4 5

2 3 0 3 5 6


.

TABLE IX
PARAMETERS:EXAMPLE 6.6

√
6vs r

√
6vopt

√
6valt

1 9 1 −1

1 13 1 1

1 9 −1 −1

−1 3 −1 1

−1 9 −1 −1

−1 19 1 1
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TABLE X
BOUNDS:EXAMPLE 6.6

Method λ− λ+

tr1 0.877800 6.455533

tr2 0.059076 7.274257

vs 10.333333 10.333333

vopt −1.289321 11.289321

valt 0.81326 10.520073

exact −1.696323 12.411336

VII. DISCUSSION

From Table II we see that vs gives both bounds as equal.
This is the case as the radical in (13) is zero. Using vopt

results in the best inner bounds for both λ1 and λn, whilst
valt gives a reasonable upper bound for λn. From Table IV,
vs and vopt give the same results as vs = vopt in this
case. The best inner bounds are given by vopt , while a
reasonable upper bound is given by valt. From Table VI
and VIII, the best lower bound is given by vopt and the
best upper bound by valt. Example 6.6 illustrates that vopt

gives the best results. In fact it is the only lower bound that is
negative. Our inference is that it suffices to use valt and vopt

only, to determine the best bounds. It is also clear from all
tables that tr2 bounds are better than tr1 bounds. However
they are worse than the bounds derived in this paper. It must
also be noted that tr(B2r) is computationally very expensive
to compute for values of r ≥ 2, as it involves r matrix-matrix
multiplications. We can easily identify the best bounds from
our tables.

VIII. CONCLUSION

We have presented a reasonably inexepensive technique to
approximate the inner bounds for the extreme eigenvalues of
real symmetric matrices. If we are willing to spend the effort
to generate vopt, then we can get a good inner bound for
λ1. We can use valt to identify a good inner bound for λn.
However, in some cases valt yields very good results for
both the bounds.
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