
  

Abstract—To address the formidable challenge of optimizing 

and accurately solving the extensive scale of train timetables for 

high-speed railways, this study adopts a directed space-time 

network to depict the train timetable. By introducing 

incompatible arc sets, constraints such as minimum headway 

time and train overtaking are consolidated into mutually 

exclusive arc segment constraints, forming an integer 

programming model. The model is processed using the 

Lagrangian relaxation method, coupled with fuzzy theory, and 

an enhancement is made to the key iterative algorithm—the 

subgradient optimization algorithm—within the Lagrangian 

relaxation algorithm. The aim is to eliminate potential conflicts 

in the allocation of transportation resources among different 

train operation lines. The improved fuzzy subgradient 

optimization algorithm effectively leverages historical 

subgradient information and updates the subgradient 

reasonably. Finally, using the Beijing-Shanghai high-speed 

railway as a case study, experiments are conducted to optimize 

and compile the train timetables of 82 train lines in the segment. 

The computational performance of the standard subgradient 

algorithm and the fuzzy subgradient algorithm is compared. 

The results demonstrate that, while ensuring computational 

accuracy, the Lagrangian relaxation algorithm based on fuzzy 

subgradient optimization significantly enhances the quality of 

the optimal solution, reducing the dual gap value from 8.51% to 

7.18%. This refined Lagrangian relaxation algorithm serves as 

an effective approach to obtain a higher-quality train timetable 

for high-speed railway trains. 
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I. INTRODUCTION 

ompared with the general speed railway, the high speed 

railway has the characteristics of high speed, large 

capacity, high departure density and short departure time. 

The train timetabling prescribes the sequence of the occupied 

area and the arrival, departure and passage time of the train at 

each station, which is the precondition to ensure the normal 

completion of the high-speed train transportation. As the core 

problem of transport organization theory and method, train 

timetabling can be optimized in coordination with operation 

plan up or integrated optimization with EMU operation plan 

down, is a very meaningful research topic. At the same time, 

the optimization of train timetabling is a problem with clear 

practical background and huge theoretical challenge, which 

requires us to consider the model's comprehensiveness and 

universality when we study the problem, the model should be 

simplified as much as possible to facilitate the solution. The 

optimization of train timetabling is a very large-scale 

multi-objective optimization problem, which is difficult to 

solve. How to design an efficient and reliable solution is 

always the key to the optimization of train timetabling 

[1]-[2]. 

When solving the optimization problem of train timetables, 

there are generally two approaches. One is to use commercial 

optimization software such as CPLEX, Gurobi, etc., for 

problem-solving. The other is to design heuristic algorithms 

for solving. Among various heuristic algorithms, the classical 

Lagrangian relaxation algorithm is prominent. It decomposes 

the complex problem into several easily solvable 

sub-problems, solves each sub-problem separately, performs 

iterative calculations, and ultimately obtains the optimal 

solution to the problem [3]. The convergence and optimality 

of the problem solution, which can be evaluated by analyzing 

the duality gap to assess the solution quality, can be 

guaranteed. It is an efficient method for solving train 

timetabling optimization problems. ZHOU Wenliang et al. [4] 

established a multi-path search model based on the 

construction of a weighted directed graph, taking the shortest 

total train travel time as the objective function, decomposing 

the model by introducing Lagrange multipliers, and design a 

multi-path search sub-algorithm to optimize the feasible 

solution and the dual solution. TIAN Xiaopeng et al. [5] 

established a linear integer programming model based on 

space-time arc variables to achieve the goal of minimizing 
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the total operational cost of trains. Using the Lagrangian 

relaxation method, the original problem is decomposed into 

space-time path sub-problems and train type sub-problems. 

Based on lower bound dual information, a two-stage heuristic 

method is designed for solving the problem. GE Xin et al. [6] 

developed an energy-saving operation graph model to 

optimize the allocation of time points for multi-train interval 

operation. They utilized the Lagrangian relaxation algorithm 

to simplify complex constraints into the objective function. 

This decomposition enabled solving independent 

sub-problems within each interval using the sub-gradient 

optimization method, ensuring accurate solutions and 

synchronous allocation of time and minutes for multi-train 

interval operation. Alberto Caprara et al. [7] studied the train 

timetable problem, with the optimization objective of 

minimizing the deviation from the original train timetable. 

They established an integer programming model and utilized 

the Lagrangian relaxation algorithm to decompose the 

original problem. Following a train priority strategy, a 

heuristic algorithm was constructed to solve the model. 

Zhengwen Liao et al. [8] developed an accumulation flow 

variable model and decomposed the combinatorial train 

timetabling problem into independent shortest path 

subproblems using Lagrangian relaxation. These 

subproblems can be solved by relaxing the constraints. Erfan 

Hassannayebi et al. [9] considered capacity and resource 

constraints in the study of train timetabling problems for 

urban rail transit and solved them using the Lagrangian 

relaxation algorithm. Xuesong Zhou et al. [10] studied the 

train scheduling problem in the existing network of 

high-speed passenger railways. A multi-objective 

programming model was established, and a heuristic 

algorithm was used for solving. GAO Ruhu et al. [11] 

constructed a 0-1 integer programming model based on 

space-time arcs and relaxed the coupling constraints among 

trains using the Lagrangian relaxation algorithm. The 

problem was decomposed into subproblems of finding the 

shortest path for individual trains in the space-time network. 

LIAO Zhengwen et al. [12] developed an accumulation flow 

variable model and used the Lagrangian relaxation algorithm 

to allocate the occupation time of trains to represent the 

tracking intervals. It considered the weight differences 

among trains of different grades and compared the solution 

efficiency using the Lagrangian relaxation algorithm with the 

CPLEX solver. JIANG Feng et al. [13] aimed to maximize 

the total profit of the entire network's train lines. It considered 

constraints such as train organization, station stop 

requirements, time window constraints, uniqueness 

constraints of train lines, and relevant connection constraints. 

The Lagrangian relaxation algorithm was used to relax the 

cluster constraints, and the optimization result was an 

improved travel speed for freight trains. LI Sihan et al. [14] 

solved a multi-objective optimization problem that 

minimized the non-fixed part of train travel time and 

minimized the connection time of high-speed trains. The 

constraints included safety interval time limitations, arrival 

and departure line capacity limitations, arrival and departure 

time domain limitations, and train unit connection limitations. 

GAO Ruhu et al. [15] constructed a 0-1 integer programming 

model based on the Time-Station-Track network, designed a 

Lagrangian relaxation algorithm, and proposed a heuristic 

algorithm based on train priority sequences to make the 

solution feasible. WANG Jin et al. [16] developed a model 

based on the discrete space-time network that aimed to 

maximize the number of train lines and minimize the station 

stop time. An improved branch-and-price algorithm was 

designed. LIU Yong et al. [17] studied the 3PL transportation 

scheduling problem in the context of supply chain 

management. A heuristic algorithm based on the Lagrangian 

relaxation method and a branch-and-bound algorithm based 

on the heuristic algorithm were designed to solve the problem. 

The study confirmed that the Lagrangian relaxation 

algorithm is suitable for obtaining highly suboptimal 

solutions in large-scale problems. CHENG Lin et al. [18] 

established a network flow model for time-space networks 

with time-varying arcs and paths. A Lagrangian relaxation 

heuristic algorithm was designed based on the characteristics 

of the model. The optimal lower bound of the original 

problem was obtained by constructing and solving the 

Lagrangian dual problem, and the optimal upper bound was 

obtained using the heuristic algorithm. 

In summary, although the Lagrangian relaxation algorithm 

is widely used in research related to train timetables, it has 

some shortcomings. The Markov property of the key iterative 

algorithm, the standard subgradient algorithm, determines 

that the algorithm can only update based on the current 

subgradient information in each iteration, without utilizing 

past gradient information. This dependency on the current 

step may lead the algorithm to be highly sensitive, potentially 

getting trapped in local optima and failing to find the global 

optimum. Especially in situations with multiple local optima, 

the algorithm may be limited by insufficient current gradient 

information, preventing it from escaping local optima and 

restricting the optimization effectiveness. In this study, we 

introduce fuzzy theory into the model-solving process, 

replacing the standard subgradient optimization algorithm 

with a fuzzy subgradient optimization algorithm for problem 

iteration. This is done to enhance algorithm performance and 

convergence characteristics, aiming to achieve better 

model-solving results.  

II. PROBLEM ANALYSIS AND CONSTRUCTION OF 

TEMPORAL-SPATIAL NETWORK FOR TRAIN TIMETABLE 

This paper focuses on the optimization of train timetables 

for high-speed railways, involving a large number of stations 

and trains. It is a typical NP-hard problem that is difficult to 

solve efficiently within polynomial time. The problem 

becomes even more complex when considering the 

coexistence of trains with different speed levels and the train 

overtaking. To simplify the problem, this paper incorporates 

traditional constraints such as interval running time 

constraints and station stopping constraints into the process 

of constructing the temporal-spatial network for train 

operations. This reduces the number of constraints and 

simplifies the model complexity. Additionally, constraints 

such as the minimum departure-to-arrival safety tracking 

interval and overtaking constraints are represented as 

incompatible relationships between train occupation arcs in 

the temporal-spatial network. This facilitates the 

decomposition of the model during the Lagrangian relaxation 

process. However, the classical Lagrangian relaxation 

algorithm still need to be improved to achieve higher-quality 
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train timetables for high-speed railways. 

In order to describe the problem using discrete 

temporal-spatial network theory, a temporal-spatial network 

model is constructed. The theory of discrete temporal-spatial 

network utilizes a discrete time axis to replicate the nodes of 

the physical network in chronological order, forming a 

two-dimensional temporal-spatial network graph. The 

introduction of temporal-spatial arcs facilitates the 

description of the train's travel path and effectively captures 

the relationships between various elements in the 

temporal-spatial network. In this study, the train timetable is 

modeled as a two-dimensional network graph incorporating 

temporal-spatial arcs. 

As a graphical representation of the specific 

temporal-spatial positions of trains, a directed 

temporal-spatial network ( , )G N A=  can be used to describe 

the train timetable. In this network: The set of nodes, denoted 

as N , represents all the nodes that a train passes through in 

the temporal-spatial domain. At each station, the nodes are 

further divided into arrival nodes U  and departure nodes 

W .Where, 
sW represents the set of departure time nodes for 

train at station s , and 
sU  represents the set of arrival time 

nodes for train at station s .The set of arcs, denoted as A , 

represents the components of a train's timetable, determined 

by the arrival and departure nodes at the stations. S  is the set 

of all stations. (1,  ... , )L n=  is the set of all 

trains.
( ) ( )( ,  ... , )i

i iS o d S=   denotes the set of stations that 

train i L  passes through, which includes stations. A train's 

timetable can be represented as a path in the temporal-spatial 

network, subject to certain constraints, starting from the 
( )io  

and passing through 
( ) ( )1,  ... , 1i io d+ −  to the 

il . The set of 

arcs included in the path is denoted as 
iA ,

iA A  and the set 

of nodes is denoted as 
iN , { \ ( , ) : ,   } i i

i iN v N N N   + −=      ， . 

Where, ( )i v + represents the set of entry nodes to node v  on 

train line 
iA , and ( )i v −  represents the set of exit nodes 

from node v  on train line 
iA . To construct a complete train 

timetable, a virtual departure node   and a virtual 

destination node   are introduced in the entire network, 

representing the origin and destination of each train. As a 

result, the set of all nodes in the network (including virtual 

nodes) can be represented 

as 1 1 2{ , } (  ... ) (  ... )s sN W W U U  −= . A 

train's timetable, represented by the set of arcs associated 

with it, can be denoted as sta run stop end

i i i i iA A A A A= . It 

specifically includes: 

(1) Departure arcs from the virtual departure point   to 

the departure node ( )io
v W  of the train at its origin station. 

Departure arcs ( ){( , ) | ( , ), ( ', ') }iosta

i i iA v s t v s t W = = =  . 

(2) Stop arcs at intermediate stations 

( ) ( ),  \{ , }i

i is s S o d from the arrival node 
su U to the 

departure node 
sv W  at the same station. These arcs 

represent the train's stop at an intermediate station. They 

connect the arrival node at the station to the departure node at 

the same station. The departure node 
sv W is determined 

based on the arrival node and the scheduled stop time of the 

train at that station. Stop arcs 

{( , ) | ( , ) , ( , ') }stop s s

iA u v u s t U v s t W= =  =  . Where, 

min max'ts t t ts −  , 
mints  represents the minimum stop time 

for train at station s , and 
maxts  represents the maximum stop 

time for train at station s . 

 (3)Running arcs within a section ( , 1)s s + from the 

departure node
sv W  at a station s  to the arrival node 

1su U +  at the next station 1s + .These arcs represent the 

train's movement within a section between two consecutive 

stations. They connect the departure node at the current 

station to the arrival node at the next station. The arrival node 
1su U +  is determined based on the departure node and the 

scheduled running time of the train within that section. 

Running arcs 
'{( , ) | ( , ) , ( ', ') , ' 1}run s s

iA v u v s t W u s t U s s= =  =  = + . 

(4) Termination arcs from the arrival node ( )id
u U at the 

train's destination station to the virtual arrival point  . This 

arc represents the train's arrival at the destination station and 

connects the arrival node at the destination station to the 

virtual arrival point. Termination arcs 
( ){( , ) | ( , ) , ( , ')}idend

iA u u s t U s t = =  = . 

The cost of each arc segment is determined by the 

deviation between the actual time and the scheduled time in 

the original train timetable. Specifically: Cost of the start arcs: 

The cost of the start arcs represents the deviation cost 

between the chosen departure time from the start station and 

the scheduled departure time in the original train timetable. In 

this case, a departure time window is defined for the train, 

denoted as ( ) ( )[ , ]i io o

i id d − +  . Where,   represents the 

allowable fluctuation value for train departure time, and s

id  

represents the scheduled departure time of train at station s . 

The cost for the start arcs within this time window is zero. For 

the start arcs outside this time window, the cost is calculated 

based on a penalty factor 1

penc  , and the cost of initial arc 

( , )v on train line i can be expressed as 

( ) ( )1 (| ' | )  ,   | ' |  
( , )

0 ,                                    else 

i io o

pen i ic t d t d
c v

 


  − − − 
= 



. 

The cost of the stop arcs represents the deviation cost 

between the chosen dwell time at a station and the original 

scheduled dwell time in the train timetable. The cost is 

calculated based on a penalty factor 2

penc , and the cost of stop 

arc ( , )u v  on the train line i can be expressed as 
2( , ) | ( ' ) ( ) |s s

pen i ic u v c t t d a=  − − − . Where s

ia  represents the 

scheduled arrival time of train at station s , and 1 2,pen penc c are 

the penalty coefficient for offset between initial arc and stop 

arc. 

Using a running graph example with 5 stations and 3 train 

routes, we will describe the modeling process outlined above. 

Please refer to Fig. 1. In this example, trains 1 2 3, ,K K K  

represent the three train routes. Stations A, C, and E are 

technical stations, while the others are intermediate stations. 

We will represent each train route using paths in the 

space-time network. 
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Running arcs
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Fig.  1.  Space-Time Network Representation of the Train Timetable 

 

Due to the limited allocation of transportation resources, 

potential conflicts may arise among the train routes. The key 

to optimizing the train timetable is to resolve these potential 

conflicts. In the process of establishing the space-time 

network, each path from the virtual departure point to the 

virtual arrival point is unique on the feasible timetable. 

Solving each train route can be transformed into the problem 

of constructing subgraph domains for each train route. With 

the constraints imposed on the selection of space-time 

network nodes, it can be further transformed into a shortest 

path problem, reducing the scale and difficulty of the 

solution. 

III. TRAIN TIMETABLING OPTIMIZATION MODEL BASED ON 

TEMPORAL-SPATIAL NETWORK 

A. Model Assumptions 

(1) The station stopping plan for trains is known and 

cannot be changed. 

(2) Trains are assumed to operate on a double-track 

railway, and the arrangement of approach and departure lines 

within stations is not considered, assuming that the capacity 

of the approach and departure lines is sufficient. 

(3) Train operations follow automatic block signaling, 

with a fixed and known minimum headway time. 

(4) The running times, additional dwell times at stations, 

number of trains, start and end points, and routes for each 

section are known and fixed. The timetable compilation does 

not consider the assignment of specific train units.  

B. Construction of Train Timetabling Optimization Model 

B.1. Objective Function 

Taking into account the time cost of passenger travel and 

minimizing the deviation from the original train timetable, 

the objective function of the constructed temporal-spatial 

network is to minimize the total cost of selected arcs for all 

trains. Specifically, it can be described as follows: 

= min
i

i i

a a

i L a A

Z c x
 

                                     (1) 

Where ( , ) ( , )i

ac c v c u v= + , 

( ) ( )1 (| ' | )  ,   | ' |  
( , )

0 ,                                    else 

i io o

pen i ic t d t d
c v

 


  − − − 
= 



, 

2( , ) | ( ' ) ( ) |s s

pen i ic u v c t t d a=  − − − , 

i

ac represents the cost of arc 
ia A  on train line i , 

i

ax is the decision variable, 
1 train   chooses  arc  

e 

 

0 els

i

a

i a
x


= 



， ；

，
 

B.2. Constraints 

For two adjacent trains i and j ( i j L、 ) at station 

( ) ( )  ( \{ })  ( \{ })i j

i js S d S d , the running arc 

1 2=( ; 1 ) , =(s, ;s+1, ') ,i ja s,t s ,t' A a A +  

' ' [0, ]t t T  、 、 、 must satisfy flow balance constraints, 

mutually exclusive arc constraints, and variable value 

constraints. 

(1) Flow balance constraint: 

This constraint ensures that each train route can select at 

most one departure arc and, except for the start and end 

stations, the number of entering and leaving arcs for each 

train route at the nodes is equal. 

( )  

  1     

i

i

a

a

x i L

 −

                              (2) 

( ) ( )    

  =          ,  \{ , }

i v i v

i i

a a

a a

x x i L v N
 

 
+ − 

                (3) 

(2) Mutually exclusive arc constraint: 

The constraint includes safety interval time constraint and 

train overtaking constraint. The security interval constraint 

includes the departure interval constraint and the arrival 

interval constraint, as shown in Fig. 2. These constraints 

represent the coupling relationship between multiple trains 

and ensure the exclusivity of temporal-spatial resource 

occupation by trains. In order to describe this relationship, we 

introduce the concept of an incompatible arc set. 

Given a specific temporal-spatial arc, the set of 

incompatible arcs associated with that arc is determined. Let's 

use arcs 
1 ( , ; 1, ') runa s t s t A= +   and 

2 ( , ; 1, ') runa s s A = +   as an example to illustrate. If both 

arcs 1 2  a and a  are occupied by trains simultaneously, the 

safety spacing constraint should be satisfied: 

1 2

min min

, max{ ,( ' ) ( ' ) }a a d at t    = − − − + . ', 't t  、 、  are 

the index for time in the temporal-spatial network, 

', ' [0, ]t t T  、 、 . Here, the safety spacing is explained as 

follows: ( ' )  ( ' )t t and  − −  represents the interval running 

time for the train i and train j  in the interval ( , 1)s s + . When 

the speeds of the trains are the same, the interval running time 

for both trains are the same, so the constraint simplifies to 

1 2

min min

, max{ , }a a d a  = , where min

d is minimum departure 

interval time and min

a  is minimum arrival interval time.  In 

this case, the mutually exclusive arc constraint represents the 

safety departure spacing constraint and the safety arrival 

spacing constraint. The safety spacing time is determined by 

taking the maximum value between the minimum arrival 

spacing time and the minimum departure spacing time. When 

train i and train j  have different speed levels, the safety 

spacing time is determined by taking the maximum value 
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between the minimum departure spacing time, the minimum 

arrival spacing time, and the difference between the interval 

running time of the two trains. This safety spacing constraint 

considers the safety departure and arrival spacing constraints 

as well as the train overtaking constraint.  

For any given time-space arc 
1a  in the graph, both the 

safety arrival spacing constraint and the train overtaking 

constraint can be transformed into a departure spacing 

constraint for the trains at the station.  

As shown in Fig. 3(a), if 
2 1,a at t −   , then arc 

2a  is 

called the left incompatible arc of arc 
1a . As shown in Fig. 

3(b), If 
1 2,'' a at t   + , then arc 

2 'a  is called the right 

incompatible arc of arc 
1a . Therefore, the set of incompatible 

arcs
1( )C a  for arc 

1a can be represented as: 

2 1 1 21 2 . ,( ) { ( , ; ', ') | }run

a a a aC a a s s A t t    = =  −   + . 

sW

1sU +

1v 2v

1u 2u

i j

min

d

sw
Station s

Station s+1

 
(a) Diagram of departure interval of trains 

sW

1sU +

i j

1u 2u

sw

min

a
Station s+1

Station s

 
(b) Diagram of train arrival interval 

 

Fig.  2.  Diagram of departure and arrival intervals of trains 
 

Station s
sW

1sU +

1a
2a

2 1,a at − t

( , )s t

( 1, ')s t+

( , )s 

( 1, ')s +

Station s+1

 

(a) The left incompatible arc of Arc 1a  

Station s sW

1sU +

1a

1 2,a at +t

( , )s t

( 1, ')s t+

( , )s 

( 1, '  )s +

Station s+1

2 'a

 

(b) The right incompatible arc of Arc 1a  

 

Fig. 3.  Illustration of Incompatible Arcs on Both Sides of Arc 1a  

 

Hence, the incompatible constraints can be described as 

follows: 

1 2

2 ( ) 1 21 1

1

: : 

 1    L, 
run

aj

j i run

a a j

a C a aj a A

x x i a A
 

+               (4) 

(3) Variable Value Constraints. 

  {0,1}        i L  ,  ai i

ax A                              (5) 

IV. BASED ON THE LAGRANGIAN RELAXATION ALGORITHM 

FOR MODEL SOLVING 

A. Lagrangian Relaxation of the Original Problem 

   The key to Lagrangian relaxation is to determine the 

relaxation constraints, which are the difficult constraints that 

affect the speed of solving the model. In the model 

established in this paper, the mutual exclusion constraint (4) 

reflects the mutual influence between train running lines and 

can significantly increase the size of the model, thereby 

affecting the solution time. 

To address this, the original model's constraint (4) is 

relaxed by introducing Lagrange multipliers 

( ) 0, , run

i a i L a A     . By treating these difficult 

constraints as penalty terms and relaxing them into the 

objective function, a Lagrangian relaxation problem is 

formed. 

1 2

2 ( ) 1 21 1
: : 

        ( ) [  1]

i

run run
aj

i i

LR a a

i L a A

j i

i a a

i L a C a aa A j a A

Z c x

a x x

 

   

=

+  + −

 

   
                

(6) 

By rearranging, the above equation can be transformed into: 

( )   
run i
i

i i

LR i a a

i L i La A a A

Z a c x
  

= − +                       (7) 

2 ( ) 1 21 1

1 1

: : 

( ) ( ) ,  A

 ,                                    else 

run
aj

i run

a j i 2 i
i a C a aj a A
a

i

a

c a a a

c

c

 
 

 + + 


 = 



 
    (8) 

By removing the constant term, we finally obtain: 

  
i

i i

LR a a

a A

Z c x


=                                       (9) 

The Lagrangian Relaxation (LR) problem has the same 

complexity as the original problem, and if the feasible region 

of the original problem is non-empty, let 
*Z  denote the 

optimal objective function value of the original problem 

model. Then for any 0  , we have: *( )Z Z   . This is a 

widely recognized theorem. This definition also indicates 

that the LR problem provides a lower bound for the solutions 

of the original problem. To obtain the closest lower bound to 

the original problem, it is necessary to construct the 

Lagrangian Dual problem (LD): 

max   
i

i i

LD a a

a A

Z c x


=                                (10) 

The relaxed constraints are intended to affect only 

individual trains as much as possible. Therefore, the dual 

problem can be decomposed into several mutually 

independent subproblems for individual trains in 

mathematical programming. These subproblems can be 

efficiently solved using the shortest path algorithm. The 

solution of the Lagrangian relaxation dual problem is fixed 

given the Lagrangian multipliers. By applying the shortest 

path algorithm, the relaxed solution of the original problem, 
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which serves as a lower bound for the original problem, can 

be obtained. 

B. Updating Method for Lagrange Multipliers 

In the iterative solution process, the standard subgradient 

algorithm is commonly used to update the Lagrange 

multipliers. However, the standard subgradient algorithm is 

not a monotonically decreasing algorithm and tends to 

exhibit oscillations during the optimization process, which 

severely affects its convergence efficiency. This 

phenomenon is believed to be caused by its Markov property, 

which means that the current subgradient does not have a 

memory effect on the historical subgradients generated in 

previous iterations. In this paper, fuzzy theory is introduced 

into the solution of subgradients, and a fuzzy subgradient 

algorithm is used to update the Lagrange multipliers. This 

algorithm utilizes membership functions to provide 

corresponding coefficients for all historical subgradients, 

thus making more effective use of all historical subgradient 

information. 

The updating strategy for modifying the subgradient 

direction involves using a linear combination of historical 

subgradients instead of the current subgradient. Specifically, 

the iteration formula is modified as follows: 
1( ) max{0, ( ) }q q q q

i ia a d  + = − , where q  represents the 

Lagrange multipliers at the q  iteration, 
q denotes the step 

size at the q  iteration, 
1

1

q

q
 =

+
,

q
q q

h h

h

d g=  .
hg  

represents the subgradient obtained at the h  iteration, 

1 2

2 ( ) 1 21 1
: : 

  1  
run

ai

i j

h a a

a C a ai a A

g x x
 

= + −  . q

h  represents the 

weight coefficient assigned to the historical subgradient in 

the h  iteration. To determine the weight coefficients, it is 

assumed that the closer the historical subgradient is to the 

current subgradient direction, the more information it 

contains and thus it should be assigned a higher weight. 

Based on this idea, the following definition is provided: 

The weight is defined as follows: 

1

/
q

q q q

h h h

h

  
=

=                                     (11) 

q

h  is defined by the following membership function: 

Z ( , )+ Z ( , )/ , 

if Z ( , ) Z ( , )+   Z ( , ) Z

0 ,                                    else 

q q q h

LR LR

q q h q q q h

h LR LR LR LR

x x

x x and x

   

     

 −


=  



(12) 

0 ( ( , )) /q q

LR LRZ Z x a   −                       (13) 

When updating the step size, it needs to satisfy the following 

condition: 

            
2

2( 1)( ( , ))
0 , 1

|| ||

q q
q LR LR

q

a Z Z x
a

a d




− −
             (14) 

The reasonable weights for each historical subgradient can 

be determined using the aforementioned fuzzy membership 

function, which fully utilizes the information from historical 

subgradients. 

The flowchart of the fuzzy subgradient algorithm can be 

described as follows: 

Step 1: Initialization. 

    Set the initial iteration number 0q = . 

    Initialize the Lagrange multipliers 1( ) 0i a = . 

Step 2: Iteratively update the Lagrange multipliers. 

    For each subgradient ( )q

i a : 

    If the stopping criterion is satisfied ( ) 0q

i a = , obtain the 

optimal solution and terminate the calculation. 

Otherwise, calculate the weights of each historical 

subgradient using equations (11) to (13). Update the step size 

according to equation (14). Update the Lagrange multipliers 
1( ) max{0, ( ) }q q q q

i ia a d  + = − .Repeat Step 2. 

The flow chart of the fuzzy subgradient algorithm is shown 

in Fig.4. 
 

Begin

Initialization: 

initializes the number of iterations,

initializes the Lagrange multiplier

Iterative correction Lagrange multiplier

Update the step size 

and the Lagrange 

multiplier

Output

End

 

Whether the termination conditions have 

been met

Yes

No

 

Fig.  4.  Flow chart of fuzzy subgradient algorithm 

 

The fuzzy subgradient algorithm allows the usage of 

different step size and adaptive adjustment during solving 

process in each iteration, which makes the algorithm more 

flexible in adapting to the characteristics of the problem. 

Since it only requires the calculation of subgradients of the 

objective function, it has relatively low computational 

complexity. The proof of convergence for this algorithm can 

be found in reference [19]. 
 

C. Heuristic Algorithm for Feasible Solutions 

Due to the use of the Lagrangian relaxation method, the 

solution obtained is the solution to the relaxed problem. This 

means that the computed solution may be infeasible, 

requiring further processing to make it feasible. 

The process of making the solution feasible also employs 

the shortest path method to solve the Lagrangian dual 

problem. The key is to consider the train organization 

constraints and determine the sequencing of train paths, 

based on the optimization order of trains according to the 

Lagrangian cost. As shown in equation (8), the shortest path 

cost for a train depends on the travel time cost of space-time 

arcs and the Lagrangian multipliers. In each iteration, the 

path selection of trains is adjusted based on the Lagrangian 
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multipliers of the occupied arcs. The specific steps of the 

heuristic algorithm are as follows: 

(1) Solve the Lagrangian dual problem (LD) and record the 

Lagrangian multipliers ( )i a  for all arcs in the graph. 

(2) Sort the trains' path sequencing based on the 

Lagrangian costs of individual subproblems. 

(3) Within the departure time window, considering all 

feasible departure nodes and ( , )c v 、 ( , )c u v , select the 

node ( ) 0i a =  for which the target is to minimize the 

objective. According to the depth-first search principle, 

traverse the train paths and perform rolling optimization to 

find the path with the minimum actual cost for each train.  

(4) Calculate the sum of the actual costs for all train paths 

in the graph and record it as the upper bound solution. 

 

D. Lagrangian Relaxation Algorithm Procedure 

Step 1: Initialize the iteration number 0q = , Lagrange 

multipliers ( ) 0q

i a = , step size parameter 0.5q = , 

minimum upper bound after q  iterations UB = + , and 

maximum lower bound after q  iterations LB = − . 

Step 2: Calculate and update the local/optimal lower bound. 

Use the shortest path algorithm to solve the Lagrangian dual 

subproblem and obtain the optimal solution and optimal 

value. If the optimal value q

LRZ LB , set q

LRLB Z= . 

Step 3: Calculate and update the local/optimal upper bound. 

Construct feasible solutions for the original problem using 

the method described in section D. Lagrangian Relaxation 

Algorithm Procedure, and calculate the corresponding 

objective function value 
qZ . If the objective function value 

qZ UB , set 
qUB Z= . 

Step 4: Check if the current iteration satisfies the specified 

duality gap (Gap) value ( 0)
UB LB

Gap
UB

 
−

=   . If the 

condition is met, proceed to Step 6. Otherwise, continue to 

Step 5. 

Step 5: Update the Lagrange multipliers 
1( ) max{0, ( ) }q q q q

i ia a d  + = − and the step size parameter 
21 0.5 qq q e  + −= using the fuzzy subgradient optimization 

method. Then, return to Step 2. 

Step 6: Terminate the algorithm and output the final result, 

which corresponds to the optimal solution for the original 

problem, associated with the upper bound UB. 

 

V. VERIFICATION EXAMPLE 

This study focuses on the optimization of train timetables 

for the Beijing-Shanghai high-speed railway. Based on the 

actual transportation production, the trains in the railway 

operate independently in two directions. One direction is 

selected for research purposes. To clearly describe the 

problem, we discretize one day into minutes, ranging from 1 

to q , 1440q = . The railway line consists of 23 stations. It is 

assumed that two different speed levels of trains operate on 

this line, and the travel times for different speed levels in each 

section are shown in Table I. Within the timetable period, a 

total of 82 trains are scheduled for departure, including 59 

high-speed trains and 23 low-speed trains. Various 

parameters involved are shown in Table II. For the 

convenience of solving the problem, this study assumes that 

the train departure sequence and stopping patterns are known, 

and the train departure time domain is shown in Table III. 

Given the train departure time window, the trains can choose 

an appropriate departure time within the allowed fluctuation 

range of the departure time. The proposed algorithm in this 

study is implemented in C++ language on Visual Studio 2013 

platform, running on a personal computer with 1 CPU Intel 

(R) Core (TM) i5-8250U CPU @ 1.60GHz (8CPUs), 

~1.8GHz, and 4 GB of memory. 
 

 

TABLE I 
TRAIN TRAVEL TIMES IN SECTIONS 

Operating interval 

Interval running time(min) 

high-speed train（270km/h） low-speed train（230km/h） 

Beijing South-LangFang 12 14 

LangFang-Tianjin South 14 17 

Tianjin South-Cangzhou West 18 21 

Cangzhou West-Dezhou West 22 26 
Dezhou West-Jinan West 18 22 

Jinan West -Taian 12 14 

Taian -Qufu East 14 17 

Qufu East -Tengzhou East 11 13 

Tengzhou East -Zaozhuang 7 9 
Zaozhuang -Xuzhou East 13 15 

Xuzhou East - Suzhou East 16 19 

Suzhou East -Bengbu South 15 18 
Bengbu South -Dingyuan 11 13 

Dingyuan -Chuzhou 12 15 

Chuzhou -Nanjing South 12 14 

Nanjing South -Zhenjing North 14 17 

Zhenjing North -Danyang North 5 6 

Danyang North - Changzhou North 6 8 

Changzhou North -Wuxi East 11 14 

Wuxi East-Suzhou North 5 6 

Suzhou North -Kunshan South 6 8 

Kunshan South -Shanghai Hongqiao 9 10 
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TABLE II 
 RELEVANT PARAMETERS 

Parameters Quantity Parameters Quantity 

min

arr  3min 
dep

min  3min 

  2min '  3min 

mints  
2min maxts  

10min 

1

penc  100 yuan /min 2

penc  100 yuan/min 

 

TABLE III 

 PARTIAL TRAIN DEPARTURE TIME WINDOWS 

Train Number Train Grade Earliest Departure Time (min） Latest Departure Time (min) 

G1 Low-Speed Train 0 20 
G2 Low-Speed Train 120 140 

G3 High-Speed Train 180 200 

G4 High-Speed Train 300 320 
G5 High-Speed Train 60 80 

G6 High-Speed Train 13 33 

G7 Low-Speed Train 68 88 

G8 Low-Speed Train 240 260 

G9 High-Speed Train 307 327 
G10 High-Speed Train 128 148 

G11 High-Speed Train 188 208 

G12 Low-Speed Train 196 216 

G13 High-Speed Train 250 270 

G14 High-Speed Train 260 280 

G15 High-Speed Train 314 334 

G16 Low-Speed Train 320 340 

G17 High-Speed Train 26 46 

G18 High-Speed Train 39 59 
G19 High-Speed Train 76 96 

G20 High-Speed Train 84 104 

 

Most The total time length for the problem is set to be 720 

minutes. The time is discretized with a time interval of 1 

minute. Each train is assigned a departure time window of 20 

minutes from the origin station. The algorithm is iterated 100 

times. Using the standard subgradient algorithm, the obtained 

optimal upper bound is 14761, the optimal lower bound is 

13503.7, the computation time is 334.82 seconds, and the 

optimal gap value is 8.51%. With the introduction of the 

fuzzy subgradient algorithm in the iteration of the Lagrangian 

relaxation algorithm, the optimal upper bound is 14551, the 

optimal lower bound is 13505.8, the computation time is 

260.42 seconds, and the optimal gap value is 7.18%. The 

iteration process of the upper and lower bounds with the 

fuzzy subgradient algorithm optimization in the Lagrangian 

relaxation algorithm is shown in Fig. 6, and the 

corresponding variation of the optimization gap value is 

shown in Fig. 7. It can be observed that the Gap values 

obtained using the fuzzy subgradient algorithm are superior 

to the optimal upper bounds. This improvement is achieved 

by effectively utilizing and updating historical subgradient 

information, which reduces the computational cost in each 

iteration. Standard subgradient algorithms typically require 

precise gradient computations of the objective function, often 

involving partial derivatives of each variable, resulting in 

higher computational complexity. In contrast, the fuzzy 

subgradient algorithm only requires subgradient 

computations of the objective function, which can simplify 

the computation process in certain cases. This is especially 

beneficial for exploring a broader solution space in 

large-scale problems, leading to enhanced optimization 

results in terms of quality and convergence speed. The fuzzy 

subgradient algorithm exhibits better computational 

performance overall. The comparison of the results between 

the standard subgradient algorithm and the fuzzy subgradient 

algorithm is shown in Table IV. Table V shows the values of 

upper and lower bounds and Gap values obtained by each 

iteration of the fuzzy sub gradient algorithm.  

The optimized train schedule obtained using the 

Lagrangian relaxation algorithm is shown in Fig. 5. The red 

solid lines in Fig. 5 represent high-level trains, while the blue 

dotted lines represent low-level trains. Some station names 

are omitted in Fig. 5 to make them more clearly marked on 

the axis. The complete station names are shown in Table I. 

From the schedule, it can be seen that the departure times of 

some trains have been adjusted, and the trains can flexibly 

choose the stoppage time within the minimum and maximum 

stoppage time. The optimized train schedule reduces the 

travel time for each train, thus reducing the time cost for 

passengers and improving the quality of railway 

transportation services.
 

TABLE IV 

COMPARISON TABLE OF SOLUTION RESULTS 

Algorithm The computation time  Lower bound Upper bound Gap value 

The standard subgradient algorithm 334.82s 13503.7 14761 8.51% 

The fuzzy subgradient algorithm 260.42s 13505.8 14551 7.18% 
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High-Level Trains

Low-Level Trains

High-Level Trains

Low-Level Trains

 
 Fig. 5.  Optimized Train Timetable 

 
TABLE V 

TABLE OF OPTIMIZED UPPER AND LOWER BOUNDS AND GAP VALUES

Number of iterations Lower bound Upper bound Gap Value 

1 0 14763 100 
2 5864 14763 60.2791 

3 8801 14763 40.3847 

4 11164.5 14551 23.2733 
5 12614.3 14551 13.3095 

6 12965.8 14551 10.894 
7 13231.2 14551 9.07029 

8 13346.3 14551 8.27903 

9 13411 14551 7.83451 
10 13411 14551 7.83451 

11 13464.9 14551 7.46386 
12 13464.9 14551 7.46386 

13 13464.9 14551 7.46386 

14 13464.9 14551 7.46386 
15 13464.9 14551 7.46386 

16 13471 14551 7.42217 
17 13505.8 14551                                      7.18301 

     

100 13505.8 14551 7.18301 

                

    

Lower Bound

Upper Bound

 
Fig.  6.  Iteration Process of Upper and Lower Bounds in Lagrangian 

Relaxation Algorithm 

 
Fig. 7.  Iteration Process of Gap Value in Lagrangian Relaxation Algorithm 
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Table V shows the values of upper and lower bounds and 

Gap values obtained by each iteration of the fuzzy 

subgradient algorithm. From table V we can see that the 

fuzzy subgradient optimization algorithm used in each 

iteration of the process of the specific values. Due to space 

constraints, not all of the 100 iterations are listed in full, but 

the iteration process is clearly shown. Among them, the lower 

bound value no longer changes at the 17th iteration and has 

reached the optimum; the upper bound value also reaches the 

optimum at the 4th iteration; and the Gap value no longer 

changes at the 17th iteration, reached the optimal Gap value. 

And from Fig. 6 and Fig.  7 we can see the overall trend more 

visually. 

The results of the Beijing-Shanghai high-speed railway 

case study demonstrate the significant advantages of 

applying the fuzzy subgradient optimization algorithm in the 

Lagrangian relaxation algorithm. It effectively improves the 

quality and convergence speed of the optimization results. 

Using the standard subgradient algorithm, the iteratively 

obtained optimal upper bound is 14761, the optimal lower 

bound is 13503.7, the computation time is 334.82 seconds, 

and the optimal Gap value is 8.51%. In contrast, for the 

Lagrangian relaxation algorithm iteratively using the fuzzy 

subgradient algorithm, the optimal upper bound is 14551, the 

optimal lower bound is 13505.8, the computation time is 

260.42 seconds, and the optimal Gap value is 7.18%. 

Comparing the Gap values determines the degree of 

optimization in the timetable, and the results of the improved 

fuzzy subgradient algorithm are superior to those of the 

standard subgradient algorithm, making it better suited for 

complex, nonlinear optimization problems.  
 

VI. CONCLUSION 

(1) This paper focuses on optimizing the high-speed 

railway train timetable, resulting in an optimized timetable 

where each train has a shorter travel time (i.e., minimized 

cost), thereby enhancing the quality of railway transportation 

services. The established 0-1 integer programming model 

based on space-time arcs uses incompatible constraints to 

characterize the safety interval constraints, providing a 

clearer representation of the coupling relationships between 

trains. Additionally, the process of decomposing the original 

problem using the Lagrangian relaxation algorithm becomes 

more convenient. 

(2) In solving the model using the Lagrangian relaxation 

algorithm, this paper introduces fuzzy theory to improve the 

subgradient optimization algorithm. The fuzzy subgradient 

algorithm effectively utilizes historical subgradient 

information and overcomes the Markov property of the 

standard subgradient algorithm. In future research, 

considering the integrated optimization of train timetables 

and rolling stock schedules can further enhance the quality of 

railway transportation services.  
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